
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - 2018 1

APPENDIX
IMPLEMENTATION DETAILS

The C++/CUDA source code is publicly available at https:
//git.stim.ee.uh.edu/codebase/stimlib. The majority of the
source code is encapsulate in /stim/gl/gl_spider.h,
however, data loading is handled by the /stim/grids/
image_stack.h. Once the data is loaded using image_
stack.h, we ”attach” a gl_spider object to the 3D vol-
ume and read in the seed points. The source of the seed
points is completely irrelevant as long as each seed contains
all the necessary information described in Algorithm 1. The
image stacks are loaded into GPU memory and shared
with an OpenGL context using GL-Cuda inter-operability
mechanic described in [1]. A gl_spider object can be
tuned by changing the number of templates, size of the
templates in pixel space and cost value. Once all of the
parameters are set (or the default values are used), there are
two methods in the class for finding centerpoints: trace
and step. Trace returns all the centerpoints until termina-
tion, while step only executes a single step of Algorithm
1. Since each spider object is independent from all others, a
user can concurrently load and attach a spider to multiple
data blocks, making the implementation highly scalable.
The only limitation is the amount of memory the hardware
can make available, with an average number of spiders
simultaneously operating being 3 for an NVidia GTX 1080
GPU. Additionally the amount of memory required is heav-
ily dependent on the number of fibers in a volume, since the
results of the segmentation are also stored in GPU memory
during the segmentation process. The results are stored in a
custom NTW format or wavefront obj format. The NWT
format is described in the linked library. All glyphs are
generated during post processing.

Our tracing method is more efficient than the traditional
template matching by focusing on the voxels near the
embedded network; however, a large number of volume
samples are still required for the prediction (Section 3.3), po-
sition correction (Section 3.4) and radius estimation (Section
3.5) steps, which can be computationally intensive. While it
is possible to manually limit the location of the sampling−a
method used commonly in other vector tracking algorithms,
we instead optimize the sampling, cost evaluation methods
to reduce the time spent on each sample beyond the first
one to a negligible value. To achieve this we take advantage
of the hardware and software advances.

In the following subsections we show that performing
Predict, Correct, Fit and DetectBranches and calculating
cost are further optimized by performing the most time
intensive operations in CUDA using shared and texture
memory.

Sampling
Texture memory offers the advantage of caching the region
near recent texture look-ups. This improves performance
and reduces memory traffic when the read operations have
some specific patterns. By storing the volume represented
by the initial image stack as a 3D texture we take advantage
of the caching mechanism in texture look-ups to make
each successive sample cheaper. Each successive sample for
every individual template is guaranteed to be near a sample

previously taken. Each sample in V, P, R falls into a 2D
texture image, with the quads resulting from Sa

p and S b
p are

placed next to each other (Fig. 1). We then specify a texture
matrix transformation in order to transform the state of the
tracer to texture coordinates as in Fig. 1c. The number of
direction, position and size templates is constant and set
during initialization, and all pixels are stored in individual
textures with each array of templates allocated statically
during initialization. Sampling overwrites the data stored
in those arrays during each step (Figure 1).

Cost Evaluation
The cost function is evaluated on each template in V, P, R
identically, an example of single instruction multiple data
(SIMD) parallelism. We exploit the SIMD parallelism by
using CUDA to compute kernel operations in parallel to fur-
ther optimize the performance over the previous algorithm.

All arrays are stored in GPU memory until they are no
longer needed, and all processing happens on the GPU,
reducing the detrimental effect of the host-to-device transfer
bottleneck. Each template is then processed independently
and in parallel using CUDA shared memory for better
performance. Each template is subtracted from the corre-
sponding ftp(x) and efficiently reduced to a single value
using sequential addressing described in [2], resulting in an
unsorted array of cost values mapped one-to-one to the
template array. Finally we linearly search for the value with
the lowest cost and return the corresponding index. The
amount of time spent searching for the minimum is small
compared to the time spent on calculating the cost, therefore
we chose not to optimize that aspect further.

The unrolled cylinders (see Section 4) used for branch
detection are treated in a similar manner, with the exception
that the memory used to store the unrolled cylinder image
is allocated dynamically, since the length of the cylinder is
varying. We then perform the convolution [3] with the pre-
computed LoG kernel of size 5 using shared memory and
padding to further accelerate the computation [4]. The cost
of dynamically allocating memory is mitigated by perGB
this once per fiber, as mentioned previously.

Connectivity Reconstruction
Because each new seed point generally lays close to a surface
of another fiber, the network connectivity information is
implicitly stored in the distance between the endpoints of
single fibers and the points in all other points in the network.
Of course this implication is only partially true for initial
seed points. Connectivity is reconstructed as the algorithm
segments each new fiber and adds it to the network. The
connectivity sub-routine is called once per fiber and always
at the end of segmentation; when a termination condition
is reached. The termination conditions, described in Section
3.6 are closely related to the connectivity cases we handle:

1) The new fiber neither begins from a fiber, nor ends in a
fiber.

2) The new fiber ends with another fiber.
3) The new fiber begins from another fiber.
4) The new fiber starts and ends with a new fiber.

Case 1 is guaranteed when we are segmenting the initial
seed point. At that time, the network contains no fibers,

https://git.stim.ee.uh.edu/codebase/stimlib
https://git.stim.ee.uh.edu/codebase/stimlib


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. -, NO. -, - 2018 2

(a) (b)

(c) (d)
Fig. 1: A small subset of the samples Sa

p (x, y, z) and Sb
p(x, y, z)

shown side by side, which are collected during the Predict
(a), and Fit(c), respectively. The samples are then subtracted
from the template and the resulting images (b,d) are reduced
to a single value per sample.

vt+1

(a)

fin

fnew

pt+1

pt

fnew

pt+1

pt

pi 𝒇𝒇𝒊𝒊𝒊𝒊𝟐𝟐

𝒇𝒇𝒊𝒊𝒊𝒊𝟏𝟏

(b)

(c)

look-forward
pt+1

pifin fin

fnew fnew

Fig. 2: After each iteration of Algorithm 1 (a) we execute a
look-forward routine (c). We check if a fiber is detected in the
limited viewport in front of the last added point pt+1 in the
current fiber fnew (b). If a collision is detected, the subroutine
finds the point pi in fin with the shortest distance to pt+1.
The in-network fiber fin is split at pi into f 1in and f 2in with pi

remaining in all fibers including fnew (b). pi is labeled as a
node in the separately stored connectivity map.

therefore, the new fiber can neither collide, nor begin from
another fiber in the network. When the network is non-
empty and the new fiber is found from another initial seed
point, at best we might end with another fiber; this is han-
dled by Case 2. However, majority of the newly segmented
fibers will either fall under Case 3 or Case 4.

In order to find whether we intersect another fiber previ-
ously segmented−an in-network fiber, we call the look-forward
subroutine. During connectivity reconstruction, every in-
network fiber is given a unique label. We test for intersec-
tions by, first, rendering the network and the new filament

currently being processed. Second, we limit the area visible
to the fiber along z axis such that it only detects the rendered
in-network fibers if they are a distance δ × rt+1 away from
the point pt+1 looking in the direction vt+1. A collision
happens when any fiber is detected in this small viewport.
We then connect the in-network fiber fin and the new fiber
fnew. To do this we find the approximate nearest neighbor pi

in fin to pt+1, where pt+1 is the last point in fnew. The two
fibers are then connected at pi, splitting fin into two fibers at
pi. Each look-forward collision replaces one in-network fiber,
with three new fibers: f 1in,f 2in, fnew, all containing the point
pi. pi is stored as a coordinate of a node, with connecting
edges, f 1in, f 2in, fnew, for later use. The whole process is briefly
illustrated in Fig. 12.

Additionally, we look at the starting point p0 in a similar
manner but directed at −v0 in order to find which fiber
this seed is originated from, if any, and connect those fibers
using the method described above. This is the look-back sub-
routine.

REFERENCES

[1] J. Neider, T. Davis, and M. Woo, “Opengl programming guide,”
1993.

[2] M. Harris et al., “Optimizing parallel reduction in cuda,” NVIDIA
Developer Technology, vol. 2, no. 4, 2007.

[3] B. Daga, A. Bhute, and A. Ghatol, “Implementation of parallel
image processing using nvidia GPU framework,” in Advances in
Computing, Communication and Control. Springer, 2011, pp. 457–
464.

[4] V. Podlozhnyuk, “Image convolution with cuda,” NVIDIA Corpora-
tion White Paper, June, vol. 2097, no. 3, 2007.


	Appendix: Implementation Details
	References

