Supplements

Figure 1. Phenotypic correlations: *L-SZ* and *PRS* (biserial), *L-SZ* and *g* (biserial), *g* and *PRS* (Pearson)

L-SZ = schizophrenia liability; PRS = polygenic risk score; g = general cognitive ability. L-SZ correlated with g at -0.461 and PRS at 0.142 (both p-value < 0.001). The Pearson correlation between g and PRS is -0.297 (p-value < 0.001).

Figure 2. Standardized parameter estimation of model 4 with a^2 of schizophrenia at 0.7~0.9

The parameter estimations with heritability a^2 of schizophrenia at 0.7, 0.8 and 0.9 are listed in the 1st, 2nd and 3rd rows respectively. *L*-*PRS* = polygenic risk score; latent variables: *L-SZ* = schizophrenia liability; *L-COG* = general cognitive factor; *A*=genetic component; *E*= environmental component; *i*, *j*, *k* represent causal paths; causal path *i*, *L-PRS* to *L-SZ*; causal path *j*, *L-PRS* to *L-COG*; causal path *k*, *L-COG* to *L-SZ*; a^2 = overall genetic variance to *L-SZ* is constrained to 0.7, 0.8, 0.9. When schizophrenia heritability a^2 increases, genetic parameters (a_2 and a_3) increase and environmental parameters (e_2 and e_3) decrease.

Polygenic Risk	<i>p</i> -value	Control		Siblings		SZ	
Score (PRS)	cut-off	Mean	SD	Mean	SD	Mean	SD
N.		607	7	286	5	416	6
Level 1	5.00E-08	-0.517	0.264	-0.486	0.257	-0.444	0.268
Level 2	1.00E-06	-0.977	0.368	-0.905	0.366	-0.835	0.367
Level 3	1.00E-04	-1.404	0.735	-1.239	0.722	-0.956	0.690
Level 4	1.00E-03	-1.465	1.080	-1.241	1.000	-0.745	1.059
Level 5	1.00E-02	-8.611	1.690	-8.053	1.614	-7.368	1.660
Level 6	5.00E-02	-12.333	2.382	-11.562	2.259	-10.480	2.492
Level 7	1.00E-01	-13.246	2.670	-12.402	2.605	-11.185	2.843
Level 8	2.00E-01	-14.475	3.001	-13.608	2.943	-12.242	3.185
Level 9	5.00E-01	-18.995	3.268	-18.049	3.176	-16.604	3.455
Level 10	1.00E+00	-19.707	3.282	-18.772	3.204	-17.347	3.481

Table 1. Statistics for PRS in schizophrenia, siblings and control groups

Ten different *PRS* levels were calculated based on the SNPs associated with schizophrenia at different *p*-value thresholds ($P_T < 5 \times 10^{-0.08}$, $1 \times 10^{-0.06}$, $1 \times 10^{-0.04}$, $1 \times 10^{-0.03}$, 0.01, 0.05, 0.1, 0.2, 0.5, 1). *SD* = standard deviation; *SZ* = schizophrenia group.

Level	<i>p</i> -value cut-off	Approx #SNPs	Cox & Snell R Square	<i>P</i> value for coefficients
1	5.00E-08	106	0.001	1.01E-04
2	1.00E-06	238	0*	6.93E-08
3	1.00E-04	1,252	0.001	5.38E-18
4	1.00E-03	3,368	0*	6.18E-21
5	1.00E-02	10,572	0.027	6.48E-23
6	5.00E-02	24,694	0.09	1.16E-24
7	1.00E-01	35,816	0.088	4.46E-24
8	2.00E-01	51,895	0.083	4.33E-23
9	5.00E-01	81,383	0.081	1.90E-22
10	1.00E+00	102,488	0.078	9.17E-22

Table 2. Logistic Regression results for every *p*-value level

*0: the value is less than the 0.001; Approx #SNPs: N. of the SNPs

a^2	Model	ер	-2LL	df	AIC	Δ-2LL	Δdf	р	comp.
			Bi-variate n	odel					
0.7	1: Cholesky	29	26061	8446	9168.8				
	2: L-COG<->L-SZ	29	26061	8446	9168.8				
	3: dropping L-SZ \rightarrow L-COG	28	26062	8447	9167.81	1.01	1	0.32	1&2
	4: dropping L-COG → L-SZ	28	26073	8447	9178.77	11.97	1	< 0.01	1&2
0.8	1: Cholesky	29	26070	8446	9177.51				
	2: L-COG<->L-SZ	29	26070	8446	9177.51				
	3: dropping L-SZ \rightarrow L-COG	28	26070	8447	9176.2	0.69	1	0.41	1&2
	4: dropping L-COG→L-SZ	28	26088	8447	9194.12	18.61	1	< 0.01	1&2
0.9	1: Cholesky	29	26084	8446	9191.93				
	2: L-COG<->L-SZ	29	26084	8446	9191.93				
	3: dropping L-SZ \rightarrow L-COG	28	26095	8447	9201.12	11.19	1	< 0.01	1&2
	4: dropping L-COG→L-SZ	28	26107	8447	9213.28	23.33	1	< 0.01	1&2
			Tri-variate r	nodel					
0.7	1: Full	32	29726.49	9752	10222.49				
	2: dropping PRS → L-COG (j)	31	29730.97	9753	10224.97	4.48	1	0.03	1
	3: dropping PRS \rightarrow L-SZ (i)	31	29730.75	9753	10224.75	4.27	1	0.04	1
	4: dropping L-SZ → L-COG (k')	31	29727.35	9753	10221.35	0.86	1	0.35	1
	5: dropping L-COG → L-SZ (k)	31	29739.25	9753	10233.25	12.76	1	< 0.01	1
0.8	1: Full	32	29734.4	9752	10230.4				
	2: dropping PRS → L-COG (j)	31	29756.77	9753	10250.77	22.37	1	< 0.01	1
	3: dropping PRS \rightarrow L-SZ (i)	31	29746.82	9753	10240.82	12.42	1	< 0.01	1
	4: dropping L-SZ → L-COG (k')	31	29734.72	9753	10228.72	0.32	1	0.57	1
	5: dropping L-COG → L-SZ (k)	31	29754.58	9753	10248.58	20.19	1	< 0.01	1
0.9	1: Full	32	29748.67	9752	10244.67				

Table 3. Sensitivity analyses for bi-variate and tri-variate models

2: dropping PRS → L-COG (j)	31	29770.35	9753	10264.35	21.68	1	< 0.01	1
3: dropping PRS \rightarrow L-SZ (i)	31	29774.54	9753	10268.54	25.87	1	< 0.01	1
4: dropping L-SZ → L-COG (k')	31	29759.66	9753	10253.66	10.99	1	< 0.01	1
5: dropping L-COG \rightarrow L-SZ (k)	31	29773.71	9753	10267.71	25.04	1	< 0.01	1

 a^2 = overall genetic variance to *L-SZ* is constrained to 0.7, 0.8, 0.9; ep=estimate parameter; -2LL=minus 2 log likelihood; df=degree of freedom; AIC=Akaike information criterion; Δ -2LL=the difference of minus 2 log likelihood between two models; Δdf =the difference of the degree of freedom; p = p-value, when p value < 0.05 (p-value <0.025 for bi-variate), the model is significantly worse than its comparison model; comp. = the comparison model; latent variables: L-SZ = schizophrenia liability, L-COG = general cognitive factor. *Bi-variate models*: when a^2 is 0.7 to 0.8, model 4 deteriorates statistically significantly from baseline models, while model 3 is not significantly worse and thus the model with the best fit for the data. When a^2 is 0.9, both models 3 and 4 are significantly worse than the baseline model (model 2), and model 3 is still chosen due to the smaller AIC. So, the model fitting results do not change with different heritability levels. *Tri-variate models*: When the heritability of schizophrenia 0.82. When it is fixed to 0.9, all nested models (model 2~5) are significantly worse than model 1, and could not select the model according to p-value; however model 4 still has the smallest AIC among them, and fits the data best.

		L-SZ→L-COG				L-COG →L-SZ				
a^2	Α		Ε		A	Α		E		
u	Cholesky	causal	Cholesky	causal	Cholesky	causal	Cholesky	causal		
	a_{21} '	a_1 '*k'	<i>e</i> ₂₁ '	e_1 '*k'	a_{21}	$a_1 * k$	<i>e</i> ₂₁	$e_1 * k$		
0.82	-0.421	-0.628	-0.712	-0.294	-0.545	-0.531	-0.424	-0.424		
	-0.501~ -0.339	-0.661~ -0.594	-0.850~ -0.566	-0.310~ -0.278	-0.642~ -0.487	-0.572~ -0.486	-0.425~ -0.355	-0.427~ -0.395		
0.70	-0.365	-0.580	-0.689	-0.380	-0.422	-0.466	-0.548	-0.504		
	-0.483~ -0.265	-0.610~ -0.549	-0.820~-0.524	-0.399~-0.359	-0.557~ -0.357	-0.519~401	-0.577~ -0.422	-0.521~ -0.458		
0.80	-0.408	-0.621	-0.711	-0.310	-0.519	-0.512	-0.447	-0.447		
	-0.494~ -0.324	-0.653~ -0.587	-0.846~-0.561	-0.326~ -0.293	-0.615~ -0.464	-0.554~ -0.316	-0.457~ -0.370	-0.502~ -0.398		
0.90	-0.480	-0.660	-0.720	-0.220	-0.658	-0.600	-0.316	-0.320		
	-0.545~ -0.414	-0.691~ -0.621	-0.856~ -0.573	-0.230~ -0.207	-0.797~ -0.588	-0.641~ -0.563	-0.376~ -0.284	-0.343~ -0.296		

Table 4. The path from A and E of the first phenotype to the second phenotype

Parameter comparison like the value of a_{21} and a_1*k (figure 1 main paper) at different schizophrenia heritability a^2 levels with confidence intervals (CIs); Latent variables: L-SZ = schizophrenia liability, L-COG = general cognitive factor; A = genetic component; E= environmental component; Cholesky = Cholesky model; causal = causal model, a^2 = overall genetic variance to L-SZ is constrained to 0.7, 0.8, 0.9 and 0.82; CIs that do not include 0 are significant. The value of A and E contribution on the second phenotype is closer between the Cholesky model and nested causal model in L- $COG \rightarrow L$ -SZ at all heritability levels. The findings duplicate and verify the results of the model fitting comparison, which supports a direction of causation from cognition to schizophrenia liability (see main paper).

a^2	L-PRS directly		<i>L-PRS</i> directly <i>L-PRS</i> through <i>L-COG</i>			Covariance between L-PRS & L-COG		
	$i^2 \times a_1^2$		$(k \times j)^2 \times a_1^2$		$2 \times k \times j \times i \times a_1^2$			
0.7	0.0108	1.55%	0.0228	3.26%	0.0314	4.49%	9.30%	
	0.0053~0.0224	0.76~3.20%	0.0154~0.0357	2.19~5.10%	0.0155~0.0413	2.21~5.89%	6.25~12.22%	
0.8	0.0115	1.44%	0.0224	2.79%	0.0321	4.01%	8.24%	
	0.0044~0.0152	0.55~1.90%	0.0165~0.0280	2.06~3.50%	0.0226~0.0374	2.82~4.67%	6.53~10.26%	
0.9	0.0123	1.37%	0.0217	2.41%	0.0327	3.64%	7.42%	
	0.0081~0.0176	0.90~1.96%	0.0184~0.0290	2.04~3.22%	0.0271~0.0416	3.01~4.62%	6.10~10.31%	

Table 5. Genetic variance components of schizophrenia liability contributed by L-PRS

Overall genetic variance components of schizophrenia liability related to *L-SZ* when a^2 is constrained to 0.7, 0.8, and 0.9. a^2 = overall genetic variance; %: percentage of genetic variance components of schizophrenia liability with confidence intervals (*CIs*); latent variables: *L-SZ* = schizophrenia liability; *L-COG* = general cognitive factor; *L-PRS*= polygenic risk score; *i*, *j*, *k* represent causal paths: causal path *i*, *L-PRS* to *L-SZ*; causal path *j*, *L-PRS* to *L-COG*; causal path *k*, *L-COG* to *L-SZ* (figure 2 in main paper); a_m is the path coefficient from the m^{th} genetic factor to the latent variable in figure 2 in main paper; CIs that do not include 0 are significant. The amount of every component of genetic variance of schizophrenia liability accounted by *L-PRS* is similar at different a^2 levels, with percentages decreasing as a^2 increases: 9.3% of the schizophrenia genetic variance is explained by *L-PRS* at a^2 =0.7 and 7.4% at a^2 =0.9.

a^2	From <i>L-COG</i> excluded <i>L-PRS</i>		From L-COGL-PRS through L-COGexcluded L-PRS		Covariance L-PRS &	Total variance Related <i>L-COG</i>	
	$k^2 \times a_3^2$		$(k \times j)^2 \times a_1^2$		$2 \times k \times j \times i \times a_1^2$		
0.7	0.1675	23.93%	0.0228	3.26%	0.0314	4.49%	31.68%
	0.0979~0.2391	13.98~34.16%	0.0154~0.0357	2.19~5.10%	0.0155~0.0413	2.21~5.89%	23.20~42.60%
0.8	0.2019	25.23%	0.0224	2.79%	0.0321	4.01%	32.04%
	0.1789~0.2548	22.37~31.85%	0.0165~0.0280	2.06~3.50%	0.0226~0.0374	2.82~4.67%	26.17~37.12%
0.9	0.2986	33.18%	0.0217	2.41%	0.0327	3.64%	39.23%
	0.2714~0.3503	30.16~38.92%	0.0184~0.0290	2.04~3.22%	0.0271~0.0416	3.01~4.62%	33.16~44.48%

Table 6. Genetic variance components of schizophrenia liability related L-COG

Overall genetic variance components of schizophrenia liability related to *L-COG* when a^2 is constrained to 0.7, 0.8, and 0.9. $a^2 =$ overall genetic variance; %: percentage of genetic variance components of schizophrenia liability with confidence intervals (*CIs*); latent variables: *L-SZ* = schizophrenia liability; *L-COG* = general cognitive factor; *L-PRS*= polygenic risk score; *i*, *j*, *k* represent causal paths: causal path *i*, *L-PRS* to *L-SZ*; causal path *j*, *L-PRS* to *L-COG*; causal path *k*, *L-COG* to *L-SZ* (figure 2 in main paper); a_m is the path coefficient from the m^{th} genetic factor to the latent variable in figure 2 in main paper; CIs that do not include 0 are significant. The total variance related to *L-COG* increases as a^2 increases from 0.7 to 0.9.