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Supplemental Figure S1: (A) Figure shows, for every TE type, the ratio of intronic nucleotide coverage in sense
vs antisense configuration. “Sense” here is defined as sense of TE annotation relative to the sense of the overlap-
ping intron. Significantly-enriched TE types are shown in blue. Statistical significance was estimated by a randomi-
sation procedure, and significance is defined at an uncorrected empirical p-value < 0.001 (See Material and Meth-
ods). (B-D) As for (A), but y axis records the ratio of nucleotide overlap in exons vs introns by phastCons
primate-conserved elements, phastCons vertebrate-conserved elements and Evolutionarily Conserved Structures

(ECS), respectively.
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Supplemental Figure S2: (A) Figure shows, for every TE type, the ratio of exonic/intronic relative overlap by a shuffled
set of phastCons Vertebrate elements. Significance was estimated by randomisation as in Figure 3, and here no signifi-
cant TEs were identified. (B) Similar to (A), except that overlaps were performed using true phastCons Vertebrate
conserved elements, and only the subset of intergenic INcCRNA gene loci were included, ie those not overlapping a
protein-coding locus. Blue indicates enriched TE types, as estimated by randomisation with an uncorrected p-value <
0.001. The inset shows the overlap of significant TE types between this analysis (right side) and the equivalent analysis
using unfiltered IncRNAs (left, Supplemental Figure 1C). (C) Comparison of candidate RIDLs in IncRNAs and
protein-coding genes, identified by overlap with phastCons Vertebrate elements. Numbers indicate TE types. (D) Compar
ison of lengths of significantly-conserved, exonically-overlapping TEs identified by two different randomisation proce-
dures: shuffling conserved region locations, holding TEs constant (method used in Results); shuffling TE locations,
holding conserved regions constant. For comparison, the lengths of the entire set of exonic TEs used in the study are
shown ("All TEs”). Note that lengths are calculated using the entire TE fragment, and not just the portion overlapping the
exon.
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Supplemental Figure S3: Proportional frequencies of RIDLs identified by evidence type.
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Supplemental Figure S4: Estimating true positive rates for RIDL predictions. Figures show fractions of TEs broken
down by exonic and intronic cases. Only TEs from significant types for each evidence source, as outlined in Materials
and Methods and shown in Figure D, are considered. We interpret the value for introns to represent an upper limit of the
false discovery rate, and the difference between exon and intron to represent the number of true positive predictions. (A)
The number of TEs from 20 types defined to be exonically enriched, which overlap either exons or introns of INcCRNAs.
(B) For RIDLs defined to have strand bias, the fraction of instances lying on the same strand as host IncRNA. (C) For
RIDLs with evidence of evolutionary conservation, the fraction of instances that overlap the indicated conserved
elements.
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Supplemental Figure S5: Inferring the evolutionary age of RIDLs using 6-mammal alignments. Rows represent
human RIDLs, columns represent species. Cells are coloured red when an orthologue is detected, otherwise in light
yellow. Numbers represent the count of RIDLs conserved amongst Great Apes (blue), Primates (green) and Mammals

(orange).
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Supplemental Figure S6: Proportion of common SNPs falling in the different bins of
derived allele frequencies (DAF) for every group described in the table (left column).
Protein coding exons (pc exons) and ancestral repeats (AR) are shown as positive
and negative controls, respectively. The table shows for every group the total SNPs
counts (second column) with low-frequency alleles (DAF < 0.1), the proportion this
represents (third column) and the p-value obtained from comparing each group to
TE introns (taken as a background) (Fisher’s exact test, 1-sided).
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Supplemental Figure S7: Density distribution of RIDL-carrying IncRNAs based on the number of
RIDLs per kb of exon. Dotted line indicates median. Selected known IncRNAs are indicated.
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Supplemental Figure S8: Creating a length-matched sample of non-RIDL IncRNAs. (A) Exonic length
distribution of RIDL-carrying (RIDL-IncRNAs) and non-RIDL (“others”) GENCODE v21 IncRNAs, prior to
sampling. (B) Exonic length distribution of RIDL-carrying IncRNAs and a length-matched sample of
non-RIDL IncRNAs. The latter were used for all comparisons at gene level.
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Supplemental Figure S9: (A) Distribution of mean expression across Human Body Map
(HBM) tissues of RIDL-IncRNAs and other length-matched IncRNAs (others). (B) Same as
(A) for maximum expression across HBM tissues.
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Supplemental Figure S10: Nuclear/cytoplasmic localization of GC-rich RIDL-containing IncRNAs in IMR-90.
Yellow represents INcRNAs carrying one or more copies of GC-rich RIDL elements, grey represents all other detect-
ed IncRNAs (’not”). Dashed lines indicate the median of each group. Significance was calculated using Wilcoxon test
(P).
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Supplemental Figure S11: Presence of L1PA16, L2b, MIRb and MIRc in IncRNA exons correlate with
localisation, when considering both unfiltered TEs and RIDL sets. (A) For every cell line boxplots show
RCI values of unfiltered TE-carrying INcRNAs versus non-TE-carrying IncRNAs (each panel contains
information for a different TE type). (B) As for (A) but comparing RIDL-IncRNAs vs non-RIDL-IncRNAs.
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Supplemental Figure S12: RIDLs have a stronger effect on localisation than
unfiltered TEs. Bars indicate the log, difference between the RCI (nuc/cyto ratio) of
element-carrying INcRNAs and non-TE IncRNA.
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Supplemental Figure S$13: (A) Regression coefficients for explanatory variable of whole-cell expres-
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sion (in units of FPKM), in a linear model where dependent variable is IncRNA nuclear/cytoplasmic
localisation (see Figure 5E and Methods). x-axis represents each RIDL/cell-line combination. Colours

reflect estimated p-value for the association. (B) As for (A), but for explanatory variable of transcript
length (in kb). (C) Partial correlation coefficients (Spearman) of log, nuclear/cytoplasmic localisation
and RIDL count, controlling for length and whole-cell expression. x-axis represents each RIDL/-

cell-line combination. Colours reflect estimated p-value for the association.
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Supplemental Figure $14: Bars indicate log,-transformed cytoplasmic/nuclear expression ratios (CN RCI) in

15 cell lines for three candidate genes. Colours represent the total nuclear expression of each gene in each cell

line. Barplot generated by LncATLAS webserver.
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Supplemental Figure S15: Estimating overexpression of transfected IncRNA candidates
(wild-type and mutant). Data are shown for the mean of four biological replicates. y axis represents
the fold change of transfected gene level (normalised to GAPDH) compared to the endogeneous
level (normalised to GAPDH) measured from untransfected cells. (A) HelLa cells, (B) A549 cells.
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Supplemental Figure S16: DNA contamination check in RNA Isolated from different subcellular
fractions. Total RNA was isolated from different subcellular fractions using RNA isolation kit as
described in Materials and Methods. Equal amount of RNAs with (+RT) and without (-RT) reverse
transcription, were subjected to PCR (40 cycles) with an exonic primer. The reaction products were
electrophoresed on a 1.5 % agarose gel stained with SYBR safe. The T, C, N represent the RNA
isolated from total, cytoplasmic and nuclear fractions respectively.
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Supplemental Figure S17: Additional candidate IncRNA data for A549 cells. (A) Expression data for three candidate
IncRNAs calculated using RNA-seq data. (B) Validation of nuclear/cytoplasmic localisation of candidate genes in wild-type
cells by qRT-PCR.
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Supplemental Figure S18: Additional candidate INcRNA data for A549 cells. (A) Expression data for
three candidate IncRNAs calculated using RNA-seq data. (B)Validation of nuclear/cytoplasmic
localisation of candidate genes in wild-type cells by qRT-PCR.
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Supplemental Figure S19: Overview of evolutionary analysis method
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