Supporting Information

Pre-clinical efficacy and characterization of candidate vaccines for treatment of opioid use disorders using clinically viable carrier proteins

^{1,#}Federico Baruffaldi, ^{1,#}April Huseby Kelcher, ¹Megan Laudenbach, ^{1,2}Valeria Gradinati, ³Ajinkya Limkar, ³Michaela Roslawski, ³Angela Birnbaum, ⁴Andrew Lees, ⁵Carla Hassler, ⁵Scott Runyon, and ^{1,6,*}Marco Pravetoni.

#equally contributed to the manuscript, co-first authors.

¹Hennepin Healthcare Research Institute (HHRI, formerly Minneapolis Medical Research Foundation or MMRF), MN, ²Universita' degli Studi di Milano, Dipartimento di Chimica e Tecnologie Farmaceutiche, Socrates Program, Italy, ³University of Minnesota, MN, ⁴Fina Biosolutions LLC, MD, ⁵RTI International, NC, ⁶Departments of Medicine and Pharmacology, Center for Immunology, University of Minnesota, MN

S1. Synthesis of Oxycodone-based hapten with PEG linker [OXY(PEG)3]

Synthesis of Oxy-carboxymethoxyloxime-Peg3OCH2CO2 Lithium salt (Oxy-Glyoxime-Peg3-OCH2CO2Li,

OXY(Peg)₃OH)

Scheme 1: Synthesis of H2NPeg3OGly-OMe

H₂N-Peg₃-O-CH₂CO₂Me

Scheme 2: Synthesis of Oxy-Glyoxime-OH

Scheme 3: Synthesis of Oxy-Glyoxime-NH-Peg₃-O-CH₂CO₂Li

Experimental details:

Chemistry General: All standard reagents were commercially available. Fmoc-HN-Peg₃-O-CH₂CO₂H was purchased from ChemPep Inc. (Wellington, Florida). Intermediates were purified by column chromatography on a Teledyne ISCO Rf chromatography unit unless otherwise indicated. The purity of intermediates and final compounds was determined using an Agilent-Varian HPLC system equipped with Prostar 210 dual pumps, a Prostar 335 Diode UV detector and a SEDEX75 (SEDERE, Olivet, France) ELSD detector and an analytical Synergy Hydro[®] RP80A C18 (4 µm particle size, 250 x 4.60 mm column; Phenomenex) with a linear gradient of 5%-95% solvent B over 20 min at a flow rate of 1 mL/min. Absorbance was monitored at 220 nm. The HPLC solvent system was binary: water containing 0.1% trifluoroacetic acid (TFA) and solvent B (acetonitrile containing 5% water and 0.1% TFA). The molecular ion of intermediates and final compounds was determined using a PE Sciex API 150 EX LC/MS system from Perkin Elmer (San Jose, California). Reactions were monitored by thin-layer

chromatography (TLC) carried out on pre-coated 60 Å 250 mm silica gel TLC plates with F-254 indicator visualized under UV light. ¹H NMR spectra were recorded at 300 MHz on a Bruker Avance 300 Spectrospin instrument and are reported as follows: chemical shift δ in ppm (multiplicity, coupling constant (Hz), and integration. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad, dd = doublet of doublets.

Methyl 1-(9H-fluoren-9-yl)-3-oxo-2,7,10,13-tetraoxa-4-azapentadecan-15-oate, Fmoc-HN-Peg₃-O-CH₂CO₂Me: To a solution of 9H-fluoren-9-yl)-3-oxo-2,7,10,13-tetraoxa-4-azapentadecan-15-oic acid (Fmoc-HN- Peg₃-O-CH₂CO₂H, 500 g, 1.16 mmol) in methanol/THF (1:5, 12 mL) was added pyBOP (905 mg, 1.74 mmol), DIEA (808 uL, 4.64 mmol), and DMAP (14 mg, 0.12 mmol). The reaction mixture was stirred at room temperature for 12 hr. The mixture was concentrated *in vacuo* to provide methyl 1-(9H-fluoren-9-yl)-3-oxo-2,7,10,13-tetraoxa-4-azapentadecan-15-oate (**Fmoc-HN-Peg₃-O-CH₂CO₂Me**, 514 mg, quant.) as a crude mixture. 1H NMR (300 MHz, DMSO-d6) δ ppm 3.24 - 3.59 (m, 13 H) 3.63 (s, 3 H) 4.12 (s, 1 H) 4.18 - 4.24 (m, 1 H) 4.28 (s, 1 H) 4.36 (s, 1 H) 7.25 - 7.46 (m, 5 H) 7.59 (d, J=8.29 Hz, 1 H) 7.69 (d, J=6.97 Hz, 1 H) 7.82 - 7.93 (m, 2 H); ESI MS m/z: calculated for C₂₄H₂₉NO₇ 443.5, found 466.7 (M+Na)+.

Methyl {2-[2-(2-aminoethoxy)ethoxy]ethoxy}acetate, H₂N-Peg₃-O- CH₂CO₂Me: To a solution of crude methyl 1-(9*H*-fluoren-9-yl)-3-oxo-2,7,10,13-tetraoxa-4-azapentadecan-15-oate (Fmoc-HN-Peg₃-O-CH₂CO₂Me) in methanol (15 mL) was added piperidine (3 mL), and the reaction mixture stirred at room temperature for 6 hr. The reaction mixture was concentrated and dried *in vacuo* to provide methyl {2-[2-(2-aminoethoxy)ethoxy]ethoxy}acetate (H₂N-Peg₃-O-CH₂CO₂Me) as a crude mixture. ESI MS *m/z*: calculated for C₉H₁₉NO₅ 221.2, found 222.2 (M+H)⁺.

({[(6*E*)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)acetic acid, Oxy-Glyoxime-OH: To a solution of 14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-one hydrochloride salt (Oxycodone HCl, 2.0 g, 6.34 mmol) in MeOH (10 mL) was added 1M NaOH (6.6 mL, 1.05 equiv). The reaction mixture was stirred for 15 min, then concentrated *in vacuo*, and dried *in vacuo* for 2 h. The residue was re-dissolved in anhydrous MeOH (200 mL) and carboxylmethoxylamine (1.04 mg, 9.5 mmol) and pyridine (1.52 mL, 3.0 equiv) were added. The mixture was stirred at reflux temperature for 16 hr, then cooled to room temperature and concentrated *in vacuo*. The residue was redissolved in acetone (10 mL) and precipitated with ether (120 mL). The precipitate was collected, reprecipitated and dried *in vacuo* to provide ({[(6*E*)-14-hydroxy-3-methoxy-17-methyl-4,5epoxymorphinan-6-ylidene]amino}oxy)acetic acid (Oxy-Glyoxime-OH) as a white powder (2.6 g, 70% yield). ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 1.08 - 1.25 (m, 2 H) 1.35 - 1.62 (m, 3 H) 1.81 (d, *J*=9.23 Hz, 1 H) 2.30 (br. s., 2 H) 2.41 - 2.46 (m, 3 H) 2.63 (br. s., 2 H) 3.05 (br. s., 2 H) 3.14 - 3.23 (m, 1 H) 3.71 - 3.80 (m, 3 H) 4.55 (s, 2 H) 4.94 (br. s., 1 H) 6.69 (d, *J*=7.72 Hz, 1 H) 6.81 (d, *J*=8.10 Hz, 1 H); ESI MS *m/z*: calculated for C₂₀H₂₄N₂O₆ 388.4, found 389.7 (M+H)⁺; HPLC (Synergy Hydro, 20 min) *t_R* =11.32 min (>99%).

Methyl 14-({[(6E)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)-13-oxo-3,6,9-trioxa-12-azatetradecan-1-oate, Oxy-glyoxime-HN-Peg3-O- CH₂CO₂Me: To a clear solution of ({[(6*E***)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)acetic acid (Oxy-glyoxime-OH**, 186 mg, 0.48 mmol) in DMF (20 mL) was added pyBOP (328 mg, 0.63 mmol) and methyl {2-[2-(2-aminoethoxy)ethoxy]ethoxy}acetate (H₂N-Peg₃-O-CH₂CO₂Me) (128 mg, 0.58 mmol), then DIEA (418 µL, 2.4 mmol). The reaction mixture was stirred at room temperature for 6 hr under nitrogen atmosphere, then concentrated to dryness *in vacuo*. The residue was purified by column chromatography [20 g SiO₂, eluent DCM 100% to 50% CMA 80 (Chloroform/MeOH/NH₄OH 80/19.8/0.2)] to provide methyl 14-({[(6E)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)-13-oxo-3,6,9-trioxa-12-azatetradecan-1-oate (**Oxy-glyoxime-HN-Peg₃-O-Gly-**

OMe) as a white powder (94 mg. 32%). ESI MS m/z: calculated for C₂₉H₄₁N₃O₁₀ 591.7, found 592.2 (M+H)⁺; HPLC (Synergy Hydro, 20 min) t_R =12.37 min (95%).

Lithium14-({[(6E)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)-13-oxo-3,6,9-trioxa-12-azatetradecan-1-oate, Oxy-glyoxime-HN-Peg₃-O-CH₂CO₂Li: To a solution of methyl 14-({[(6E)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)-13oxo-3,6,9-trioxa-12-azatetradecan-1-oate (Oxy-glyoxime-HN-Peg₃-O-CH₂CO₂Me, 32 mg, 0.054 mmol) in MeOH/THF (1:1, 4 mL) was added H₂O (0.5 mL), then LiOH (1.3 mg, 0.054 mmol). The reaction mixture was stirred at room temperature for 6 hr and concentrated to dryness *in vacuo*. The residue was re-dissolved in minimal MeOH and precipitated with Et₂O to provide lithium14-({[(6E)-14-hydroxy-3methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)-13-oxo-3,6,9-trioxa-12-azatetradecan-1oate (Oxy-glyoxime-HN-Peg₃-O-CH₂CO₂Li) as a white powder (12 mg, 38%). ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm 1.14 - 1.27 (m, 1 H) 1.29 - 1.59 (m, 3 H) 1.99 - 2.26 (m, 3 H) 2.31 (s, 4 H) 2.34 - 2.47 (m, 2 H) 2.79 (d, *J*=6.03 Hz, 1 H) 3.13 (d, *J*=18.65 Hz, 1 H) 3.19 - 3.29 (m, 3 H) 3.37 - 3.58 (m, 9 H) 3.69 - 3.80 (m, 4 H) 4.44 (s, 2 H) 4.79 - 4.89 (m, 2 H) 6.60 - 6.70 (m, 1 H) 6.72 - 6.80 (m, 1 H) 7.83 (t, *J*=5.56 Hz, 1 H); ESI MS *m/z*: calculated for C₂₈H₃₈LiN₃O₁₀ 583.6, found 584.9 (M+H)⁺; HPLC (Synergy Hydro, 20 min) *t_R*=11.31 min (95%).

HNMR Spectrum of Oxy-glyoxime-HN-Peg₃-O-Gly-OLi

							13835-118 recry stallize
Acquisition Time (sec)	5.3084	Comment	13835-118 recr	ystallized		Date	23 Feb 2016 08:26:24
Date Stamp	23 Feb 2016 08	:26:24		File Name	C:\Users\chassi	er/Documents/NMR\1383	5-118 recrystallized/10/fid
Frequency (MHz)	300.13	Nucleus	1H	Number of Transients	128	Origin	spect
Original Points Count	32768	Owner	nmruser	Points Count	32768	Pulse Sequence	zo30
Receiver Gain	812.70	SW(cyclical) (Hz)	6172.84	Solvent	DMSO-d6	Spectrum Offset (Hz)	1852.0660
Spectrum Type	STANDARD	Sweep Width (Hz)	6172.65	Temperature (degree C	27.000		

¹H NMR (300 MHz, DMSO-*d*.) ⁵ ppm 1.14 - 1.27 (m, 1 H) 1.29 - 1.59 (m, 3 H) 1.99 - 2.26 (m, 3 H) 2.31 (s, 4 H) 2.34 - 2.47 (m, 2 H) 2.79 (d, *J*=6.03 Hz, 1 H) 3.13 (d, *J*=18.65 Hz, 1 H) 3.19 - 3.29 (m, 3 H) 3.37 - 3.58 (m, 9 H) 3.69 - 3.80 (m, 4 H) 4.44 (s, 2 H) 4.79 - 4.89 (m, 2 H) 6.60 - 6.70 (m, 1 H) 6.72 - 6.80 (m, 1 H) 7.83 (t, *J*=5.56 Hz, 1 H)

HPLC Chromatogram of Oxy-glyoxime-HN-Peg₃-O-Gly-OLi

Chromatogram : 13835-118 after Et2O recryst 2 23 2016 9 04 18 AM1 channel2

System : System_1 Method : auto5-95,20min synergy hydro analytical Acquired : 2/23/2016 9:05:26 AM Processed : 2/23/2016 9:32:04 AM Printed : 9/16/2016 1:03:01 PM

13835-118 after Et2O recryst 2_23_2016 9_04_18 AM1.DATA - Prostar 335 Absorbance Analog Channel 1 192.168.230.141 Warning: format Retention times not found. Default format has been applied.

HNMR Spectrum of Oxy-Glyoxime-OH

Acquisition Time (sec)	5.3084	Comment	13835-149 crystals			Date	28 Apr 2016 10:58:08
Date Stamp 28 Apr 2016 10:58:08			File Name	C:\Users\chass	chassier/Documents/NMR/13835-149 crystals/10/fid		
Frequency (MHz)	300.13	Nucleus	1H	Number of Transients	64	Origin	spect
Original Points Count	32768	Owner	nmruser	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	1024.00	SW(cyclical) (Hz)	6172.84	Solvent	DMSO-d6	Spectrum Offset (Hz)	1852.8137
Spectrum Type	STANDARD	Sweep Width (Hz)	6172.65	Temperature (degree C	27.000		

1H NMR (300 MHz, DMSO-d) 5 ppm 1.08 - 1.25 (m, 2 H) 1.35 - 1.62 (m, 3 H) 1.81 (d, J=9.23 Hz, 1 H) 2.30 (br. s., 2 H) 2.41 - 2.46 (m, 3 H) 2.63 (br. s., 2 H) 3.05 (br. s., 2 H) 3.51 (d - 3.23 (m, 1 H) 3.71 - 3.80 (m, 3 H) 4.55 (s, 2 H) 4.94 (br. s., 1 H) 6.69 (d, J=7.72 Hz, 1 H) 6.81 (d, J=8.10 Hz, 1 H) H)

HPLC Chromatogram of Oxy-GlyoximeOH

Chromatogram : 13835-155 cryst ll 5_10_2016 10_43_38 AM1_channel2

Peg₃-O-Gly-OMe

HNMR of Fmoc-HN-

Acquisition Time (sec)	5.3084	Comment	13835-110 DMSO			Date	09 Feb 2016 07:13:52
Date Stamp	09 Feb 2016 0	7:13:52		File Name	C:\Users\chassler\Documents\NMR\13835-110 DMSO\10\fid		
Frequency (MHz)	300.13	Nucleus	1H	Number of Transients	128	Origin	spect
Original Points Count	32768	Owner	nmruser	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	912.30	SW(cyclical) (Hz)	6172.84	Solvent	DMSO-d6	Spectrum Offset (Hz)	1852.6998
Spectrum Type	STANDARD	Sweep Width (Hz)	6172.65	Temperature (degree C) 27.000		

1H NMR (300 MHz, DMSO-d) δ ppm 3.24 - 3.59 (m, 13 H) 3.41 - 3.41 (m, 1 H) 3.63 (s, 3 H) 4.12 (s, 1 H) 4.18 - 4.24 (m, 1 H) 4.28 (s, 1 H) 4.36 (s, 1 H) 7.25 - 7.46 (m, 5 H) 7.59 (d, J=8.29 Åz, 1 H) 7.69 (d, J=6.97 Hz, 1 H) 7.82 - 7.93 (m, 2 H)

S2. Synthesis of Oxycodone-based hapten with thiol linker [OXY(Gly)4-SH hapten]

Synthesis of Oxy-carboxymethoxyloxime-Gly₄-NH-cysteaminesulfide dimer (Oxy-Glyoxime-Gly₄-NH-(CH₂)₂-S)₂)

(Oxy-Glyoxime-Gly4-NH-(CH₂)₂S)₂

Experimental details:

Chemistry General: All standard reagents were commercially available. Intermediates were purified by column chromatography on a Teledyne ISCO Rf chromatography unit unless otherwise indicated. The purity of intermediates and final compounds was determined using an Agilent-Varian HPLC system equipped with Prostar 210 dual pumps, a Prostar 335 Diode UV detector and a SEDEX75 (SEDERE, Olivet, France) ELSD detector and an analytical Synergy Hydro[®] RP80A C18 (4 µm particle size, 250 x 4.60 mm column; Phenomenex) with a linear gradient of 5%-95% solvent B over 20 min at a flow rate of 1 mL/min. Absorbance was monitored at 220 nm. The HPLC solvent system was binary: water containing

0.1% trifluoroacetic acid (TFA) and solvent B (acetonitrile containing 5% water and 0.1% TFA). The molecular ion of intermediates and final compounds was determined using a PE Sciex API 150 EX LC/MS system from Perkin Elmer (San Jose, California). ESI-HRMS were obtained on a Waters – SYNAPT –G2 mass spectrometer. ¹H NMR spectra were recorded at 300 MHz on a Bruker Avance 300 Spectrospin instrument and at 700 MHz on a Bruker Avance Neo. Chemical shifts are reported as follows: δ in ppm (multiplicity, coupling constant (Hz), and integration. The following abbreviations explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad, dd = doublet of doublets.

N-[({[(5a,6E)-14-hydroxy-3-methoxy-17-methyl-4,5-epoxymorphinan-6-

ylidene]amino}oxy)acetyl]glycylglycylglycyl-N-(2-sulfanylethyl)glycinamide (Oxy-Glyoxime-Gly4-NH-(CH2)2SH): To a clear solution of Lithium N-[({[(6E)-14-hydroxy-3-methoxy-17-methyl-4,5epoxymorphinan-6-ylidene]amino}oxy)acetyl]glycylglycylglycylatomethyl)glycinamide (Oxyglyoxime-Gly4-OLi 200 mg, 0.32 mmol) in DMF (30 mL) was added BOP (284 mg, 0.643 mmol) and 2-(tritylthio)ethanamine (123 mg, 0.386 mmol), then diisopropylethylamine (280 μ L, 1.61 mmol). The reaction mixture was stirred at room temperature for 16 hr under nitrogen atmosphere, then concentrated to dryness in vacuo. The residue was purified by column chromatography [24 g SiO₂, eluent 0% to 40% CMA 80 (Chloroform/MeOH/NH₄OH 80/19.8/0.2) in DCM] to provide N-[({[(5 α ,6E)-14-hydroxy-3methoxy-17-methyl-4,5-epoxymorphinan-6-ylidene]amino}oxy)acetyl]glycylglycylglycylglycyl-N-[2-(tritylsulfanyl)ethyl]glycinamide (Oxy-Glyoxime-Gly4-NH-(CH₂)₂STrtl) as a yellow powder (192 mg. 65%). To a solution of this material in DCM/MeOH (10 mL/4 mL) was added TFA (6 mL) and triethylsilane (0.3 mL), and the solution stirred at room temperature for 1 hr. The mixture was concentrated to dryness and purified by column chromatography [12 g SiO₂, eluent 0% to 40% CMA 80 (Chloroform/MeOH/NH4OH 80/19.8/0.2) in DCM] to provide Oxy-Glyoxime-Gly4-NH-(CH2)2SH (91 mg, 64%) as a white powder. ¹H NMR (300 MHz, DMSO- d_6) δ ppm 1.12 - 1.31 (m, 1 H) 1.39 - 1.69 (m, 2 H) 2.25 - 2.43 (m, 2 H) 2.55 - 3.03 (m, 10 H) 3.09 - 3.27 (m, 4 H) 3.56 - 4.03 (m, 12 H) 4.45 - 4.63 (m,

2 H) 5.01 (br. s., 1 H) 6.62 - 6.87 (m, 2 H) 7.79 - 7.97 (m, 2 H) 8.06 - 8.28 (m, 3 H); ESI MS m/z: calculated for C₃₀H₄₁N₇O₉S 675.76, found 676.6 (M+H)⁺; HPLC (Synergy Hydro, 20 min) t_R =10.96 min (>95%).

(Oxy-Glyoxime-Gly₄-NH-(CH₂)₂S)₂: To a solution of Oxy-Glyoxime-Gly₄-NH-(CH₂)₂SH (87 mg, 0.129 mmol) in water/acetonitrile/methanol (40 mL, ratio 2/1/1) was added pH 8.5 NH₄OAc buffer solution (2.5 mL) and the reaction mixture saturated with nitrogen. Potassium ferricyanide (125 mg, 0.380 mmol) was added and the reaction mixture stirred at room temperature for 16 hr. The solution was acidified to pH 3.5 with glacial acetic acid, then stirred over Amberlite IRA-68 resin for 20 min and filtered. The filtrate was concentrated to dryness and purified by column chromatography [130 g C18, eluent 0% to 100% MeOH in water] to provide **Oxy-Glyoxime-Gly₄-NH-(CH₂)₂S)**₂ (79mg, 91%) as a white solid. ¹H NMR (700 MHz, DMSO-*d*₆) δ ppm 1.47 (d, *J*=5.72 Hz, 6 H) 2.33 - 2.44 (m, 3 H) 2.57 - 2.86 (m, 14 H) 3.29 - 3.46 (m, 11 H) 3.61 - 3.82 (m, 26 H) 4.52 (br. s., 4 H) 5.11 (br. s., 2 H) 6.68 - 6.78 (m, 1 H) 6.83 - 6.90 (m, 1 H) 7.09 - 7.15 (m, 1 H) 7.19 - 7.38 (m, 4 H) 7.65 - 7.77 (m, 1 H) 7.89 - 7.97 (m, 1 H) 8.01 - 8.09 (m, 1 H) 8.15 (br. s., 4 H); ESI HRMS *m/z*: calculated for C₆₀H₈₀N14O₁₈S 1349.50, found 1349.53 (M)⁺, 675.27 (M)²⁺. HPLC (Synergy Hydro, 20 min) *t_R* =11.59 min (>95%).

HNMR Spectrum of (Oxy-Glyoxime-Gly4-NH-(CH2)2	2 S) 2
---	---------------

Acquisition Time (sec)	2.3593	Date	06 Feb 2018 1	9:29:04		Date Stamp	06 Feb 2018 19:29:04
File Name	C:\Users\chassler\Documents\NMR\14130-37 700 MHz\10\pdata\1\1r				Frequency (MHz)	700.20	
Nucleus	1H	Number of Transients	256	Origin	spect	Original Points Count	32768
Owner	nmrsu	Points Count	65536	Pulse Sequence	zq30	Receiver Gain	32.00
SW(cyclical) (Hz)	13888.89	Solvent	DMSO-d6	Spectrum Offset (Hz)	4322.6074	Spectrum Type	STANDARD
Sweep Width (Hz)	13888.68	Temperature (degree C) 25.000				

¹H NMR (700 MHz, DMSO- d_0) δ ppm 1.47 (d, J=5.72 Hz, 6 H) 2.33 - 2.44 (m, 3 H) 2.57 - 2.86 (m, 14 H) 3.29 - 3.46 (m, 11 H) 3.61 - 3.82 (m, 26 H) 4.52 (br. s., 4 H) 5.11 (br. s., 2 H) 6.68 - 6.78 (m, 1 H) 6.83 - 6.90 (m, 1 H) 7.09 - 7.15 (m, 1 H) 7.19 - 7.38 (m, 4 H) 7.65 - 7.77 (m, 1 H) 7.89 - 7.97 (m, 1 H) 8.01 - 8.09 (m, 1 H) 8.15 (br. s., 4 H)

HPLC Chromatogram of (Oxy-Glyoxime-Gly4-NH-(CH2)2S)2

Chromatogram : 14130-27-1 fr15-23 5_25_2017 2_07_31 PM1_channel2

13

HRMS of (Oxy-Glyoxime-Gly4-NH-(CH2)2S)2

HNMR Spectrum of Oxy-Glyoxime-Gly4-NH-(CH2)2SH

Acquisition Time (sec)	5.3084	Comment	14130-36-2	Date	19 Jun 2017 11:49:20		
Date Stamp	19 Jun 2017 1	1:49:20		File Name	C:\Users\chas	sler\Documents\NMR\141	30-36-2\10\fid
Frequency (MHz)	300.13	Nucleus	1H	Number of Transients	256	Origin	spect
Original Points Count	32768	Owner	nmruser	Points Count	32768	Pulse Sequence	zq30
Receiver Gain	1024.00	SW(cyclical) (Hz)	6172.84	Solvent	DMSO-d6	Spectrum Offset (Hz)	1852.9191
Spectrum Type	STANDARD	Sweep Width (Hz)	6172.65	Temperature (degree C) 27.000		

¹H NMR (300 MHz, DMSO- d_0) δ ppm 1.12 - 1.31 (m, 1 H) 1.39 - 1.69 (m, 2 H) 2.25 - 2.43 (m, 2 H) 2.55 - 3.03 (m, 10 H) 3.09 - 3.27 (m, 4 H) 3.56 - 4.03 (m, 12 H) 4.45 - 4.63 (m, 2 H) 5.01 (br. s., 1 H) 6.62 - 6.87 (m, 2 H) 7.79 - 7.97 (m, 2 H) 8.06 - 8.28 (m, 3 H)

HPLC Chromatogram of Oxy-Glyoxime-Gly4-NH-(CH2)2SH

Chromatogram : 14130-22 fr 35-45 4_28_2017 3_36_03 PM1_channel1

System : System_2 Method : 5to95%B20 min synergy hydro analytical Acquired : 4/28/2017 3:37:00 PM Processed : 4/28/2017 4:03:35 PM Printed : 2/5/2018 5:22:37 PM

S3. Expansion of the early hapten-specific B cell population in mice immunized with oxycodone conjugate vaccines containing different carrier proteins.

BALB/c mice (n \geq 4/group) were immunized IM with 100 µg unconjugated KLH, OXY-KLH, OXY-EcoCRMTM, OXY-rTTHc, or OXY-sKLH, formulated with 70 µg of alum. At 7 days post-immunization, hapten-specific B cell populations from spleen and lymph nodes were analyzed by antigen-based magnetic enrichment paired with flow cytometry. OXY-specific IgM⁺ B cells are expressed as percentage (%) of the total lymphocyte population after magnetic enrichment. P value symbols: asterisk (*) represents experimental groups compared to KLH, pound (#) represents inter-experimental group comparisons. #, p \leq 0.05, ***, p \leq 0.001, ###, p \leq 0.001 (by one-way ANOVA followed by Tukey's multiple comparison post hoc test). Line and error bar represent mean \pm SEM.

S4. Efficacy of OXY-rTTHc in attenuating oxycodone-induced respiratory depression and bradycardia in mice.

Oxycodone-induced respiratory depression and bradycardia were tested by oximetry one week after the last immunization as previously described ^{1, 2}. A mouseOx (STARR life sciences corp., Oakmont, PA) was placed via neck collar to measure oxygen saturation and heart rate. After baseline recording, mice were challenged every 15 min with increasing oxycodone sc doses of 1.125, 2.25, 4.5, 9.0 mg/kg for a cumulative dose of 18 mg/kg, followed by administration of 0.1 mg/kg naloxone to reverse the effects of oxycodone. Respiratory activity and heart rate were measured 15 min after each oxycodone dose. In both panels, the X-axis shows the oxycodone cumulative dose administered over time. A) Percentage (%) oxygen saturation, and B) heart rate expressed in beat per minute (BPM). Statistical significance was assessed by two-way ANOVA followed by Tukey post hoc test. * $p \le 0.05$. There were no differences between the two groups following naloxone treatment. Data are expressed as mean \pm SEM, control (n = 4), and OXY-rTTHc (n=5).

Supplemental Material References:

1. Raleigh, M. D.; Laudenbach, M.; Baruffaldi, F.; Peterson, S. J.; Roslawski, M. J.; Birnbaum, A. K.; Carroll, F. I.; Runyon, S. P.; Winston, S.; Pentel, P. R.; Pravetoni, M. Opioid dose- and routedependent efficacy of oxycodone and heroin vaccines in rats. *Journal of Pharmacology and Experimental Therapeutics* **2018**.

2. Laudenbach, M.; Baruffaldi, F.; Robinson, C.; Carter, P.; Seelig, D.; Baehr, C.; Pravetoni, M. Blocking interleukin-4 enhances efficacy of vaccines for treatment of opioid abuse and prevention of opioid overdose. *Scientific Reports* **2018**, *8*, (1), 5508.