
Supplementary Materials
SMSSVD – SubMatrix Selection Singular Value Decomposition

Proofs and Comments

Theorem 1 (Decomposition Theorem). Let X
∣∣
Π

: Π→ X(Π) be the restriction of a linear map

X : RN → RP to a d-dimensional subspace Π ⊂ RN such that Π ⊥ kerX. Furthermore, let
UΣV T =

∑d
i=1 σiU·iV

T
·i be the singular value decomposition of X

∣∣
Π
. Then

1. V·i ⊥ kerX, ∀i.

2. U·i ⊥ cokerX, ∀i.

3. XV = UΣ.

4. UTX = ΣV T + UTX(I − V V T ).

5. (I − UUT )X(I − V V T ) = (I − UUT )X.

6. rank (X) = d+ rank
(
(I − UUT )X

)
.

Remark. In the statement of the theorem and in the proof below, we consider all vectors to
belong to the full-dimensional spaces. In particular, we extend all vectors in subspaces of the full
spaces with zero in the orthogonal complements.

Proof. 1. The columns of V are an orthonormal basis of Π and thus orthogonal to kerX. 2.
The columns of U are an orthonormal basis of X(Π) and X(Π) ⊥ cokerX. 3. XV = X

∣∣
Π
V =

UΣV TV = UΣ. 4. Using 3 we get

UTX = UTXV V T + UTX(I − V V T )

= ΣV T + UTX(I − V V T ).

5. The statement follows from (I − UUT )XV = (I − UUT )UΣ = 0, where we have used
that UTU = I. 6. Let Y := X(Π) and Z := imX/X(Π) be the parts of the decomposition
imX = Y ⊕ Z, which is possible since Y ⊂ imX. The linear map (I − UUT ) is orthogonal
projection onto X(Π)⊥ and thus maps Y → 0 and Z → Z. Since rankA = dim (imA), it follows
immediately that rank(I −UUT )X = dimZ and that rankX = dimY + dimZ = d+ dimZ.

Theorem 2 (Selection-Expansion Theorem). Take a linear map S : RL → RP and an integer d
such that rankSTX ≥ d and let Ũ Σ̃Ṽ T be the rank d truncated SVD of STX. Furthermore let
Π be the subspace spanned by the columns of Ṽ and let UΣV T be the SVD of X

∣∣
Π
. Then

1. Π ⊥ kerX.

2. STUΣV T = Ũ Σ̃Ṽ T .

3. {V·1, V·2, . . . , V·d} and {Ṽ·1, Ṽ·2, . . . , Ṽ·d} are orthonormal bases of Π.

4. {STU·1, S
TU·2, . . . , S

TU·d} and {Ũ·1, Ũ·2, . . . , Ũ·d} are bases of STX(Π).

5. ‖Σ‖F ≥ ‖Σ̃‖F‖S‖2 .
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6. UTX = ΣV T + UT (I − SST )X(I − V V T ).

Proof. 1. The columns of Ṽ are orthogonal to kerSTX ⊃ kerX. 2. STUΣV T = STX
∣∣
Π

=

(STX)
∣∣
Π

= Ũ Σ̃Ṽ T . 3. Follows immediately from the definitions. 4. {Ũ·i}di=1 is a basis of

STX(Π). By property 2, Ũ = STUΣV T Ṽ Σ̃−1, showing that {STU·i}di=1 span {Ũ·i}di=1. Finally,
since U and Ũ have the same rank, {U·i}di=1 is also a basis of STX(Π). 5. For general matrices
A and B, consider A acting on each column of B. We get

‖AB‖2F =
∑
i

‖AB·i‖22 ≤
∑
i

‖A‖22‖B·i‖22 = ‖A‖22‖B‖2F .

The result now follows from property 2, with A = ST and B = UΣV T , since ‖AB‖F =
‖Ũ Σ̃Ṽ T ‖F = ‖Σ̃‖F and ‖B‖F = ‖Σ‖F . 6. From Theorem 1, property 4, we get UTX =
ΣV T +UTX(I−V V T ). It remains to show that UTSSTX(I−V V T ) = 0. By property 4, there
exists a matrix Z such that STU = ŨZ and

UTSSTX(I − V V T ) = ZT ŨTSTX(I − V V T )

= ZT Σ̃Ṽ T (I − Ṽ Ṽ T ) = 0,

where V V T = Ṽ Ṽ T because of property 3.

Even if the SMSSVD algorithm is run until Xk = 0, UΣV T 6= X in general, with equality
iff the residual UT

k Xk(I − VkV T
k ) = 0 for all k. Indeed, if UΣV T = X, then the SMSSVD of

X coincides with the SVD of X (up to permutation of the singular values and corresponding
singular vectors). If instead UΣV T 6= X, let’s consider the residual term UTX − ΣV T , which
corresponds to what is removed by the noise reduction. By the ‘Signal Removal’ step in the
SMSSVD algorithm,

Xn = (I − Un−1U
T
n−1)(I − Un−2U

T
n−2) · · · (I − U1U

T
1 )X.

Hence, UT
k X = UT

k Xk by Theorem 1, property 4, and the residual takes the form

UTX − ΣV T =


UT

1 (I − S1S
T
1 )X1(I − V1V

T
1 )

UT
2 (I − S2S

T
2 )X2(I − V2V

T
2 )

...
UT
n (I − SnS

T
n )Xn(I − VnV T

n )

 .
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Supplementary Figures

Color key for Supplementary Figures 1 and 2:
Below the diagonal, samples are colored by the annotation ‘xml gender’, Female and Male.
Above the diagonal, samples are colored by the annotation ‘gdc cases tissue source site project’:
Mesothelioma, Kidney renal clear cell carcinoma, Rectum adenocarcinoma, Bladder Urothelial
Carcinoma, Adrenocortical carcinoma, Lung squamous cell carcinoma, Pheochromocytoma and
Paraganglioma, Kidney Chromophobe, Uterine Corpus Endometrial Carcinoma, Sarcoma, Uveal
Melanoma, Head and Neck squamous cell carcinoma, Thyroid carcinoma, Colon adenocarcinoma,
Stomach adenocarcinoma, Skin Cutaneous Melanoma, Kidney renal papillary cell carcinoma,
Cervical squamous cell carcinoma and endocervical adenocarcinoma, Lymphoid Neoplasm Dif-
fuse Large B-cell Lymphoma, Breast invasive carcinoma, Uterine Carcinosarcoma, Esophageal
carcinoma, Prostate adenocarcinoma, Lung adenocarcinoma, Cholangiocarcinoma, Liver hep-
atocellular carcinoma, Ovarian serous cystadenocarcinoma, Pancreatic adenocarcinoma, Brain
Lower Grade Glioma and Glioblastoma multiforme.
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Supplementary Figure 1: SMSSVD of the TCGA data set. Below the diagonal, samples are colored by ‘xml gender’, and
above the diagonal, samples are colored by ‘gdc cases tissue source site project’. (Color key given above.)
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Supplementary Figure 2: SVD of the TCGA data set. Below the diagonal, samples are colored by ‘xml gender’, and above
the diagonal, samples are colored by ‘gdc cases tissue source site project’. (Color key given above.)
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Supplementary Figure 3: Evaluation of SMSSVD on the Acute Lymphoblastic Leukemia (RNA-Seq) data set with subtype
‘Other’ included.
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Supplementary Figure 4: Scree plots for the data sets in Figure 3.
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Supplementary Figure 5: The reconstruction error, err(k), is shown for different conditions. The signal strength ‖Yk‖F
(black) is shown for scale. The methods are: SVD (blue), SMSSVD (red) and SPC (green, magenta, cyan) with decreasing
degree of sparsity (regularization parameters c = 0.04

√
P , c = 0.12

√
P and c = 0.36

√
P respectively). No errors larger than

the signal strength are displayed as that indicates that a different signal has been found.
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