OMTM, Volume 12

Supplemental Information

Novel Chimeric Gene Therapy Vectors Based

on Adeno-Associated Virus

and Four Different Mammalian Bocaviruses

Julia Fakhiri, Marc A. Schneider, Jens Puschhof, Megan Stanifer, Verena Schildgen, Stefan Holderbach, Yannik Voss, Jihad El Andari, Oliver Schildgen, Steeve Boulant, Michael Meister, Hans Clevers, Ziying Yan, Jianming Qiu, and Dirk Grimm

Figure S1. Southern blot analysis of rAAV genomes packaged into AAV2. (A) The oversized ssAAV-CRISPR genomes shown in Figure 1D were packaged into AAV2 capsids. The packaged viral DNA was isolated and resolved on a 0.7% alkaline agarose gel. The number above each lane indicates the size of the packaged genome. AAV vector genomes were labeled with a probe against the SpCas9 cassette. (B) Neutral gel electrophoresis of scAAV-YFP genomes packaged into AAV2 capsids (see Fig. 1G for schemes of all constructs). Southern blotting was performed using a probe against the yfp cassette.

Figure S2. Purification of scAAV-YFP/BoV vectors using CsCl density centrifugation. scAAV-YFP genomes were packaged into HBoV1-4/GBoV or AAV2 as control using the triple transfection protocol. Viral particles were purified from the crude cell lysate using CsCl density centrifugation. To determine the virus-containing fractions, a total of 30 to 32 fractions was collected from each CsCl gradient. For detection of encapsidated AAV genomes, 10 to 15 μ L of each fraction were loaded onto a dot blot apparatus followed by Southern blot analysis using a probe binding in the *yfp* cassette. Dot blots were analyzed in ImageJ and the optical density of each spot was determined after background subtraction. From these densities, the fold-change to fraction 1 was calculated and plotted on the y-axis. Brackets define the range with the highest viral content, and the numbers above refer to the density of the indicated fractions (g/ml).

Figure S3. Phylogenetic analysis and initial testing of scAAV-YFP/BoV vectors on pHAE and CuFi-8 cell line. (A) Phylogenetic analysis of the BoV serotypes used in this work (marked with black circles). The evolutionary history was inferred in MEGAX by using the Maximum Likelihood method based on the Tamura-Nei model. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The scale bar represents the average number of nucleotide substitutions per site. (B) Transduction of pHAE with scAAV-YFP/BoV or AAV2 as control (MOI of 4×10^4). Nuclei were stained with Hoechst. Images were taken 14 days post-transduction. Scale bar = 50 µm. (C) Transduction of CuFi-8 cell line with scAAV-Gluc/BoV vectors or AAV2 as control. A total of 2×10^{10} viral genomes was added to the apical side of each transwell overnight in the presence of doxorubicin and LLnL at final concentrations of 1 µM and 8 nM, respectively. Gluc activity was measured at time intervals of 3, 6, 9 and 14 days post-transduction. Shown is the average of two replicates, *i.e.*, two independent transwells. (D) Transduction of pHAE at a MOI of 2×10^4 with scAAV-Gluc/BoV variants from the apical (A) or basolateral (B) side of the transwell. Shown is the measured Gluc activity (mean \pm SEM, n = 5) in the medium at day 9 post-transduction. For the transduction of pHAE, LLnL and doxorubicin were added at concentrations of 40 µM and 5 µM, respectively.

Figure S4. Transduction of primary human cells with scAAV/BoV vectors. (A) Flow cytometry analysis of pHAE transduced with scAAV-YFP/GBoV at a MOI of 5×10^4 , n = 4 independent transwells. Cells were costained for YFP and a cell type-specific marker: β -Tubulin IV (ciliated cells), MUC5AC (goblet cells), CC10 (club cells), or KRT5 (basal cells). Percentages of double-positive cells are shown in the upper right quarter. (B) Transduction of primary macrophages with 5×10^8 genomes of scAAV-Gluc/BoV vectors or AAV2 control. Gluc activity was measured at 4 and 9 days post-transduction. Shown is the mean plus range of two donors. (C) Transduction of primary PBMCs with scAAV-Gluc/BoV vectors or AAV2 control (MOI of 6×10^4). Gluc activity was measured at 4 and 9 days post-transduction. Shown is the mean plus range of two donors. (D) Flow cytometry analysis of primary T-cells transduced with scAAV-YFP/BoV vectors or AAV2 control (MOI of 6×10^4). Only living cells were analyzed. The percentage of YFP-positive cells is shown.

Figure S5. Transduction of primary intestinal cells and cell lines with scAAV-Gluc/BoV vectors. (A) Transduction of undifferentiated primary human ileum organoids which were maintained in basal medium. Organoids were transduced with 5×10^9 viral genomes of scAAV-Gluc/BoV, and the Gluc activity was measured at the indicated time points. Data represent the mean and range of two independent experiments (n = 2 donors). All transductions were performed in the presence of 1 μ M doxorubicin. (B) T84 colon adenocarcinoma cells were transduced with scAAV-Gluc/BoV vectors or AAV2 control at MOI = 5 × 10⁴. Secreted Gluc activity was measured in the medium at 3 to 9 days post-transduction. Shown is the mean (±SEM) of three independent experiments.

	Iodixanol	CsCl	
	Titer (gc / cell) ^{a,b}	Titer (gc / cell) ^{a,c}	
HBoV1	4.6×10 ³	1.5×10 ³	
HBoV2	5.7×10 ³	2.0×10 ³	
HBoV3	4.9×10 ³	2.6×10 ³	
HBoV4	1.0×10 ⁴	3.9×10 ³	
GBoV	8.4×10 ³	5.4×10 ³	
AAV2	2.4×10 ⁴	1.1×10 ⁴	

 Table S1. Titers of rAAV-YFP vectors obtained using iodixanol versus CsCl purification.

^a gc, genome copies.
 ^b Data represent the average of four (BoV) or two (AAV2) independent productions and titrations.
 ^c Data represent the average of two independent productions.

	SK	Cardio	Pul	Vein	T-cells	pHeps ^a	Colon	pHAE⁵	Lung (in)	Lung (br)	CuFi- 8	T84
HBoV1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
HBoV2	5.1	1.1	1.1	0.5	3.9	1.3	4.1	0.0	0.3	0.1	0.01	2.7
HBoV3	3.0	0.1	1.2	0.5	18.5	0.4	2.9	0.0	0.4	0.1	0.0	2.6
HBoV4	2.4	0.7	0.6	0.5	56.9	1.0	4.0	0.1	0.2	0.2	0.02	1.5
GBoV	8.3	2.9	7.8	1.0	114.5	0.9	1.8	0.6	0.2	0.8	0.07	13.7
AAV2	8088.0	61458.0	64677.0	15839.0	435.0	2461.7	3907.0	n.d.	184.6	7667.2	12.4	26554.0

Table S2. Ratios of Gluc expression at day 9 post-transduction with the different BoV variants (or the AAV2 control) relative to HBoV1 (set to 1.0).

^a Data were calculated based on Gluc expression at day 6 because of deteriorating cell vitality at day 9.

^b Transduction from the apical side. Data were calculated from Fig. 2D.

n.d., not determined

 Table S3. Primers used in this study.

No.	Primer Name	Primer sequence (5'- 3')
#1	F1_HIND III	GACAATA AAGCTT TACAGCTTTTG
#2	R1 2vBsmbl	CAAAAAAGAGGCTTATAAGA TGAGACG CTGT CGT
π ∠		CTCACTGCTTCCATGCTTTCAGC
#3	F2_2xBsmbl	IGCIGAAAGCAIGGAAGCAG IGAGACG ACAG CG
#4	R2 Notl	ATGAGCGGCCGCTCTAGATGTA
		ATTAG GCGGCCGC ATGCCTCCAATTAAAAGGCAA
#5	Boca3_partl_notl_fwd	С
#6	Boca3_partl_bsmbl_rev	GATC CGTCTCG CTTCCATTTCTGCAAGTTCATG
#7	Boca3_part2_Bsmbl fwd	GATC CGTCTCG GAAGACTCCAATGCAGTAGAAAA AGCA
#8	Boca3_part2_clal_rev	GATC ATCGAT TTACAACACTTTATTGATGTTTGTTT TAACTGG
#9	Boca4_partl_notl_fwd	GATC GCGGCCGC ATGCCTCCAATTAAACGC
#10	Boca4_partl_bsmbl_rev	GATC CGTCTCG CTTCCATTTCAGCAAGTTCATG
#11	Boca4_part2_Bsmbl_fwd	GATC CGTCTCG GAAGACTCAAATGCTGTAGAAAA AGCA
#12	Boca4_part2_clal_rev	GAT CATCGAT TTACAACACTTTATTGATGTTTGTTT TAACTGGAAAG
#13	BocaGo_partl_notl_fwd	GATC GCGGCCGC ATGCCTCCAATTAAAAGGCA
#14	BocaGo_partl_Bsmbl_rev	GATC CGTCTCG TTCCATCAAGATCGGCAAGC
#15	BocaGo_part2_Bsmbl_fwd	GATC CGTCTCG GGAACTACTGCTGGAGGAACTGC
#16	JF_BocaGo_part2.1_Bsmbl_rev	GATC CGTCTCG CTCTGTAGAGGAGTTGGTCTCTA AGC
#17	JF_Goboca_part2.2_Bsmbl_fwd	GATC CGTCTCG AGAGGAAACCAAACAACATAC
#18	BocaGo_part2_clal_rev	GATC ATCGAT TTACAACACTTTATTGATGTTTGTTT TTACAGGCATA
#19	Boca2_partl_notl_Fwd	ATTAG GCGGCCGC ATGCCTCCAATTAAACGC
#20	Boca2_sub1_Bsmbl rev	GATC CGTCTCG CCAG ATGGTTGTTGGTCTTG
#21	Boca2_sub2_Bsmbl_fwd	GATC CGTCTCG CTGG CTCCATGGAGGAGCGAGG
#22	Boca2 partl Bsmbl rev	GATC CGTCTCG CGTCTTCCATTTCAGCCAGT
#23	Boca2_part2_Bsmbl_Fwd	GATC CGTCTCG GACGCAAATGCTGTAGAAAAAGC TATAGC
#24	Boca2_part2_Clal_rev	GATC ATCGAT TTACAACACTTTATTGATGTTTGTTT TGA
#25	JF_boca4_Bsmbl_fwd	GTTA CGTCTCT GCAGATGCCTCCAATTAAACGC
#26	JF_boca4_Bsmbl_rev	GTTA CGTCTCT AAGATTACAACACTTTATTGATGTT TGTTTTAAC
#27	JF_boca3_Bsmbl_fwd	GTTA CGTCTCT GCAGATGCCTCCAATTAAAAGGCA AC
#28	JF_boca3_Bsmbl_rev	GTTA CGTCTCT AAGATTACAACACTTTATTGATGTT TGTTTTAAC
#29	JF_Goboca_Bsmbl_fwd	GTTA CGTCTCT GCAGATGCCTCCAATTAAAAGGCA
#30	JF_Goboca_bsmbl_rev	GTTA CGTCTCT AAGATTACAACACTTTATTGATGTT TGTTTTTAC
#31	JF_boca2_Bsmbl_fwd	GTTA CGTCTCT GCAGATGCCTCCAATTAAACGC
#32	JF_boca2_Bsmbl_rev	GTTA CGTCTCT AAGATTACAACACTTTATTGATGTT TGTTTTG

#33	Acceptor shuffling OE fwd1	GACAGAAG AGAGACG CGGAAAGTGAAGGGTGAC TG
#34	Acceptor shuffling OE Rev1	GGCTAGGTT CGAGACG GTAAC
#35	Acceptor shuffling OE Rev2	CCCTTCACTTTCCG CGTCTCT CTTCTGTCTGTGAG GAAACA
#36	HboV1 wt genome Eagl fwd	GATTC CGGCCG CCACAAGGAGGAGTGGTTATA
#37	HboV1 wt genome Pacl rev	AGTTC TTAATTAA ATAAGCAAACAAACAGCTCC
#38	HBoV1_BstBI fwd	CACTGC TTCGAA GACCTCA
#39	HBoV1 rev	CACAATGTACAAGGGCTGTC
#40	Fwd_chimBoV_Bsmbl	AATGA CGTCTCC GAAGCAGACGAGATAACTGACG AGG
#41	LacZ fwd	CG GAATTC GTGCCGGAAAGCTGGCTGGAG
#42	LacZ 500 rev	ACTT GAATTC GTAGCGGCTGATGTTGAACTGG
#43	LacZ 800 rev	CG GAATTC GCAGACCATTTTCAATCCGCAC
#44	LacZ 1200 rev	CG GAATTC GATCCAGCGATACAGCGCGTC
#45	LacZ 1600 rev	CG GAATTC GCAAAGACCAGACCGTTCATAC
#46	Cas9_Nhe_fw	ATCAG CGCTAG CGCCACCATGGATTACAAAGAC
#47	Cas9_Cla_rv	GCTGAT ATCGAT TCATTTCTTTTCTTAGCTTGAC CAGC
#48	CMV_pacl_fwd	GTTAC TTAATTAA TTCGGTACCCGTTACATAACTT ACGG
#49	SV40_Intron_NheI	GTTA CGCTAG CGGTGGCGACCGGTGCGG

Bold: restriction sites.

Table S4. Promoters used in this study.

Promoter	Sequence (5'- 3')
miCMV	GACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTT
	GTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCG
	CCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATAT
	AAGCAGAGCTCGTTTAGTGAACCGTCAGATC
CMV	CTGGATTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAAC
	GACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCC
	AATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTG
	CCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATT
	GACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGA
	CCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
	TTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCG
	GTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGA
	GTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACT
	CCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCT
	ATATAAGCAGAGCTGG
CMV+I	TTCGGTACCCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCG
	CCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGT
	AACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGT
	AAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCC
	CCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTA
	CATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCAT
	CGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGAT
	AGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAAT
	GGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAA
	CAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGA
	GGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGA TCGCCTGGAGA
	CGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCC
	AGCCTCCGGACTCTAGAGGATCCGGTACTCGAGGAACTGAAAAACCAG
	AAAGTTAACTGGTAAGTTTAGTCTTTTTGTCTTTTATTTCAGGTCCCGGA
	TCCGGTGGTGGTGCAAATCAAAGAACTGCTCCTCAGTGGATGTTGCCTT
	TACTTCTAGGCCTGTACGGAAGTGTTACTTCTGCTCTAAAAGCTGCGGA
	ATTGTACCCGCGGCCGCACCGGTCGCCACC

Bold: SV40 intron.

Basal media	Final concentration
DMEM/F12	
+F/3	
Wnt3A	50% by volume
B27	1:50
N2	1:100
N-acetyl-cysteine	1 mM
R-spondin	10% by volume
Noggin	100 ng/ml
EGF	50 ng/ml
Gastrin	10 mM
Nicotinamide	10 mM
A83-01	500 nM
Sh202400	10N
50202190	το μινι
Differentiation Media	Final concentration
Differentiation Media	Final concentration
Differentiation Media DMEM/F12 +GlutaMAX	Final concentration
Differentiation Media DMEM/F12 +GlutaMAX +HEPES	Final concentration
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S	Final concentration
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27	To μm Final concentration
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2	To μm Final concentration 1:50 1:100
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine	To μm Final concentration 1:50 1:100 1 mM
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin	To μM Final concentration 1:50 1:100 1 mM 5% by volume
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin Noggin	To μM Final concentration 1:50 1:100 1 mM 5% by volume 50 ng/ml
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin Noggin EGF	1:50 1:100 1 mM 5% by volume 50 ng/ml 50 ng/ml
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin Noggin EGF Gastrin	To μM Final concentration 1:50 1:100 1 mM 5% by volume 50 ng/ml 50 ng/ml 10 mM
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin Noggin EGF Gastrin A83-01	10 μM Final concentration 1:50 1:100 1 mM 5% by volume 50 ng/ml 50 ng/ml 10 mM 500 nM
Differentiation Media DMEM/F12 +GlutaMAX +HEPES +P/S B27 N2 N-acetyl-cysteine R-spondin Noggin EGF Gastrin A83-01 Sb202190	10 μM Final concentration 1:50 1:100 1 mM 5% by volume 50 ng/ml 50 ng/ml 10 mM 500 nM 10 μM

 Table S5. Basal and differentiation media used for cultivation of intestinal crypts.

Table S6. Primer and probe sets used for titration of viral stocks.

Primer/Probes	Sequence 5'- 3'
NP1_fwd	GCACAGCCACGTGACGAA ¹
NP1_rev	TGGACTCCCTTTTCTTTGTAGGA ¹
BoV_NP1_Probe	FAM-TGAGCTCAGGGAATATGAAAGACAAGCATCG-BHQ1 ¹
CMVenh_fwd	AACGCCAATAGGGACTTTCC
CMVenh_rev	GGGCGTACTTGGCATATGAT
CMVenh_Probe	FAM-CGGTAAACTGCCCACTTGGCAGT-BHQ1
YFP_fwd	GAGCGCACCATCTTCTAAG
YFP rev	TGTCGCCCTCGAACTTCAC
YFP_probe	FAM-ACGACGGCAACTACA-BHQ1

1. Huang, Q, Deng, X, Yan, Z, Cheng, F, Luo, Y, Shen, W, *et al.* (2012). Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. *PLoS Pathog* **8**: e1002899.