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1 Text S1: Analysis of low diversity populations

PopPUNK can operate at single nucleotide resolution

To determine the limits of resolution possible using PopPUNK, and therefore whether it could
be used for surveillance of monomorphic pathogens or clonally-related outbreaks, distances were
calculated between eight artificially-generated variants of a 2.2 Mb Streptococcus pneumoniae
genome distinguished by three biallelic SNPs (Fig S3). This necessitates the use of a sufficiently
large sketch size (105), which determines the coverage of the genome in the k-mer representation.
With this increase even sequences distinguished by only a single SNP could be successfully resolved.
This necessitates slightly longer runtimes, so we allow the user to select a larger sketch size than the
default if there is a low level of divergence expected between isolates. Therefore given sufficiently
high-quality data, PopPUNK can accurately resolve bacterial sequences at multiple scales of genetic
divergence.

Using PopPUNK for outbreak analysis

The combined results arising from querying one dataset against another using PopPUNK can also
be displayed using Microreact, GrapeTree, Phandango or Cytoscape. The additional isolates are
highlighted in the output in each case, using ‘Status’ as a characteristic. This can be used for
iteratively merging similarly-sized datasets, as illustrated in Fig 5C. As an example of such a
merging in S. pneumoniae, the result of adding the Maela collection of ∼3000 genomes into the
Massachusetts collection of ∼600 genomes is shown here: https://microreact.org/project/
SkZ23iPbX (colours are clusters by default, colour by ’Status’ to see whether the genomes are
from the original reference population, or the added query population). This means PopPUNK
can be applied as a rapid tool for ruling out potential outbreaks. As an example, we queried 175
S. pneumoniae isolates from the multidrug-resistant PMEN14 lineage (Croucher, Chewapreecha, et
al., 2014) against the diverse Massachusetts species-wide carriage population sample of 616 isolates
(https://microreact.org/project/BkNqKdPb7). This identified all the query isolates as
belonging to a single strain, and generated a phylogeny in which they were confined to one clade
and an accessory projection representing gene content differences, in less than six minutes using
sixteen CPUs and less than 200 MB RAM. Repeating this analysis using an optimised reference
database of 63 representative sequences and the same number of CPUs, the same process completed
in under four minutes (https://microreact.org/project/Hk-_F0oWX).

PopPUNK can be used for analysis of low diversity pathogens

In the cases of Neisseria gonorrhoeae and Mycobacterium tuberculosis, RhierBAPS generated
substantially better clustering than PopPUNK, as judged by the Silhouette index. This likely
represents the absence of true strains in these species, which are homogeneous compared with the
other species studied, and therefore do not exhibit the discontinuous but correlated divergence in π

and a assumed in the clustering stage. In N. gonorrhoeae, the accessory genome content consists of
a small number of prophage, three plasmids and the 80 kb gonococcal genomic island (GGI), all of
which can vary independently of core genome divergence (Bennett et al., 2010; Hamilton et al.,
2005; Morse et al., 1986). Using the fit based on the network score, we were able to successfully
split the population into 132 clusters. Inspection in Microreact revealed a clade composed of a
polyphyletic mixture of clusters 5 and 10 (fig S11). Their close relationship within the core genome
tree suggested the difference in clustering reflected divergence in their accessory genome. To
identify the specific loci responsible for this split, microbial genome-wide association software
(pyseer) was applied to these isolates, finding 3,679 k-mer distinguishing the clusters 5 and 10 (Lees,
Galardini, et al., 2018; Lees, Vehkala, et al., 2016). The top hits recovered following mapping of
these k-mers to reference sequences were the GGI and phage sequences, confirmed as being the
distinctive loci through manual inspection.
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For such cases where there is independent core and accessory evolution, we therefore also
implemented a more suitable model which just uses one of the core or accessory distances, rather
than a combined score. All three clusterings can be jointly inspected using the Microreact output
(for example https://microreact.org/project/S1KgTKteQ). In this particular cluster, the
core distances no longer separated the isolates with the GGI and prophage, whereas the accessory
distances gave a similar clustering to the combined boundary.

Applying the same analysis to M. tuberculosis (https://microreact.org/project/rJ4lfHtZX)
demonstrated the PopPUNK phylogeny accurately reconstructed the previously-identified lineages
in this population (Cohen et al., 2015). While the top-level RhierBAPS effectively identified these
lineages, the PopPUNK core genome sequence clusters were much more finely grained, resembling
the categorisation into spoligotypes, which are informative for more detailed epidemiology. As
PopPUNK’s clusters can be easily assigned to lineages or RhierBAPS clusters using the core
phylogeny, this ensures the high-resolution links identified using this software can also be used for
analysis at broader levels. Increasing the sketch size used for this analysis would also allow for finer
differences in π to be measured within spoligotypes, in principle down to single SNP resolution.

Such detailed epidemiology can also be valuable within more diverse species, such as when
analysing of individual strains. As an example of such an hierarchical study of within-strain
diversity, a PopPUNK analysis of the S. pneumoniae PMEN14 lineage (Croucher, Chewapreecha,
et al., 2014) was compared to previous accessory genome study using PANINI, which applies t-SNE
to the accessory gene presence/absence matrix generated by Roary (Abudahab et al., 2018) (Fig S16).
Due to the lower sequence divergence within a single lineage, we compared results using the default,
PopPUNK was run with sketch sizes of 104 (https://microreact.org/project/H1UsF5CxX)
and a increased size of 105 (https://microreact.org/project/H1Av59ClQ). In both cases,
the phylogeny and accessory clusterings were similar, with the t-SNE projection recapitulating the
main results from the PANINI analysis: group 5, lacking the Tn916 antibiotic resistance element,
were resolved as being separate from the rest of the population, while groups two and three, both
carrying two prophage, were separated from the non-lysogenic group one, despite them being
polyphyletic in the core genome tree.
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2 Supplemental methods

Determining the range kmin to kmax

As noted by Ondov et al. (2016), the probability p of a random match of a k-mer of length k is:

p =
1

(Σ̄)k

L +1
(1)

where L is the total length of the sequence, and Σ is the alphabet. In this case the alphabet are the
DNA bases A, C, G and T, so Σ̄ = 4. To find the minimum k-mer length kmin which sets a desired
maximum probability of random matches prandom, eq. (1) can be simply rearranged as follows:

kmin =
log(L)+ log(1− prandom)− log(prandom)

log(4)
(2)

kmax is set as 29 by default, as we found empirically that this provided enough points to reliably
fit each regression while minimising computational burden. This can be increased by the user if
desired, up to the maximum k-mer length mash was compiled to support.

Automated classification of within-cluster distances

We implemented two models to classify which distance pairs (π , a) are within the same cluster,
the choice of which depends on the dataset being used. The first fits a two-dimensional Gaussian
mixture model (2D GMM) to a random subsample of up to 105 distance pairs using variational
Bayes inference. We use the default implementation in scikit-learn 0.19 with a Dirichlet Process
prior on weights, choosing the best final likelihood from five k-means initial starts. The maximum
allowed number of mixture components (K) can be specified by the user, depending on the plotted
distribution of pairwise π and a distances; by default, K is set to two. We use membership of
mixture component closest to the origin (checking that it contains at least one point in the reference
database, as the Dirichlet process prior allows mixture component weights to be set ≈ 0) to define
within-cluster distances. All distance pairs are then classified with the fitted model.

The alternative approach uses HDBSCAN to classify a subsample of 105 points using the
Boruvka ball tree algorithm (McInnes et al., 2017). This set of points is iteratively analysed with
progressive reductions in both the minimum number of samples required to initiate the search for a
cluster, which defines the how conservative the clustering is, and the minimum cluster size, which
determines the threshold number of points a cluster must contain, until there are fewer than D
clusters (100, by default), and extent of the points in the cluster closest to the origin (assumed to
represent within-strain distances) do not overlap with those in the most numerous cluster (assumed
to represent between-strain distances) on either axis.

Use of within-cluster distances to define a reference network and clusters

We use networkx v2.1 (Hagberg et al., 2008) to construct an undirected graph with unweighted
edges to define population clusters. Each sample in the reference database is a node in this graph,
and distances classified as within-cluster by the above model are added as edges between the
corresponding nodes. Clusters are then simply defined by extracting the connected components
of this network, and ordered by the number of isolates they contain, from largest to smallest.
Evaluation of the network structure uses a score, ns:

ns = transitivity(1−density) (3)

This score ranges between zero and one, with values close to the upper bound corresponding to a
good fit, as every isolate in a cluster should share a within-cluster link to every other member of
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the cluster. This is achieved in spite of the sparseness enforced by the (1 - density) term, which is
necessary to subdivide the overall population (Fig S9). After definition of clusters, we randomly
select just one member of each clique in the network (sets of nodes where each member node is
mutually connected to every other member node) to use in an updated reference database. This
removes redundancy in the distances that need to be calculated for database querying, and increases
the speed at which further batches of data can be assigned.

Refinement of distance classification using network properties

Both the 2D GMM and HDBSCAN modes rapidly and robustly identified the main clusters of
within- and between-strain distances in π -a space, which were typically well-resolved. However,
being conservative in assigning points to the within-strain cluster is not intrinsic to these methods,
which treat clusters symmetrically. The relatively small numbers of false positive within-strain
assignments from the low density of points between clusters strongly impacted upon network
structure by linking components, and consequently the strain definitions. Therefore a model
refinement mode was developed to precisely delimit the range of π -a distances that were treated as
within-strain links, in order to maximise ns. If a 2D GMM or HDBSCAN model has already been
fitted, then we construct a line between the means of the within- and between-strain clusters, then
draw a decision boundary normal to this line (Fig 1). If neither model fitted satisfactorily, then the
mean positions of the within- and between-strain cluster means can be provided manually.

We then allow this triangular boundary, distinguishing within- and between-strain distances,
to be moved over a user-set range forward and backward from the starting point. We globally
maximise ns first by testing the network score when placing the boundary at 40 equally spaced
points over the allowed range. Local maximisation near this global optimum is then performed
using Brent’s method (Brent, 1973). We have also made it possible to run this optimisation with
a vertical boundary (using core distances, π , only) or a horizontal boundary (using accessory
distances, a, only) if desired.

Defining the cluster of query sequences using a previous reference database

New sequences can be rapidly assigned to either a pre-existing cluster, or start to form a new cluster,
by addition to the reference network. First, distances are calculated between each query and each
member of the reference database using the variable k-mer method as above. New queries are added
as nodes in the network, and those distance pairs classified as within-cluster are added as edges. As
before we define clusters as the connected components of this network, while ensuring labelling
consistency with the reference database. By only calculating reference-query distances rather than
all distances, we can perform assignment of M queries using a reference database with N members
using NM distance calculations rather than (N +M)2. If the database is being updated for further
querying, all M2 query-query distances are also calculated (for a total of NM+M2 distances) so
that cliques in the network can still be used to extract representatives for each cluster. However, in
practice the construction of M sketches is the most computationally expensive step, which gives
roughly linear query time in both cases.

Analysis of low diversity pathogens

For species with a monomorphic population structure there is not necessarily a clear correlation
between a and π . In this case it is logical to define independent sets of clusters using the two
distances separately. An example of this is N. gonorrhoeae, which we describe fully in Text S1.
We used a subset of isolates, all of which were in the same cluster based on π but contained two
different clusters based on a. We performed a genome-wide association study to determine the
specific genes responsible for the two different a-based clusters using pyseer v1.1.0 to associate
k-mers counted from the entire π-based cluster, and using the a-based cluster as the phenotype.
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Default settings were used, with the kinship matrix generated using the maximum-likelihood tree
under a mixed effect association model (Lees, Galardini, et al., 2018). We mapped the significant
k-mers to two reference genomes, which between them contain all known accessory elements for
N. gonorrhoeae.

Code optimisation for large datasets

We optimised our code such that datasets with up to ∼ 104 samples could be analysed in a single
step. Where possible, we used numba v0.36.2 to compile functions (Lam et al., 2015) and exploited
multithreading of Mash sketching and distance calculations. We also multithreaded the regressions
to calculate core and accessory distances, using the sharedmem package (v0.3.5) to avoid copying
and storing large distance matrices in main memory (Feng et al., 2017). We infer sequence labels
of rows in distance matrices by their order, rather than storing them in memory. For larger datasets,
fitting a reference model to a subset of samples, then adding in query sequences iteratively makes
analysis tractable.

Automated plotting

We automatically produce plots to diagnose dataset characteristics, quality of model fit and assign-
ment of distances to clusters using matplotlib v2.1.2 (Hunter, 2007). For the distances selected for
model fitting, we plot contours of a kernel density estimate using an Epanechnikov kernel. This
can also be used to identify outliers with contamination; we provide a program to remove these
isolates from reference databases. Plots are generated for each model type showing details of its
fitted parameters, together with cluster assignment of the distances. For 2D GMMs, we also plot
equal likelihood contours and the decision boundary for within- and between-cluster assignments
(Fig S7).
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3 Supplemental tables

Table S1: Parameters used in BacMeta simulations (Sipola et al., 2018). Only a single population was simulated (NPOP
= 1), hence the migration rate was set to zero. All parameters not specified here were the default values used by the
software.

Parameter code Parameter description Parameter value Default when other
parameters vary

GENR Number of generations 25000 25000
NBAC Number of individuals in

population
1000 1000

SEQS Proportion of individuals
sampled for analysis

0.025 0.025

LOLE Length of individual loci 1000 1000
NLOC Number of loci in each

individual
100 100

MUTR Point mutation rate 1E-7, 5E-7, 1E-6, 5E-6,
1E-5

5E-6

INSR & DELR Indel mutation rate 0.01, 0.02, 0.03, 0.04, 0.05 0 or 0.025
RECR Recombination rate 0, 0.05, 0.5, 1, 2 -
INSL & DELL Indel length parameter 100 100
RECA Recombination acceptance

parameter for similarity
test

0 0

MIGR Migration probability 0 0
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Table S2: Resource and result comparison for each dataset. For all methods we quote the total CPU time used, and
maximum memory. Both PopPUNK and RhierBAPS use multithreading with close to 100% efficiency, so total wall-time
was lower than these estimates roughly by a factor of the number of cores used.

Species Samples Publication
reference

PopPUNK
microreact

PopPUNK/
RhierBAPS
microreact

Resource use (single thread)

Roary RhierBAPS PopPUNK

Staphylococcus
aureus

284 Aanensen et
al. (2016)

https://

microreact.

org/

project/

HJJEpu1Rf

https://

microreact.

org/

project/

rJCRZFx0M

11.2 hrs CPU
3.6 GB RAM

6.3 hrs CPU
4.9 GB RAM

0.6 hrs CPU
0.3 GB RAM

Escherichia
coli

1508 Kallonen
et al. (2017)

https://

microreact.

org/

project/

B1tM9YyAM

https://

microreact.

org/

project/

B1kLl9yAG

144 hrs CPU
36.2 GB RAM

1662 hrs CPU
44.7 GB RAM

22.2 hrs CPU
0.8 GB RAM

Salmonella
enterica

847 Alikhan et al.
(2018)

https://

microreact.

org/

project/

Skg0j9sjz

https://

microreact.

org/

project/

Sk7brUBWX

101 hrs CPU
21.0 GB RAM

24.4 hrs CPU
142 GB RAM

2.6 hrs CPU
0.5 GB RAM

Listeria
monocytogenes

128 Kremer et al.
(2017)

https://

microreact.

org/

project/

S1ktRPJCM

https://

microreact.

org/

project/

r1gDQcyRf

30.7 hrs CPU
1.9 GB RAM

27.2 hrs CPU
7.8 GB RAM

0.2 hrs CPU
0.2 GB RAM

Haemophilus
influenzae

75 Koelman
et al. (2017)

https://

microreact.

org/

project/

BJ_seO1CM

https://

microreact.

org/

project/

HyUhLte0G

21.2 hrs CPU
1.0 GB RAM

11.2 hrs CPU
5.2 GB RAM

0.1 hrs CPU
0.2 GB RAM

Neisseria
meningitidis

882 Lees,
Kremer,
et al. (2017)

https://

microreact.

org/

project/

H1ZgUY1Af

https://

microreact.

org/

project/

SkZe9tlAM

17.2 hrs CPU
8.1 GB RAM

193 hrs CPU
37.0 GB RAM

2.8 hrs CPU
0.5 GB RAM

Neisseria
gonorrhoeae

1102 Grad et al.
(2016)

https://

microreact.

org/

project/

BkIhiwSx7

https://

microreact.

org/

project/

S1KgTKteQ

26.2 hrs CPU
10.9 GB RAM

239 hrs CPU
21.0 GB RAM

2.6 hrs CPU
0.6 GB RAM

Streptococcus
pyogenes

675 Lees,
Vehkala,
et al. (2016)

https://

microreact.

org/

project/

BJNtbheCf

https://

microreact.

org/

project/

SJoAae6Mm

9.3 hrs CPU
5.3 GB RAM

323 hrs CPU
39.3 GB RAM

0.7 hrs CPU
0.3 GB RAM

Streptococcus
pneumoniae

616 Croucher,
Finkelstein,
et al. (2013)

https://

microreact.

org/

project/

SJxxLMcaf

https://

microreact.

org/

project/

ByIBsu--X

9.2 hrs CPU
5.8 GB RAM

32.6 hrs CPU
9.0 GB RAM

0.7 hrs CPU
0.3 GB RAM

Mycobacterium
tuberculosis

219 Cohen et al.
(2015)

https://

microreact.

org/

project/

HJMChNF-X

https://

microreact.

org/

project/

rJ4lfHtZX

19.7 hrs CPU
5.0 GB RAM

4.1 hrs CPU
4.2 GB RAM

0.4 hrs CPU
0.6 GB RAM
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Table S3: PopPUNK results for iteratively adding E. coli data by year. For each year going forwards, a Microreact
instance shows the PopPUNK output using all genomes (‘full’) and using cliques to choose representatives (‘reference’)
at each stage. The Rand index (Rand, 1971) and adjusted Rand index (Hubert et al., 1985) between these clusters are
also reported, which vary between 0 (totally discordant cluster assignment) and 1 (identical cluster assignment).

Surveillance
period

Microreact for full analysis Microreact for reference
analysis

Rand index Adjusted Rand
index

2001 https://microreact.

org/project/Hycf66PtX

https://microreact.

org/project/S1fFrpjYm

1.0 1.0

2001-2002 https://microreact.

org/project/B1lru2avKm

https://microreact.

org/project/ry0HB6iYQ

1.0 1.0

2001-2003 https://microreact.

org/project/BkMQ26wYm

https://microreact.

org/project/rybmSpoYQ

1.0 1.0

2001-2004 https://microreact.

org/project/Sy23opwYm

https://microreact.

org/project/S16krajYQ

0.99983 0.99895

2001-2005 https://microreact.

org/project/r1fIs6DY7

https://microreact.

org/project/SyE5E6jFX

1.0 1.0

2001-2006 https://microreact.

org/project/Sk5hq6DYQ

https://microreact.

org/project/SJmZ46sYm

0.99946 0.99620

2001-2007 https://microreact.

org/project/ByfYqavt7

https://microreact.

org/project/H1wA7poFm

1.0 1.0

2001-2008 https://microreact.

org/project/B1Z_tTPKQ

https://microreact.

org/project/SJBt7TjFX

1.0 1.0

2001-2009 https://microreact.

org/project/Hkhy9TvtX

https://microreact.

org/project/B1eV7aitX

0.99939 0.99541

2001-2010 https://microreact.

org/project/Hkiju6wKX

https://microreact.

org/project/SJ0gQastQ

1.0 1.0

2001-2011 https://microreact.

org/project/rJGAHaPtm

https://microreact.

org/project/BkX-3ojFm

0.99919 0.99573
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Table S4: The average within-cluster and between-cluster SNP distances for each species, for both the PopPUNK and
RhierBAPS cluster assignments (first level; for L. monocytogenes second level). These distributions are also plotted in
Fig S12.

Species Samples PopPUNK clusters RhierBAPS clusters

Average within
cluster distance

Average between
cluster distance

Average within
cluster distance

Average between
cluster distance

Staphylococcus
aureus

284 136 10041 991 10286

Escherichia
coli

1508 1193 30527 1880 30636

Salmonella
enterica

847 10257 67688 10298 67703

Listeria
monocytogenes

128 64 54214 1716 54852

Haemophilus
influenzae

75 1356 30145 13208 31323

Neisseria
meningitidis

882 3279 18726 3134 17681

Neisseria
gonorrhoeae

1102 319 2843 510 2863

Streptococcus
pyogenes

675 91 6877 5725 7020

Streptococcus
pneumoniae

616 308 1864 770 1873

Mycobacterium
tuberculosis

219 20 809 141 896
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Table S5: Proportion of pairs in each assigned cluster containing polyphyletic cluster assignments, excluding singleton
clusters. For both the PopPUNK and RhierBAPS (first level) clusters for each species we show the proportion of total
pairs with a polyphyletic assignment, and also the number of clusters containing at least one polyphyletic assignment. In
M. tuberculosis splitting the dataset into mostly singleton clusters prevents polyphyly, meaning only a small proportion
of the population were included in the test presented here.

Species Samples PopPUNK clusters RhierBAPS clusters

Proportion of total
polyphyletic pairs

Number of clusters
containing a
polyphyletic pair

Proportion of total
polyphyletic pairs

Number of clusters
containing a
polyphyletic pair

Staphylococcus
aureus

284 0.000 0/18 0.069 1/9

Escherichia
coli

1508 0.006 1/57 0.013 3/24

Salmonella
enterica

847 0.000 0/11 0.000 0/10

Listeria
monocytogenes

128 0.000 0/21 0.051 2/18

Haemophilus
influenzae

75 0.000 0/17 0.261 2/7

Neisseria
meningitidis

882 0.002 1/32 0.054 4/15

Neisseria
gonorrhoeae

1102 0.148 6/46 0.091 2/15

Streptococcus
pyogenes

675 0.000 0/109 0.786 3/7

Streptococcus
pneumoniae

616 0.000 0/47 0.228 1/19

Mycobacterium
tuberculosis

219 0.000 0/14 0.000 0/7
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Table S6: Clusters defined by varying number of allele differences in the MLST (7 genes) and cgMLST (1701 gene)
scheme for L. monocytogenes. For each cutoff (which were chosen to be logarithmically spaced, spanning the PopPUNK
defined cutoff) clusters were defined using PopPUNK’s network structure. Edges between samples with the stated
number of allele differences or fewer were retained. Zero differences therefore corresponds to using ST as clusters. For
each assignment the same evaluation metrics as table 1 were calculated. Assigning MLST from reads required 3.1 hrs
CPU and 2.0 Gb RAM; assigning cgMLST from assemblies required 1.6 hrs CPU; 0.8 Gb RAM. Using PopPUNK
required 0.2 hrs CPU; 0.2 Gb RAM and found 31 clusters which had an average silhouette index of 0.60.

Scheme Number of clusters Average silhouette index Adjusted Rand index (to
PopPUNK clusters)

MLST 0-allele (ST) 36 0.31 0.939
MLST 1-allele 31 0.57 0.982
MLST 3-allele 15 0.33 0.644

cgMLST 0-allele (cgST) 128 NA 0.000
cgMLST 1-allele 128 NA 0.000
cgMLST 3-allele 123 -0.02 0.021
cgMLST 10-allele 110 0.01 0.156
cgMLST 30-allele 75 0.12 0.750
cgMLST 100-allele 35 0.50 0.974
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Table S7: Clusters defined by varying number of allele differences in the MLST (7 genes) and cgMLST (2360 genes)
scheme for E. coli. For each cutoff (which were chosen to be logarithmically spaced, spanning the PopPUNK defined
cutoff) clusters were defined using PopPUNK’s network structure. Edges between samples with the stated number
of allele differences or fewer were retained. Zero differences therefore corresponds to using ST as clusters. For each
assignment the same evaluation metrics as table 1 were calculated. Assigning MLST from reads required 32.4hrs CPU
and 2.4Gb RAM; assigning cgMLST from assemblies required 35.9 hrs CPU; 1.0 Gb RAM. Using PopPUNK required
22.2 hrs CPU; 0.8 Gb RAM and found 130 clusters which had an average silhouette index of 0.40.

Scheme Number of clusters Average silhouette index Adjusted Rand index (to
PopPUNK clusters)

MLST 0-allele (ST) 226 -0.10 0.917
MLST 1-allele 131 0.35 0.990
MLST 3-allele 42 0.23 0.565

cgMLST 0-allele (cgST) 1508 NA 0.000
cgMLST 1-allele 1508 NA 0.000
cgMLST 3-allele 1506 0.00 0.000
cgMLST 10-allele 1466 0.02 0.001
cgMLST 30-allele 1189 0.01 0.160
cgMLST 100-allele 539 0.17 0.369
cgMLST 300-allele 216 0.34 0.947
cgMLST 1000-allele 115 0.41 0.997
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Table S8: List of Microreact instances produced, by species and purpose. Additionally, files with inferred clusters,
phylogenies and t-SNE projections can be downloaded using each link.

Species Purpose Microreact instance

Staphylococcus
aureus

PopPUNK clusters https://microreact.org/

project/HJJEpu1Rf

Comparison of RhierBAPS and PopPUNK clusters https://microreact.org/

project/rJCRZFx0M

Escherichia
coli

PopPUNK clusters https://microreact.org/

project/B1tM9YyAM

Comparison of RhierBAPS and PopPUNK clusters https://microreact.org/

project/B1kLl9yAG

Salmonella
enterica

PopPUNK clusters (with added metadata – used in online
tutorial)

https://microreact.org/

project/Skg0j9sjz

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/Sk7brUBWX

Listeria
monocytogenes

PopPUNK clusters https://microreact.org/

project/S1ktRPJCM

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/r1gDQcyRf

Haemophilus
influenzae

PopPUNK clusters https://microreact.org/

project/BJ_seO1CM

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/HyUhLte0G

Neisseria
meningitidis

PopPUNK clusters https://microreact.org/

project/H1ZgUY1Af

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/SkZe9tlAM

Neisseria
gonorrhoeae

PopPUNK clusters https://microreact.org/

project/BkIhiwSx7

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/S1KgTKteQ

Streptococcus
pyogenes

PopPUNK clusters https://microreact.org/

project/BJNtbheCf

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/SJoAae6Mm

Streptococcus
pneumoniae

PopPUNK clusters https://microreact.org/

project/SJxxLMcaf

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/ByIBsu--X

Expanding a species-wide clustering through query assignment
(adding another species-wide sample)

https://microreact.org/

project/SkZ23iPbX

Expanding a species-wide clustering through query assignment
(adding a multidrug-resistant lineage)

https://microreact.org/

project/BkNqKdPb7

Expanding a species-wide clustering through query assignment
to reference sequences (adding an multidrug-resistant outbreak
lineage)

https://microreact.org/

project/Hk-_F0oWX

PopPUNK clustering of a single lineage with sketch size 104 https://microreact.org/

project/H1UsF5CxX

PopPUNK clustering of a single lineage with sketch size 105 https://microreact.org/

project/H1Av59ClQ

Mycobacterium
tuberculosis

PopPUNK clusters https://microreact.org/

project/HJMChNF-X

Comparison of R-hierBAPS and PopPUNK clusters https://microreact.org/

project/rJ4lfHtZX

14

https://microreact.org/project/HJJEpu1Rf
https://microreact.org/project/HJJEpu1Rf
https://microreact.org/project/rJCRZFx0M
https://microreact.org/project/rJCRZFx0M
https://microreact.org/project/B1tM9YyAM 
https://microreact.org/project/B1tM9YyAM 
https://microreact.org/project/B1kLl9yAG
https://microreact.org/project/B1kLl9yAG
https://microreact.org/project/Skg0j9sjz
https://microreact.org/project/Skg0j9sjz
https://microreact.org/project/Sk7brUBWX
https://microreact.org/project/Sk7brUBWX
https://microreact.org/project/S1ktRPJCM
https://microreact.org/project/S1ktRPJCM
https://microreact.org/project/r1gDQcyRf
https://microreact.org/project/r1gDQcyRf
https://microreact.org/project/BJ_seO1CM
https://microreact.org/project/BJ_seO1CM
https://microreact.org/project/HyUhLte0G
https://microreact.org/project/HyUhLte0G
https://microreact.org/project/H1ZgUY1Af
https://microreact.org/project/H1ZgUY1Af
https://microreact.org/project/SkZe9tlAM
https://microreact.org/project/SkZe9tlAM
https://microreact.org/project/BkIhiwSx7
https://microreact.org/project/BkIhiwSx7
https://microreact.org/project/S1KgTKteQ
https://microreact.org/project/S1KgTKteQ
https://microreact.org/project/BJNtbheCf
https://microreact.org/project/BJNtbheCf
https://microreact.org/project/SJoAae6Mm
https://microreact.org/project/SJoAae6Mm
https://microreact.org/project/SJxxLMcaf
https://microreact.org/project/SJxxLMcaf
https://microreact.org/project/ByIBsu--X
https://microreact.org/project/ByIBsu--X
https://microreact.org/project/SkZ23iPbX
https://microreact.org/project/SkZ23iPbX
https://microreact.org/project/BkNqKdPb7
https://microreact.org/project/BkNqKdPb7
https://microreact.org/project/Hk-_F0oWX
https://microreact.org/project/Hk-_F0oWX
https://microreact.org/project/H1UsF5CxX
https://microreact.org/project/H1UsF5CxX
https://microreact.org/project/H1Av59ClQ
https://microreact.org/project/H1Av59ClQ
https://microreact.org/project/HJMChNF-X
https://microreact.org/project/HJMChNF-X
https://microreact.org/project/rJ4lfHtZX
https://microreact.org/project/rJ4lfHtZX


4 Supplemental figures

Fig. S1: Comparison between simulated rates of divergence and estimates of diversity by PopPUNK. The histograms
show the distribution of pairwise π distances measured by PopPUNK when recombining bacteria diverge through point
mutation, occurring at a fixed rate of 5×10−6 base−1 generation−1. The scatterplots show the distribution of both π and
a pairwise distances. These demonstrate recombination affects the range, and pattern, of pairwise distances, as shown
in Fig 1C. However, no substantial accessory genome divergence is inferred, demonstrating PopPUNK’s specificity in
identifying core genome divergence, despite varying levels of sequence exchange between bacteria.
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Fig. S2: Comparison between simulated rates of divergence and estimates of diversity by PopPUNK. Left: The distribu-
tions of pairwise π distances calculated from simulated bacterial populations are shown on a logarithmic scale relative to
the point mutation rate parameter (corresponding to the graphs in Fig 2A). This demonstrates PopPUNK’s ability to
accurately estimate the density of base substitutions in a genomic dataset across multiple orders of magnitude. Right: The
distribution of pairwise a distances calculated from simulated bacterial populations in which the insertion/deletion (indel)
rate was varied (corresponding to the graphs in Fig 2B). This demonstrates PopPUNK’s ability to estimate differences in
sequence content over a range relevant to bacterial populations (Fig 4 and S8).
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Fig. S3: Effect of sketch size on the precision of PopPUNK distance estimates. Each heatmap represents a pairwise
distance matrix between eight different variants of S. pneumoniae ATCC 700669, representing all possible combinations
at three biallelic SNP sites. The genotypes correspond to the string of bases annotating each row and column. Each
cell is coloured according to the indicated pairwise π distance, calculated using PopPUNK with kmin = 13 and sketch
sizes of (A) 103, (B) 104, (C) 105, and (D) 106. Self-comparisons were not computed, but were assumed to be zero.
Only the larger two sketch sizes provide sufficient resolution to distinguish all genotypes, indicating these distances are
sufficiently precise to detect individual point mutations.
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Fig. S5: Comparison of pairwise accessory distances, a, calculated for the Massachusetts S. pneumoniae population
using both PopPUNK and a Glimmer3 and COGtriangles-based approach, as described in Croucher, Finkelstein, et al.
(2013). These estimates lie close to the line of identity, unlike those calculated from Roary, shown in Fig 4. The adjusted
R2 is 0.91.
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Fig. S6: Analysis of complete M. tuberculosis genomes. Thirty-three complete M. tuberculosis genomes available from
the ENA were analysed using Roary and PopPUNK, and the divergence in the (A) core and (B) accessory genomes
were plotted as in Fig 3. This shows the same discrepancies between the methods is observed as with the draft genome
collection, indicating the differences are not due to the difficulties in assembling the repetitive loci within these genomes.
The Roary analysis was re-run without using synteny to define orthologues (option ‘-s’), and the results compared to
the PopPUNK analysis in (C) and (D). This demonstrates the discrepancy between the accessory distance estimates are
substantially reduced, suggesting much of the accessory variation inferred by Roary relates to the difficulty of identifying
orthologues, rather than genuine differences in sequence content, which are rare in M. tuberculosis. (E) The third row
contains one panel, comparing the PopPUNK accessory divergence estimates with the proportion of each genome found
to be unalignable in pairwise comparisons with nucmer, using default settings. These methods exhibit a much closer
agreement in the proportion of divergent sequence in M. tuberculosis.
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(A) (B)

(C) (D)

(E) (F)

Fig. S7: Example of the output from the model fitting to the S. pneumoniae dataset. Plots A, B, D, E, F have π on the
x-axis and a distance on the y-axis; plot C has these distances linearly scaled between zero and one. (A) The distribution
of all pairwise distances, with equal-density contours from a kernel density estimate. (B) A 2D GMM fit, with three
components. (C) Equal likelihood contours of the fit in panel (B), with the red lines marking the decision boundaries
between 2D Gaussian distribution components. (D) Refinement of the fit in panel (C), with the final boundary in red
and the search space a dashed black line. e) The HDBSCAN fit. The number of clusters is automatically estimated as
four. Black points are ‘noise-points’ not assigned to any cluster. (F) Refinement of the fit in panel (E). A different search
range was set than in panel (D), but in both cases the correct global optimum is found.
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Fig. S8: PopPUNK model fitting output for species listed in Table 1 but not shown in Fig 4. Each row is a species,
with each plot showing the distribution of core (π) and accessory (a) distances and points coloured by their predicted
cluster. The cluster closest to the origin is the within-strain cluster. The 2D GMM fits are shown in the left column,
which also shows ellipses representing the mean and covariance of the fitted mixture components. The HDBSCAN
plot in the centre column shows unclassified noise points as black. The final column shows the decision boundaries
calculated by maximising the network score to refine the 2D GMM fit. Staphylococcus aureus and Salmonella enterica
have similar π-a distribution properties to Escherichia coli. Haemophilus influenzae has similar deep branching structure
to Listeria monocytogenes, and good quality clustering is obtained even with a small number of isolates.
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Fig. S9: Plot of number of clusters, network density, transitivity and two score functions as a function of moving
boundary position in refine fit mode, on the S. pneumoniae dataset. We tried two possible score functions: score 1 =
transitivity * (1 - density); score 2 = transitivity - density. We used score 1 throughout, due to its more intuitive scaling.
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Fig. S13: For each of the four S. pneumoniae populations defined in Corander et al. (2017), a bar is shown with the
count of samples in each strain defined by PopPUNK in the overall cluster assignment. Clusters are ordered on the x-axis
in decreasing order of frequency in the entire dataset, with the same labels for each population.
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Fig. S14: Boxplots showing the same comparisons as in Fig 5C, but with similarity between clusterings quantified as
the adjusted Rand index. This shows the consistency of the strains identified by PopPUNK does not represent chance
overlap between the clusterings.
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Fig. S15: Comparison of clustering consistency between iterative addition of batches and full clustering of the complete
dataset. The set of 4107 draft genomes described in Corander et al. (2017) was clustered by refining both GMM and
HDBSCAN models, each fitted to the same set of pairwise distances. These resulted in identical clustering outputs,
demonstrating the robustness of PopPUNK’s processing to model selection. Each of these clusterings therefore resulted
in identical Rand indices when compared to the multiple permutations in which the three non-reference populations were
added to the starting Massachusetts or Maela reference database; again, only isolates in the final population to be added
were used in this comparison. (A) The Rand indices indicated near-identical clustering when the full database, or a
reference-only database, was used to add batches. (B) The adjusted Rand indices for the same comparisons demonstrate
the results shown in panel (A) do not represent the chance overlap resulting from the comparison of simple clusterings.
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Fig. S16: Comparative analysis of the S. pneumoniae PMEN14 population using PopPUNK and PANINI. Using a sketch
size of 104, (A) a neighbour-joining tree was calculated from the pairwise π distances, and (B) a t-SNE projection was
calculated from the pairwise a distances using a perplexity parameter of five. A larger sketch size of 105, which affords
greater precision when comparing closely-related isolates (Fig S3), was used to calculate (C) a tree and (D) a t-SNE
projection in the same manner. The points on the trees and projections corresponding to isolates were coloured according
to the accessory genome groupings previously defined using the PANINI output, as indicated by the key. The accessory
clusters identified by PopPUNK are indicated by the coloured ring around the phylogeny. These plots demonstrate the
robust separation of group one from groups two and three, which were distinguished by the insertion of two prophage,
despite their polyphyly (Abudahab et al., 2018). The clade forming group five, which lacks the antibiotic resistance
element Tn916, was also clearly separated from the rest of the collection.
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