## SUPPLEMENTARY MATERIAL: TABLE OF CONTENTS

| S1. Sequence-based approach2                                                                                           |
|------------------------------------------------------------------------------------------------------------------------|
| S1.1. Features and environments                                                                                        |
| <b>S1.2.</b> Workflow                                                                                                  |
| S2. Detailed description of features                                                                                   |
| S3. Extreme Gradient Boosting Training and Hyperparameters4                                                            |
| S4. Binding site scoring function                                                                                      |
| S4.1. Scoring function example calculation                                                                             |
| S4.2. Expected precision of binding site scores                                                                        |
| S5. XGBoost model features importance                                                                                  |
| S6. Detailed performance analysis7                                                                                     |
| S6.1 Additional statistical measurements for all datasets7                                                             |
| S6.2. ROC curves and precision-recall curves for several datasets                                                      |
| S6.3. ROC curves and precision-recall curves for different scoring functions $10$                                      |
| S6.4. Effect of negative sampling scheme in performance11                                                              |
| S6.5. Effect of bound and unbound structures on training11                                                             |
| S6.6. Effect of different independence criteria on training                                                            |
| S7. XGBoost model compared to Random Forest model                                                                      |
| S8. Comparison with other methods                                                                                      |
| S8.1. Comparison with ECLAIR and several non-partner specific methods12                                                |
| S8.2. Comparison with PAIRpred                                                                                         |
| S9. BIPSPI behaves partner-specific                                                                                    |
| S9.1. Groups of proteins in DBv5 and DImS sets that interact with several partners $14$                                |
| S9.2. Specific Partner Specific Scores (SPIS) and Other Partners Interface Scores (OPIS)                               |
| S9.3. Box plots of Specific Partner Specific Scores (SPIS) and Other Partners Interface<br>Scores (OPIS) distributions |
| S10. Use case PCKS9-PCKS9 & PCKS9-Adnectin                                                                             |
| S10.1. Predictions happen to be spatially close to protein active site $16$                                            |
| S10.2. Comparison with non-partner-specific methods.                                                                   |
| S11. Use case SHR-JACKDAW & SHR-SCR                                                                                    |
| S12. Results per complex                                                                                               |

#### S1. Sequence-based approach

#### S1.1. Features and environments

Sequence binding site approach employs the same sequence-based and environment (sliding window) features that structure-based model (see Main Text Section 2.3.2). Additionally, input features include the protein sequence length in an attempt to correct the expected total number of interface residues, a similar approach was used in other works (Yuan, 2005).

When only sequence data is used, all structural features are replaced by accessibility and secondary structure predictions (three probability values) computed with SPIDER2 (Heffernan *et al.*, 2015). As no structural data is available, structural environments cannot be computed.

#### S1.2. Workflow

Contrary to structure-based method, which employs two XGBoost steps, sequence-based version consists of just one classifier followed by the same scoring function that the structure-based approach employs (see Main Text Section 2.4). As no second step is performed, predicted score pairs are not used as features and thus, no pairwise environment is included. Figure S1.2.1 shows a comparison of structure-based method and sequence-based method. Both approaches start by codifying pairs of amino acids using their features. After that, an XGBoost model is trained over these codified pairs. However, in the case of structure-based model, a second classifier is trained employing the predictions of the first step together with the original features. Predictions obtained by these second classifier will be considered as the final pair predictions of structure-based model. Lastly, final predicted score pairs (first step classifier for sequence-based model and second step classifier for structure-based model) are converted to binding site predictions by means of a scoring function (see Main Text Section 2.6) which is common to both workflows.



Figure S1.2.1. BIPSPI workflow. Algorithm starts at blue ellipse when structures are provided as input whereas it begins at orange ellipse when sequences are provided as input. Green part of the diagram shows the shared workflow (although XGBoost model is different as features are different).

#### S2. Detailed description of features

**Table S2.1**. Sequence-only method features per residue (total number of features is twice the number of features for one residue).

| Name                                 | # of<br>features | Calculation<br>procedure | Description                                                                                                                                                                                                                                                                            |
|--------------------------------------|------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One-hot encoded<br>amino acid symbol | 22*              | Custom<br>script         | Each amino acid is codified as a vector of 22<br>elements in which all them are zero except the<br>element that identifies the amino acid type.<br>Amino acid types considered are the 20<br>standard amino acids, non-standard amino acid<br>and non-amino acid (for window positions |

|                                                           |     |                                      | outside the sequence).                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|-----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One-hot encoded<br>amino acid symbol<br>in sliding window | 242 | Custom<br>script                     | Window size of 11 amino acids                                                                                                                                                                                                                                 |
| PSSM profile                                              | 20* | PSI-Blast                            | Each residue of the sequence is described by a vector of 20 digits                                                                                                                                                                                            |
| PSFM profile                                              | 20* | PSI-Blast                            | Each residue of the sequence is described by a vector of 20 digits                                                                                                                                                                                            |
| Information per position                                  | 1*  | PSI-Blast                            | One value per residue in sequence. It is related<br>with column entropy in multiple sequence<br>alignment                                                                                                                                                     |
| weight of gapless                                         | 1*  | PSI-Blast                            | One value per residue in sequence. It is related<br>with column gaps in multiple sequence<br>alignment and can indicate profiles' local quality                                                                                                               |
| MSA conservation                                          | 1   | PSI-Blast<br>alignments<br>and AL2CO | One value per residue in sequence. AL2CO<br>Processes Psi-blast retrieved multiple sequence<br>alignment to compensate for redundancy and<br>estimates conservation score.                                                                                    |
| Sequence profiles<br>sliding window                       | 462 | Custom<br>script                     | Window size of 11 amino acids                                                                                                                                                                                                                                 |
| Sequence length                                           | 1   | Custom<br>script                     | The sequence length of the chain where the residue belongs is included in an attempt to correct for the total expected number of interface residues. Similar approach was used in Yuan (Yuan, 2005). All residues of the same pdb chain shared the same value |
| Solvent<br>accessibility<br>prediction                    | 1   | SPIDER2                              | One value for each residue                                                                                                                                                                                                                                    |
| Secondary<br>structure<br>prediction                      | 3   | SPIDER2                              | Three probability values (0-1 range) for each residue                                                                                                                                                                                                         |

 $\ensuremath{\textbf{Notes}}\xspace:$  \* not used directly for pair codification as they are included in sliding window

 Table S2.2. Structure-based method features per residue (total number of features is twice the number of features for one residue).

| Name                                                                 | # of<br>features | Calculation<br>procedure             | Description                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| One-hot encoded<br>amino acid symbol                                 | 22               | Custom<br>script                     | Each amino acid is codified as a vector of 22<br>elements in which all them are zero except the<br>element that identifies the amino acid type.<br>Amino acid types considered are the 20<br>standard amino acids, non-standard amino<br>acid and non-amino acid<br>(for window positions outside the sequence). |
| One-hot encoded<br>amino acid symbol<br>in sliding window            | 242              | Custom<br>script                     | Window size of 11 amino acids                                                                                                                                                                                                                                                                                    |
| One-hot encoded<br>amino acid symbol<br>in structural<br>environment | 22               | Custom<br>script                     |                                                                                                                                                                                                                                                                                                                  |
| PSSM profile                                                         | 20               | PSI-Blast                            | Each residue of the sequence is described by a vector of 20 digits                                                                                                                                                                                                                                               |
| PSFM profile                                                         | 20               | PSI-Blast                            | Each residue of the sequence is described by a vector of 20 digits                                                                                                                                                                                                                                               |
| Information per position                                             | 1                | PSI-Blast                            | One value per residue in sequence. It is related<br>with column entropy in multiple sequence<br>alignment                                                                                                                                                                                                        |
| weight of gapless                                                    | 1                | PSI-Blast                            | One value per residue in sequence. It is related<br>with column gaps in multiple sequence<br>alignment and can indicate profiles' local quality                                                                                                                                                                  |
| Conservation                                                         | 1                | PSI-Blast<br>alignments<br>and AL2CO | One value per residue in sequence. AL2CO<br>Processes Psi-blast retrieved multiple sequence<br>alignment to compensate for redundancy and<br>estimates conservation score.                                                                                                                                       |
| Sequence<br>conservation in<br>sliding window                        | 462              | Custom<br>script                     | Window size of 11 amino acids                                                                                                                                                                                                                                                                                    |
| Sequence<br>conservation in<br>structural                            | 172              | Custom<br>script                     |                                                                                                                                                                                                                                                                                                                  |

| environment                                                                   |    |                  |                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------|----|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent<br>accessibility                                                      | 10 | PSAIA            |                                                                                                                                                                                                                                        |
| Hydrophobicity                                                                | 1  | PSAIA            |                                                                                                                                                                                                                                        |
| Depth index                                                                   | 6  | PSAIA            |                                                                                                                                                                                                                                        |
| Protrusion index                                                              | 6  | PSAIA            |                                                                                                                                                                                                                                        |
| PSAIA in structural<br>environment                                            | 92 | Custom<br>script |                                                                                                                                                                                                                                        |
| One-hot encoded<br>secondary<br>structure                                     | 8  | DSSP             | Each residue is codified as a vector of 8 elements in which all them are zero except the element that identifies the secondary structure type (7 defined secondary structure types by DSSP and 1 for no detected secondary structure). |
| One-hot encoded<br>secondary<br>structure in<br>structural<br>environment     | 8  | Custom<br>script | Window size of 11 amino acids                                                                                                                                                                                                          |
| Half-sphere<br>exposure                                                       | 2  | Biopython        | Each residue is codified by 2 numeric values<br>that represent half-sphere exposure computed<br>by approximate CA-CB vectors and by exact<br>CA-CB vectors                                                                             |
| Contact number                                                                | 1  | Biopython        | Number of CA around a residue with max distance= 12 Å                                                                                                                                                                                  |
| Half-sphere<br>exposure and<br>contact number in<br>structural<br>environment | 12 | Custom<br>script |                                                                                                                                                                                                                                        |

Table S2.3. Structure-based method pairwise features per residue-residue pair in second step classifier

| Name                                                                  | # of<br>features | Calculation<br>procedure | Description                                                                                                                                                                                                             |
|-----------------------------------------------------------------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Previous step<br>predictions                                          | 2                | Custom<br>script         | Each pair of amino acids is codified employing<br>the prediction obtained by first classifier (1<br>value) and the same prediction normalized<br>(mean, standard deviation) over all pairs<br>contained in the complex. |
| Previous step<br>predictions in<br>structural pairwise<br>environment | 24               | Custom<br>script         | From both raw first step prediction and normalized prediction, 4 new values (maximum, minimum, sum and mean) for each type of environment ( $\alpha vs N_{\beta}, N_{\alpha} vs \beta$ and $N_{\alpha} vs N_{\beta}$ ). |

#### S3. Extreme Gradient Boosting Training and Hyperparameters

We have trained one XGBoost model per protein complex for each of the steps of the algorithm. Thus, each model was trained on the concatenation of all codified pairs but the ones that belong to the left-out complex. Predictions for all pairs in a complex obtained in first step leave-one-out were used as features for the second step.

XGBoost hyperparameters of Python2.7 xgboost package on sklearn API were set to default with the exception of the following, which were set to:

- 'objective':'binary:logistic'
- 'colsample\_bytree': 0.9,
- 'learning\_rate': 0.1
- 'min\_child\_weight': 1
- 'n\_estimators': 2000

- 'subsample': 0.9
- 'reg\_lambda': 10.0
- 'max\_depth': 12
- 'gamma': 0

#### S4. Binding site scoring function

#### S4.1. Scoring function example calculation

| ResId_protA | ResId_protB | Pairs score |
|-------------|-------------|-------------|
| Ala32       | Asn1        | 0.901       |
| Asp15       | lle6        | 0.887       |
| Val2        | Met11       | 0.805       |
| Ala32       | His12       | 0.799       |
| Ala32       | lle6        | 0.779       |
| Phe1        | Ser4        | 0.751       |
| Ala32       | Ser4        | 0.779       |
| Phe1        | Asn1        | 0.751       |
| Ala34       | Thr46       | 0.779       |
| Phe1        | Asn67       | 0.751       |
|             |             |             |

 Table S4.1. Hypothetical predictions for residue pair interaction results obtained by XGBoost model. Rows are sorted from highest to lowest scores.

In this section, 5 different examples of interface score computation will be shown using as interacting pairs scores the ones shown in Table S4.1. In order to obtain interface scores, table should be sorted from highest to lowest by Pairs scores (which is the case). Then, interface scores are computed independently for each protein by counting the number of times a given residue appears among the top k highest score pairs for  $k=2^{1},2^{2}...$  and dividing this count over k.

```
I_{S}("\text{protA Ala32"}) = X_{c}(\text{protA Ala32, }2^{1}) + X_{c}(\text{protA Ala32, }2^{2}) + X_{c}(\text{protA Ala32, }2^{3}) + \dots = \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \dotsI_{S}("\text{protA Asp15"}) = X_{c}(\text{protA Asp15, }2^{1}) + X_{c}(\text{protA Asp15, }2^{2}) + X_{c}(\text{protA Asp15, }2^{3}) + \dots = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dotsI_{S}("\text{protA Phe1"}) = X_{c}(\text{protA Phe1, }2^{1}) + X_{c}(\text{protA Phe1, }2^{2}) + X_{c}(\text{protA Phe1, }2^{3}) + \dots = \frac{0}{2} + \frac{0}{4} + \frac{2}{8} + \dotsI_{S}("\text{protB Asn1"}) = X_{c}(\text{protA Asn1, }2^{1}) + X_{c}(\text{protA Asn1, }2^{2}) + X_{c}(\text{protA Asn1, }2^{3}) + \dots = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \dotsI_{S}("\text{protB Ser4"}) = X_{c}(\text{protA Ser4, }2^{1}) + X_{c}(\text{protA Ser4, }2^{2}) + X_{c}(\text{protA Ser4, }2^{3}) + \dots = \frac{0}{2} + \frac{0}{4} + \frac{2}{8} + \dots
```

#### S4.2. Expected precision of binding site scores

Binding site raw scores computed by BIPSPI are difficult to interpret. Although residues that exhibit high scores are more likely to belong to the interface that low score residues, it is difficult to decide which threshold might be appropriate to select the residues that comprise the predicted binding site. Consequently, we have associated to each score an expected precision value that was estimated from the measured scores vs. precision data resulted from BIPSPI benchmarking (see Figure S4.2.1). In order to model the relation between score and precision, two well-known techniques were tried: Platt's sigmoid fit (Platt and Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2002). As it can be appreciated in Figure S4.2.1, sigmoid fit was overoptimistic for most score values and it was also not able to explain well the range of low score values. On the contrary, isotonic regression model was better fitted to data, and thus, this latter approach was employed in BIPSPI web server.



Figure S4.2.1. Binding site scores of residues against measured precision (red) and isotonic fit to data (blue). Scores for structure-based model are displayed in the left hand side plot, sequence-based model in the right hand side.

In Figure S4.2.2, the distribution of binding site precision per complex is displayed for several expected precision thresholds (raw score transformed into expected precision by isotonic regression). As it can be appreciated, most complexes exhibit precision levels close to the expected precision threshold.



#### performance per complex

Figure S4.2.2. Precision per DBv5 complex for three distinct score thresholds associated with expected precisions of 0.5, 0.6 and 0.7 respectively.

#### S5. XGBoost model features importance

Different approaches can be used to measure feature importance in tree ensemble methods. Some of them employ the average information gain associated to a feature when it is used in each tree, some others take into account mean impurity decrease for each tree split and feature, etc. One common strategy, which was used in this work, is to sum the number of times each feature is responsible for a tree split. Thus, feature importance for each variable was determined as the number of times the variable was used in a tree split divided by the total number of splits that occurred in all trees. As a result, features importance was expressed as a relative value ranged from 0-1 such that the importance of all variables sums up to 1.

As our model makes use of around 2000 input variables, many of them representing the same concept (e.g., 506 one-hot encoded variables describe amino acid type, including sliding window and structural environment), feature importance was determined for groups of related features (e.g. Accessibility, Conservation, etc.). In each group, both single amino acid and environment features (see Main Text Section 2.3.2) are included.

We defined the global feature importance of a group as the sum of relative importance of each variable that belongs to the group. Also, we defined the mean feature importance of a group as the mean of relative importance of each variable that belongs to the group. This distinction is fundamental as some groups of variables have hundreds of members (for instance sliding window of PSSM profiles) whereas some others have a few ones (for example hydrophobicity) and thus, highly populated groups tend to have higher global importance even though particular variables of the group may not be informative.

Results of feature importance analysis are shown in Figure S5.1 As it can be appreciated, globally, the most informative feature in both first step and second step classifiers is conservation information, which groups together PSSM, PSFM, Information per position, weight of gapless and AL2CO conservation score. However, this group is not so important when mean importance is considered instead. The reason for this behaviour is that more than half of the total number of variables belongs to this group. Still, the mean importance of this group is over 50% the importance of the highest important group for first step classifier, which indicates that conservation variables are informative even if less variables (smaller sliding window for instance) are included.

In terms of mean importance, the most important feature group in second step classifier is the prediction scores obtained from the first step classifier. This group of features, which involves 24 variables of the model, not only is twice as informative as the second most informative variable in terms of mean importance, but also contributes with more than 6% of the total information of the model (around 1% will be

expected if all variables contributed equally). These results may explain why second step classifier works better than first step classifier.

Apart from first step predictions, the group of variables with better mean importance is accessibility, which also explains an important amount of global importance. This is not shocking as in Minhas et al. (Minhas *et al.*, 2014) it was demonstrated that solvent accessibility alone has the capability to predict interacting residue pairs with certain reliability.

Additionally, we have studied the importance of the different types of environment variables, independently of its nature. As it can be appreciated in Figure S5.1, the global contribution of structural environment variables is greater than 55% of total importance even though this group represents 31% of the total number of variables. Consequentially, the mean importance of structural environment features is about three times bigger than the mean importance of sliding window environment, which confirms that the structural environment of a pair of amino acids contributes massively to the prediction.



Figure S5.1. Importance of features employed in BIPSPI for first step classifier (A) and second step classifier (B). Pie charts show the relative importance of groups of variables as percentage of total importance, whereas bar plots display the relative importance of each group of features as a percentage.

#### S6. Detailed performance analysis

#### S6.1 Additional statistical measurements for all datasets

Table S6.1.1. Performance summary of BIPSPI on several datasets.

| Data | Algorithm | Input<br>type | Resid              | lue-Resid<br>Predict | lue Con<br>tion              | tact              |                    | Binding Site Prediction |                   |                   |        |        |        |        |        |
|------|-----------|---------------|--------------------|----------------------|------------------------------|-------------------|--------------------|-------------------------|-------------------|-------------------|--------|--------|--------|--------|--------|
|      |           |               | AUC <sub>ROC</sub> | AUC <sub>ROC</sub>   | $\overline{\text{AUC}}_{PR}$ | AUC <sub>PR</sub> | AUC <sub>ROC</sub> | AUC <sub>ROC</sub>      | AUC <sub>PR</sub> | AUC <sub>PR</sub> | MCC    | PR     | RC     | SPC    | NPV    |
| DBv5 | В         | Seq           | 0.8024             | 0.8137               | 0.0371                       | 0.0110            | 0.7286             | 0.7527                  | 0.3539            | 0.3049            | 0.2791 | 0.3003 | 0.4828 | 0.8349 | 0.9322 |
|      | B-1       | Struc         | 0.9011             | 0.9184               | 0.0586                       | 0.0238            | 0.8046             | 0.8154                  | 0.4438            | 0.3967            | 0.3721 | 0.4012 | 0.5079 | 0.9037 | 0.9353 |
|      | В         | Struc         | 0.9052             | 0.9188               | 0.0642                       | 0.0234            | 0.8235             | 0.8225                  | 0.4629            | 0.4104            | 0.3855 | 0.3910 | 0.5585 | 0.8895 | 0.9407 |
|      | B max     | Seq           | 0.8024             | 0.8137               | 0.0371                       | 0.0110            | 0.7234             | 0.6809                  | 0.3219            | 0.1955            | 0.1684 | 0.1761 | 0.6459 | 0.6163 | 0.9320 |
|      | B max     | Struc         | 0.8024             | 0.8137               | 0.0371                       | 0.0110            | 0.8177             | 0.7947                  | 0.4394            | 0.3199            | 0.2977 | 0.2679 | 0.6394 | 0.7780 | 0.9444 |

|      | B -wAvg | Seq   | 0.8024 | 0.8137 | 0.0371 | 0.0110 | 0.7205 | 0.7386 | 0.3462 | 0.2968 | 0.2740 | 0.3005 | 0.4679 | 0.8617 | 0.9272 |
|------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|      | B -wAvg | Struc | 0.9011 | 0.9184 | 0.0586 | 0.0238 | 0.8043 | 0.8092 | 0.4568 | 0.4043 | 0.3826 | 0.3947 | 0.5444 | 0.8940 | 0.9392 |
| DBv3 | В       | Seq   | 0.8153 | 0.8154 | 0.0381 | 0.0113 | 0.7361 | 0.7492 | 0.3555 | 0.3041 | 0.2830 | 0.3233 | 0.4396 | 0.8828 | 0.9251 |
|      | В       | Struc | 0.9044 | 0.9131 | 0.0715 | 0.0234 | 0.8157 | 0.8163 | 0.4634 | 0.4058 | 0.3730 | 0.3831 | 0.5458 | 0.8871 | 0.9383 |
|      | PR      | Seq   | 0.809  | NA     | NA     | NA     | NA     | 0.708  | NA     |
|      | PR      | Struc | 0.8783 | 0.8930 | 0.0370 | 0.0125 | 0.7587 | 0.6913 | 0.3665 | 0.2012 | 0.1807 | 0.1680 | 0.7809 | 0.5030 | 0.9470 |
|      | PR-sc   | Struc | 0.8783 | 0.8930 | 0.0370 | 0.0125 | 0.7689 | 0.7741 | 0.3936 | 0.3412 | 0.3112 | 0.3716 | 0.4197 | 0.8987 | 0.9256 |
|      | РР      | Seq   | 0.729  | NA     | NA     | NA     | NA     | 0.661  | NA     |
| DImS | В       | Seq   | 0.7469 | 0.7300 | 0.0449 | 0.0170 | 0.6883 | 0.6741 | 0.3970 | 0.3375 | 0.2330 | 0.3592 | 0.4264 | 0.8219 | 0.8595 |
|      | B-1     | Struc | 0.8800 | 0.8909 | 0.0839 | 0.0432 | 0.7940 | 0.7816 | 0.5312 | 0.4739 | 0.3679 | 0.4750 | 0.5098 | 0.8680 | 0.8832 |
|      | в       | Struc | 0.8789 | 0.8875 | 0.0899 | 0.0439 | 0.7985 | 0.7847 | 0.5404 | 0.4772 | 0.3779 | 0.4416 | 0.5983 | 0.8228 | 0.8974 |

Note:  $\overline{AUC}_{ROC}$ : ROC-AUC averaged over all complexes;  $AUC_{ROC}$ : ROC-AUC for all scored pooled across complexes;  $\overline{AUC}_{PR}$ : Precision-recall-AUC averaged over all complexes;  $AUC_{PR}$ : Precision-recall-AUC for all scored pooled across complexes; MCC: Matthews correlation coefficient; PR: Precision; RC recall; SPC specificity; NPV negative predictive value are computed at the threshold that maximizes the Matthews correlation coefficient (MCC). Algorithms: B: BIPSPI default, B-1: BIPSPI just one step; B-max: BIPSPI 2 steps and maximum as scoring function, B – wAvg: BIPSPI 2 steps proposed scoring function but no sequence average; PR: PAIRpred; PR-sc: PAIRpred using the proposed scoring function; PP: PPiPP.





Figure S6.2.1. ROC and precision-recall curves for residue-residue predictions (all scores mixed) in DBv5. Sequence-only model is displayed in green. One-step model is displayed in blue. Two-steps model is shown in orange. Area under the curve is shown in parenthesis.



Figure S6.2.2. ROC and precision-recall curves for binding site predictions (all scores mixed) in DBv5. Sequence-only model is displayed in green. One-step model is displayed in blue. Two-steps model is shown in orange. Area under the curve is shown in parenthesis.



Figure S6.2.3. ROC and precision-recall curves for residue-residue predictions (all scores mixed) in DImS. Sequence-only model is displayed in green. One-step model is displayed in blue. Two-steps model is shown in orange. Area under the curve is shown in parenthesis.



Figure S6.2.4. ROC and precision-recall curves for binding site predictions (all scores mixed) in DImS. Sequence-only model is displayed in green. One-step model is displayed in blue. Two-steps model is shown in orange. Area under the curve is shown in parenthesis.





Figure S6.3.1. ROC and precision-recall curves for binding site predictions (all scores mixed) in DBv5 sequence only model. Default approach (our scoring function and sequence window average) is shown in orange. Scoring function and not window average is shown in blue. Maximum as scoring function is shown in green. Area under the curve is shown in parenthesis.



Figure S6.3.2. ROC and precision-recall curves for binding site predictions (all scores mixed) in DBv5 structure-based model. Default approach (our scoring function and sequence window average) is shown in orange. Scoring function and not window average is shown in blue. Maximum as scoring function is shown in green. Area under the curve is shown in parenthesis.



Figure S6.3.3. ROC and precision-recall curves for binding site predictions (all scores mixed) in DImS sequence only model. Default approach (our scoring function and sequence window average) is shown in orange. Scoring function and not window average is shown in blue. Maximum as scoring function is shown in green. Area under the curve is shown in parenthesis.



Figure S6.3.4. ROC and precision-recall curves for binding site predictions (all scores mixed) in DImS structure-based model. Default approach (our scoring function and sequence window average) is shown in orange. Scoring function and not window average is shown in blue. Maximum as scoring function is shown in green. Area under the curve is shown in parenthesis.

#### S6.4. Effect of negative sampling scheme in performance

For training, our method employs negative pairs sampled independently of their accessibility because otherwise, the classifier might be unable to deal with conformational changes (even small ones). For testing we use all possible pairs. We have also tried an alternative sampling criterion in which just accessible negative pairs are considered, obtaining slightly worse results.

| puno u | na a rana                     | onn ou        |                           |                    | 0000010                      | nogunvo           | puno.                     |             |                   |        |        |        |        |        |
|--------|-------------------------------|---------------|---------------------------|--------------------|------------------------------|-------------------|---------------------------|-------------|-------------------|--------|--------|--------|--------|--------|
| Data   | Negative<br>pairs<br>sampling | Input<br>type | Residue-                  | Residue            | Contact                      | Prediction        | Binding Site Prediction   |             |                   |        |        |        |        |        |
|        |                               |               | <b>AUC</b> <sub>ROC</sub> | AUC <sub>ROC</sub> | $\overline{\text{AUC}}_{PR}$ | AUC <sub>PR</sub> | <b>AUC</b> <sub>ROC</sub> | $AUC_{ROC}$ | AUC <sub>PR</sub> | MCC    | PR     | RC     | SPC    | NPV    |
| DBv5   | Sample all                    | Struc         | 0.9052                    | 0.9188             | 0.0642                       | 0.0234            | 0.8235                    | 0.8225      | 0.4104            | 0.3855 | 0.3910 | 0.5585 | 0.8895 | 0.9407 |
|        | Sample<br>accessible          | Struc         | 0.8993                    | 0.9133             | 0.0657                       | 0.0239            | 0.8062                    | 0.8172      | 0.4044            | 0.3792 | 0.4054 | 0.5171 | 0.9037 | 0.9365 |

**Table S6.4.1.** BIPSPI performance on DBv5 when using as negative pairs a random sample of all negative pairs and a random sample of all accessible negative pairs.

#### S6.5. Effect of bound and unbound structures on training

Original DBv5 results were computed using unbound structures for both training and testing. On the contrary, DImS results were obtained using bound structures for both training and testing. We have repeated this last procedure for DBv5, observing, as expected, better performance, probably because conformational changes are not present. Additionally, we have performed a cross-validation using DBv5 bound structures for training and unbound structures for testing. Interestingly, the performance under these circumstances is comparable to the performance when trained on unbound and tested on unbound structures. This suggests that bound data can be used to train our algorithm with almost the same affectivity than unbound data (which may allow for bigger training sets).

**Table S6.5.1.** BIPSPI performance on DBv5 when trained on bound or unbound structures and tested in unbound or bound structures.

| Data | Train/Test<br>state | Input<br>type | Residue<br>Predictio   | -Residu<br>on      | e Conta               | act               | Binding \$                           | Binding Site Prediction |                   |        |        |        |        |        |  |
|------|---------------------|---------------|------------------------|--------------------|-----------------------|-------------------|--------------------------------------|-------------------------|-------------------|--------|--------|--------|--------|--------|--|
|      |                     |               | $\overline{AUC}_{ROC}$ | AUC <sub>ROC</sub> | $\overline{AUC}_{PR}$ | AUC <sub>PR</sub> | $\overline{\text{AUC}}_{\text{ROC}}$ | AUC <sub>ROC</sub>      | AUC <sub>PR</sub> | MCC    | PR     | RC     | SPC    | NPV    |  |
| DBv5 | U/U<br>default      | Struc         | 0.9052                 | 0.9188             | 0.0642                | 0.0234            | 0.8235                               | 0.8225                  | 0.4104            | 0.3855 | 0.3910 | 0.5585 | 0.8895 | 0.9407 |  |

| B/B | Struc | 0.9125 | 0.9278 | 0.0721 | 0.0276 | 0.8277 | 0.8278 | 0.4296 | 0.4004 | 0.3944 | 0.5999 | 0.8791 | 0.9415 |
|-----|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| B/U | Struc | 0.9030 | 0.9192 | 0.0653 | 0.0249 | 0.8229 | 0.8217 | 0.4073 | 0.3855 | 0.3713 | 0.6002 | 0.8737 | 0.9442 |

NOTE: U: unbound; B: Bound

#### S6.6. Effect of different independence criteria on training.

By default, BIPSPI was trained and evaluated using a leave one out procedure over DBv5. However, there is some redundancy in this dataset and thus, we have also studied how this redundancy can produce an overoptimistic view of the performance. To do so, we have performed a leave-one-group-out cross-validation in two different modes:

1) complexes which share a pair of SCOP families are left out together

2) complexes that share any SCOP family are left out together.

Results are displayed in table S.6.7.2. As expected, the default leave-one-out obtains the best performance. However, it is also worth noting that even under the strict conditions of case 2, BIPSPI performance is still close to the original benchmark, which suggest that the original results are not an artefact caused by the Docking Benchmark datasets.

| Data | Out-<br>strategy | Input<br>type | Residue-Residue Contact<br>Prediction |                    |                       | ict               | Binding Site Prediction |                    |                   |        |        |        |        |        |
|------|------------------|---------------|---------------------------------------|--------------------|-----------------------|-------------------|-------------------------|--------------------|-------------------|--------|--------|--------|--------|--------|
|      |                  |               | $\overline{\text{AUC}}_{\text{ROC}}$  | AUC <sub>ROC</sub> | $\overline{AUC}_{PR}$ | AUC <sub>PR</sub> | $\overline{AUC}_{ROC}$  | AUC <sub>ROC</sub> | AUC <sub>PR</sub> | MCC    | PR     | RC     | SPC    | NPV    |
| DBv5 | default          | Struc         | 0.9052                                | 0.9188             | 0.0642                | 0.0234            | 0.8235                  | 0.8225             | 0.4104            | 0.3855 | 0.3910 | 0.5585 | 0.8895 | 0.9407 |
|      | SCOP<br>pairs    | Struc         | 0.8991                                | 0.9169             | 0.0583                | 0.0236            | 0.8012                  | 0.8139             | 0.3959            | 0.3856 | 0.3927 | 0.5564 | 0.8902 | 0.9402 |
|      | SCOP<br>monomer  | Struc         | 0.8933                                | 0.8982             | 0.0480                | 0.0168            | 0.7956                  | 0.8026             | 0.3660            | 0.3554 | 0.3643 | 0.5402 | 0.8789 | 0.9370 |

 Table S6.6.1. BIPSPI performance on DBv5 when trained using different independency criteria.

#### S7. XGBoost model compared to Random Forest model

**Table S7.1.** Performance evaluation for BIPSPI leave-one-out over the sequences and structures compiled in DBv5. XGB stands for Extreme Gradient Boosting Classifier (XGBoost) whereas RF stands for Random Forest.

| Dataset |                     | Classifier | Pairs prediction | Interface prediction |         |           |        |  |
|---------|---------------------|------------|------------------|----------------------|---------|-----------|--------|--|
|         | input type          | Classifier | Mean ROC<br>AUC  | ROC<br>AUC           | MCC     | Precision | Recall |  |
|         | Sequence            | XGB        | 0.8022           | 0.7522               | 0.2791  | 0.3003    | 0.4828 |  |
|         |                     | RF         | 0.7928           | 0.7368               | 0.2626  | 0.2845    | 0.4778 |  |
| DBv5    | Structure           | XGB        | 0.9011           | 0.8154               | 0.3721  | 0.4012    | 0.5079 |  |
|         | Structure (2-steps) | XGB        | 0.9052           | 0.8225               | 0.3855  | 0.3910    | 0.5585 |  |
|         |                     | RF         | 0.8941           | 0.8092               | 0.36456 | 0.3980    | 0.4957 |  |

### S8. Comparison with other methods.

S8.1. Comparison with ECLAIR and several non-partner specific methods.

**Table S8.1.1** Binding site prediction performance of several methods evaluated on benchmark BM90C.Statistics are measured at the threshold that maximizes MCC.

| Web server   | MCC   | TPR   | FPR   | SPC   | PPV   | ACC   |
|--------------|-------|-------|-------|-------|-------|-------|
| BIPSPI       | 0.389 | 0.589 | 0.144 | 0.856 | 0.418 | 0.816 |
| PredUs       | 0.383 | 0.701 | 0.156 | 0.843 | 0.302 | 0.831 |
| eFindSitePPI | 0.375 | 0.396 | 0.045 | 0.954 | 0.459 | 0.905 |
| ECLAIR       | 0.322 | 0.346 | 0.041 | 0.959 | 0.431 | 0.909 |
| con-PPISP    | 0.247 | 0.279 | 0.052 | 0.947 | 0.338 | 0.888 |
| SPPIDER      | 0.173 | 0.340 | 0.125 | 0.875 | 0.208 | 0.827 |
| ProMate      | 0.165 | 0.526 | 0.295 | 0.704 | 0.210 | 0.684 |
| WHISCY       | 0.164 | 0.130 | 0.025 | 0.975 | 0.334 | 0.900 |
| PIER         | 0.118 | 0.066 | 0.012 | 0.987 | 0.342 | 0.906 |
| VORFFIP      | 0.117 | 0.531 | 0.401 | 0.598 | 0.337 | 0.579 |
| PSIVER       | 0.103 | 0.645 | 0.463 | 0.536 | 0.118 | 0.546 |
| InterProSurf | 0.100 | 0.435 | 0.291 | 0.709 | 0.163 | 0.677 |

#### **S8.2.** Comparison with PAIRpred

Table S8.2.1 Rank of the first positive pair (RFPP) for BIPSPI and PAIRpred.

| Dataset/RFPP | method          | 10% | 25% | 50% | 75% | 90% |
|--------------|-----------------|-----|-----|-----|-----|-----|
| DBv3         | Seq PAIRpred    | 2   | 13  | 68  | 257 | 804 |
|              | Seq BIPSPI      | 2   | 9   | 41  | 161 | 817 |
|              | Struct PAIRpred | 1   | 3   | 16  | 103 | 272 |
|              | Struct BIPSPI-1 | 1   | 2   | 11  | 59  | 238 |
|              | Struct BIPSPI   | 1   | 3   | 20  | 117 | 708 |
| DBv4         | Seq PAIRpred    | NA  | NA  | NA  | NA  | NA  |
|              | Seq BIPSPI      | 2   | 9   | 41  | 161 | 817 |
|              | Struct PAIRpred | 1   | 3   | 18  | 101 | 282 |
|              | Struct BIPSPI-1 | 2   | 2   | 13  | 63  | 219 |
|              | Struct BIPSPI   | 1   | 2   | 15  | 100 | 487 |

Table S8.2.2. Precision and recall considering as true contacts the top score pairs for BIPSPI and PAIRpred.

|         |                 | Top 1%    |          | Тор 5%    |          | Тор 10%   |          |
|---------|-----------------|-----------|----------|-----------|----------|-----------|----------|
| Dataset | method          | precision | recall   | precision | recall   | precision | recall   |
| DBv3    | Struct PAIRpred | 0.042335  | 0.165768 | 0.025129  | 0.464619 | 0.017435  | 0.627802 |
|         | Struct BIPSPI-1 | 0.067526  | 0.227849 | 0.032669  | 0.546392 | 0.021015  | 0.697806 |
|         | Struct BIPSPI   | 0.071557  | 0.237622 | 0.032260  | 0.560760 | 0.020264  | 0.712324 |
| DBv4    | Struct PAIRpred | 0.045031  | 0.163094 | 0.032434  | 0.458239 | 0.024240  | 0.623560 |
|         | Struct BIPSPI-1 | 0.070970  | 0.224345 | 0.033533  | 0.535228 | 0.021586  | 0.688209 |
|         | Struct BIPSPI   | 0.073836  | 0.231141 | 0.034843  | 0.548833 | 0.022096  | 0.702792 |



Figure S8.2.1. ROC and precision-recall curves for binding site predictions (all scores mixed) in DBv3. BIPSPI Sequence-only model is displayed in green. BIPSPI structure model 1 step is displayed in blue and 2 steps in orange. PAIRpred-d, green, are PAIRpred original scores (max). PAIRpred-p, red are PAIRpred scores computed with our scoring function. Area under the curve is shown in parenthesis.

#### S9. BIPSPI behaves partner-specific

S9.1. Groups of proteins in DBv5 and DImS sets that interact with several partners.

DBv5 groups of equivalent proteins that interact with different partners: 1: 1BVN \* 1KXQ \* 2: 1TMQ\_\* 1CLV\_A 3: 3DAW\_A 4H03\_A 2BTF\_B 1ATN\_B 1H1V\_B 1Y64\_A 1KXP\_B 4: 1GP2\_\* 2GTP\_A 5: 4CPA\_A 2ABZ\_A 6: 2C0L\_A 3R9A\_A 7: 4M76\_A 1GHQ\_\* 3D5S\_A 8: 1FQ1\_A 1BUH\_\* 9: 2SIC\_\* 2SNI\_A 10: 1R0R\_E BOYV\_A 10YV\_A 11: 2I9B\_A 2FD6\_A 12: 3AAD A BAAD A 13: 1JTD\_A 1JTG\_A 14: 1GL1\_1 1ACB\_B 1CGI\_B 15: 20UL A 1YVB A 16: 1PPE\_\* 1OPH\_A 1D6R\_\* 2UUY\_A 17: 3EO1\_A 1IQD\_A 18: 3HMX\_L 3EOA\_L 1JPS\_L 4G6M\_L 1BJ1\_L 3HI6\_L 19: 1DQJ\_C 1MLC\_A 20: 4FQI\_L 4GXU\_L 21: 2W9E\_L 2FD6\_L 1E6J\_L 22: 1FC2\_A 1FCC\_A 1FCC\_B 1E4K\_A 1E4K\_B 23: 1M10\_\* 1IJK\_\* 24: 1IBR\_A 1A2K\_A 1I2M\_A 1K5D\_A 25: 1FAK\_B 1JPS\_B 1AHW\_A 26: 2H7V\_A 1HE1\_\* 2FJU\_A 1I4D\_\* 1E96\_\* 2NZ8\_A 27: 1J2J\_A 1R8S\_A 28: 3HI6\_A 1MQ8\_A 3EOA\_A 29: 1LFD\_A 1HE8\_\* 1BKD\_A 1WQ1\_D 30: 3H2V\_A 1RKE\_A 31: 3AAD\_A BAAD\_A 32: 4G6J\_A 4G6M\_A 33: 1MLC\_\* 1VFB\_\* 2I25\_A 1DQJ\_\* 1BVK\_\* 34: 1JZD\_A 1Z5Y\_A 35: BOYV\_A 10YV\_A 36: 3G6D\_A 3L5W\_A 37: 1QFW\_B 9QFW\_B 38: CP57\_A BP57\_A 3P57\_A 39: 1F6M\_A 2O8V\_A 40: 1AKJ\_E 1DE4\_B 41: 3P57\_B CP57\_B CP57\_A 3P57\_A BP57\_A BP57\_B 42: 1QFW\_A 9QFW\_A 43: 200B\_A 1S1Q\_A 2AYO\_A 1XD3\_A 44: 4DN4 A 1ML0 \* 45: 1M27\_A 1EFN\_A 46: 3SGQ\_A 1R0R\_I

DImS groups of equivalent proteins that interact with different partners:

1: 1luj\_A 1jdh\_A 2: 1r0r\_E 1cse\_E 3: 1ta3\_A 1te1\_A 4: 1gl1\_B 1acb\_E 5: 2fi4\_E 1f2s\_E 1tgs\_Z 2uuy\_A 2tld\_E 1oph\_B 6: 1nf3\_A 1gzs\_A 7: 4sgb\_E 1sgp\_E 8: 1cxz\_A 1tx4\_B 9: 1e96\_A 1he1\_C 1ds6\_A 10: 1zc3\_A 1uad\_A 11: 2uyz\_A 2grn\_A 12: 1uuz\_D 1sq2\_L 13: 1b6c\_C 3fap\_A 14: 1xd3\_B 2j7q\_D 1wrd\_B 1s1q\_B 2g45\_B 1nbf\_D 15: 1cse\_I 1acb\_I 16: 2fi4\_I 1d0d\_B 17: 1r0r\_I 1sgp\_I

#### S9.2. Specific Partner Specific Scores (SPIS) and Other Partners Interface Scores (OPIS).

Figure S9.2.1 shows how SIPIS and OPIS scores are collected from each group of equivalent proteins that interact with several distinct partners.

|                                                                                                                                       | OPIS                                                                                                                                                                                                                                                                      | SPIS                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At BI CI DI EL PI GI HI II JI<br>A2 B2 C2 D2 $E_2 F_2 G_2$ H2 I2 J2<br>A3 B3 C3 D3 E3 F3 G3 H3 I3 J3<br>A4 B4 C4 D4 E4 F4 G4 H4 I4 J4 | $\begin{array}{c} s(A_1) \ s(F_1) \ s(G_1) \ s(I_1) \ s(J_1) \ s(A_2) \ s(B_2) \\ s(C_2) \ s(D_2) \ s(I_2) \ s(J_2) \ s(J_2) \ s(A_3) \ s(B_3) \ s(C_3) \\ s(D_3) \ s(E_3) \ s(F_3) \ s(G_3) \ s(C_4) \ s(D_4) \ s(E_4) \\ s(F_4) \ s(G_4) \ s(I_4) \ s(J_4) \end{array}$ | <mark>s(B<sub>1</sub>) s(C<sub>1</sub>) s(D<sub>1</sub>) s(E<sub>1</sub>)<br/>s(E<sub>2</sub>) s(F<sub>2</sub>) s(G<sub>2</sub>) s(I<sub>3</sub>)<br/>s(J<sub>3</sub>) s(A<sub>4</sub>) s(B<sub>4</sub>)</mark> |

Figure S9.2.1 Collection of scores for distribution comparison. In this example, there is one group of equivalent proteins whose aligned sequence is ABCDEFGHIJ. Each of these equivalent proteins interacts with a different partner, binding sites are highlighted in yellow, blue, green and red for proteins 1,2,3 and 4, respectively. Scores of specific interface residues are considered for Specific Partner Interface Score (SPIS) distribution. On the other hand, scores for residues that do not belong to its particular interface but they align to residues that belong to the interface of other group members are included in Other Partners Interface Scores (OPIS). Thus, for instance, from protein 1, scores of residues Ar, F1, G1, I1, and J1 are included in OPIS and scores from residues B1, C1, D1 and E1 are included in SPIS. Score of residue X of protein N is denoted as  $s(X_N)$ .

# S9.3. Box plots of Specific Partner Specific Scores (SPIS) and Other Partners Interface Scores (OPIS) distributions



Figure S9.3.1. Distribution of Specific Partner Interface Scores (SPIS) and Other Partners Interface Scores (OPIS). Left, distributions for DBv5; right, distributions for DImS dataset.

#### S10. Use case PCKS9-PCKS9 & PCKS9-Adnectin

#### S10.1. Predictions happen to be spatially close to protein active site.

We have employed 3DBIONOTES <u>https://3dbionotes.cnb.csic.es</u> to locate the active site of protein PCKS9. In Figure S10.1.1, residues that belong to the active site are coloured in orange. Prediction of binding sites obtained by BIPSPI are spatially close to the active site. These results are remarkable because Adnectin is known to bind to PCKS9 near the active site (Mitchell *et al.*, 2014) and also PCKS9 self-association is known to happen at the active site (Fan *et al.*, 2008).



Figure S10.1.1. BIPSPI interface residue predictions for the PCKS9-PCKS9 interaction and for the PCKS9-Adnectin. Chain D (green) and chain E (grey) are PCKS9. Chain G (magenta) is PCSK9-binding adnectin. Just top four highest score predictions are displayed for each interface prediction. Active site is displayed in orange spheres.

#### S10.2. Comparison with non-partner-specific methods.

We have run SPPIDER (Porollo and Meller, 2007) and ISPRED4 (Savojardo *et al.*, 2017), two non-partnerspecific binding site predictors, on the chain B of the pdb 40v6 in order to compare its predictions with results obtained with BIPSPI. Figure S10.2.1 shows how BIPSPI predictions exhibit partner-specificity, heat map prediction scores displayed in A, B figure-sections are different, and higher scored residues are in contact with their associated partners. On the contrary, predictions obtained with ISPRED4 and SPPIDER (C and D figure-sections) cover both interfaces. Finally, it is worth noting that BIPSIPI tends to predict fewer residues as being part of the interface (most of the residues of the protein are assigned low scores, approximately two order of magnitude smaller than the maximum scores) that other methods. This behaviour is caused by the proposed scoring function (see Main Text Section 2.5) that over represents the residues whose pairs are at the beginning of the pairs prediction list. As a result, smaller but more precise patches are expected as predictions.



Figure S10.2.1. (A) BIPSPI interface predictions for the interface of PCKS9 chain E and PCKS9 chain D (green ribbon). Normalized (blue minimum, red maximum) scores for all residues are displayed. (B) BIPSPI interface predictions for the interface of PCKS9 chain E and adnectin chain G (magenta ribbon). Normalized (blue minimum, red maximum) scores for all residues are displayed. (C) ISPRED4 binding site predictions for the protein PCKS9 chain E. Red, residue predicted as binding site (score above its recommended threshold); green, non-accessible residue; blue, accessible but not binding site. (D) SPPIDER binding site predictions for the protein PCKS9 chain E. Red, residue-predicted as binding site (score above its recommended threshold); blue, residue predicted as not binding site.

#### S11. Use case SHR-JACKDAW & SHR-SCR

In this section, we provide another example of how BIPSPI can drive to partner-specific binding site predictions even when those are not fully accurate. PDB entry 5b3h contains the structure of the heterocomplex that is constituted by proteins JACKDAW/IDD10, SHORT-ROOT (SHR) and SCARECROW (SCR). This complex is involved in the regulation of asymmetric cell division and patterning of the root cell types in *Arabidopsis* (Hirano *et al.*, 2017). Specifically, SHR and SCR are responsible for the transcriptional control of the process and to effectively function, they need the cooperation of BIRD/INDETERMINATE DOMAIN (IDD) transcription factors, being JACKDAW/IDD10 one of such proteins (Hirano *et al.*, 2017).

Figure S11.1 displays BIPSPI predictions for the interface of the SHR-JACKDAWN and SHR-SCR interactions. In this case, some of the residues at the interface of SHR-SCR were successfully located, achieving high precision (e.g. 100% for the first 4 residues). BIPSPI was also able to identify residues at the interface of SHR-JACKDAWN, and although the partner-specificity in this example is not perfect, it is still not negligible, as the native binding site residue predicted values have a higher average score than the second predicted patch. Moreover, the precision obtained for these predictions was also high, 75% for the first four residues.

As it was done in Section S10.2, we have also run SPPIDER and ISPRED4 on the same proteins (see Figure S11.2). Again, both SPPIDER and ISPRED4 predictions cover the binding site of both interfaces. As a consequence, the precision of their results is lower than the ones obtained by BIPSPI. This is especially true for the SHR-SC interface and, although BIPSPI predictions for the SHR-JACKDAWN interface are not fully perfect, the precision achieved by BIPSPI is higher than the obtained with other methods.



Figure S11.1. BIPSPI interface predictions for the proteins included in pdb 5b3h bioassembly number 1. Chain A (green) is SCR, chain B (grey/heat map) is SHR and Chain C (magenta) is JACKDAW. (A) Predictions for SHR (chain B) interface with partner SCR

(chain A) Normalized (blue minimum, red maximum) scores for all residues are displayed. (B) Normalized scores (minimum blue, maximum red) for SHR (chain B) interface with partner JACKDAW (chain C). Normalized (blue minimum, red maximum) scores for all residues are displayed. (C) Top four highest score predictions for SHR-SCR interaction are coloured as green lemon and cyan. Cyan residue was predicted as binding site for both interfaces, being in this case a true positive. The top four highest score predictions for the SHR-JACKDAW interface are coloured in light pink and cyan. For this interface, the cyan residue represents a false positive. (D) Top four highest score predictions of JACKDAW (chain C) interface with SHR (chain B) are shown as light pink spheres and the top four highest score prediction of interface of SCR (chain A) with partner SHR (chain B) are displayed as green lemon spheres.



Figure S11.2. (A) BIPSPI interface predictions for the interface of SHR (chain B) and SCR (chain A). Normalized (blue minimum, red maximum) scores for all residues are displayed. (B) BIPSPI interface predictions for the interface of SHR (chain B) and JACKDAW (chain C). Normalized (blue minimum, red maximum) scores for all residues are displayed. (C) ISPRED4 binding site predictions for the protein SHR (chain B). Red, residue-predicted as binding site (score above its recommended threshold); green, non-accessible residue; blue, accessible but not binding site. (D) SPPIDER binding site predictions for the protein SHR (chain B). Red, residue-predicted as binding site predicted as not binding site.

#### S12. Results per complex

**Table S12.1** DBv5 complexes and its performance results at complex level using structure-based model.

 Precision and recall calculated at threshold that maximizes MCC.

| PDB  | ROC-auc RRCP | ROC-auc BS | MCC BS | Precision BS | Recall BS |
|------|--------------|------------|--------|--------------|-----------|
| 1A2K | 0.9721       | 0.9112     | 0.4813 | 0.3617       | 0.8293    |
| 1ACB | 0.9867       | 0.952      | 0.6268 | 0.5714       | 0.8727    |
| 1AHW | 0.9819       | 0.8828     | 0.4784 | 0.4273       | 0.7015    |
| 1AK4 | 0.9099       | 0.8189     | 0.3161 | 0.2449       | 0.75      |
| 1AKJ | 0.8597       | 0.6219     | 0.1611 | 0.2651       | 0.2821    |

| 1ATN | 0.6852 | 0.5485 | 0.0483  | 0.1209 | 0.2    |
|------|--------|--------|---------|--------|--------|
| 1AVX | 0.8767 | 0.8051 | 0.2568  | 0.3418 | 0.4426 |
| 1AY7 | 0.9761 | 0.9173 | 0.5431  | 0.5    | 0.9048 |
| 1AZS | 0.9868 | 0.8882 | 0.517   | 0.425  | 0.7556 |
| 1B6C | 0.956  | 0.8926 | 0.4212  | 0.4286 | 0.6    |
| 1BGX | 0.8734 | 0.5503 | 0.0752  | 0.25   | 0.1141 |
| 1BJ1 | 0.9752 | 0.8966 | 0.4582  | 0.3824 | 0.7091 |
| 1BKD | 0.9485 | 0.8383 | 0.3416  | 0.4778 | 0.4175 |
| 1BUH | 0.954  | 0.8957 | 0.4877  | 0.3974 | 0.7949 |
| 1BVK | 0.9832 | 0.9305 | 0.5448  | 0.4535 | 0.8478 |
| 1BVN | 0.9756 | 0.9501 | 0.6216  | 0.6494 | 0.6944 |
| 1CGI | 0.9695 | 0.9399 | 0.6706  | 0.6747 | 0.8358 |
| 1CLV | 0.9535 | 0.9724 | 0.7655  | 0.7273 | 0.875  |
| 1D6R | 0.9677 | 0.923  | 0.6258  | 0.6026 | 0.8393 |
| 1DE4 | 0.8856 | 0.6617 | 0.1272  | 0.1461 | 0.194  |
| 1DFJ | 0.8986 | 0.7457 | 0.2288  | 0.3626 | 0.3438 |
| 1DQJ | 0.9714 | 0.9066 | 0.4662  | 0.4578 | 0.623  |
| 1E4K | 0.8961 | 0.7269 | 0.3039  | 0.2935 | 0.5094 |
| 1E6E | 0.9369 | 0.7823 | 0.3881  | 0.4    | 0.5263 |
| 1E6J | 0.9801 | 0.9547 | 0.5093  | 0.3721 | 0.8421 |
| 1E96 | 0.8844 | 0.8018 | 0.4198  | 0.375  | 0.675  |
| 1EAW | 0.9686 | 0.9211 | 0.6049  | 0.6456 | 0.7612 |
| 1EER | 0.9517 | 0.9168 | 0.5796  | 0.7284 | 0.5728 |
| 1EFN | 0.8645 | 0.8451 | 0.3809  | 0.3165 | 0.9259 |
| 1EWY | 0.8612 | 0.83   | 0.2959  | 0.321  | 0.52   |
| 1EXB | 0.9174 | 0.6287 | 0.1614  | 0.2245 | 0.2037 |
| 1EZU | 0.9297 | 0.8258 | 0.5047  | 0.6154 | 0.5581 |
| 1F34 | 0.746  | 0.6239 | 0.1242  | 0.2778 | 0.3049 |
| 1F51 | 0.9475 | 0.858  | 0.3969  | 0.4935 | 0.5    |
| 1F6M | 0.9171 | 0.793  | 0.319   | 0.3736 | 0.5231 |
| 1FAK | 0.734  | 0.5296 | -0.0905 | 0.0395 | 0.0732 |
| 1FC2 | 0.8885 | 0.8718 | 0.4455  | 0.3827 | 0.8158 |
| 1FCC | 0.863  | 0.7879 | 0.2976  | 0.2658 | 0.5385 |
| 1FFW | 0.8651 | 0.7642 | 0.3515  | 0.3553 | 0.75   |
| 1FLE | 0.9601 | 0.9277 | 0.5935  | 0.561  | 0.8364 |
| 1FQ1 | 0.9754 | 0.9171 | 0.4879  | 0.4217 | 0.7292 |
| 1FQJ | 0.9785 | 0.9449 | 0.625   | 0.5833 | 0.7925 |
| 1FSK | 0.9741 | 0.9014 | 0.5197  | 0.4706 | 0.7018 |
| 1GCQ | 0.634  | 0.6395 | 0.1579  | 0.3371 | 0.8333 |
| 1GHQ | 0.7321 | 0.5303 | 0.0869  | 0.099  | 0.3846 |
| 1GL1 | 0.9736 | 0.9745 | 0.7258  | 0.6582 | 0.9455 |
| 1GLA | 0.8727 | 0.7574 | 0.3512  | 0.3026 | 0.5476 |
| 1GP2 | 0.9849 | 0.937  | 0.5441  | 0.4524 | 0.76   |
| 1GPW | 0.9373 | 0.7855 | 0.2698  | 0.3659 | 0.4225 |
| 1GRN | 0.9553 | 0.8802 | 0.5318  | 0.55   | 0.6984 |

| 1GXD | 0.8191 | 0.7687 | 0.205  | 0.2043 | 0.3654 |
|------|--------|--------|--------|--------|--------|
| 1H1V | 0.8676 | 0.6937 | 0.2469 | 0.2989 | 0.3714 |
| 1H9D | 0.8455 | 0.7485 | 0.3314 | 0.4941 | 0.6087 |
| 1HCF | 0.9262 | 0.8713 | 0.4263 | 0.3537 | 0.7838 |
| 1HE1 | 0.933  | 0.869  | 0.5348 | 0.5584 | 0.7288 |
| 1HE8 | 0.9124 | 0.6978 | 0.2097 | 0.1791 | 0.3529 |
| 1HIA | 0.9685 | 0.9485 | 0.6416 | 0.6351 | 0.8246 |
| 1I2M | 0.9606 | 0.9103 | 0.5361 | 0.6092 | 0.6092 |
| 1I4D | 0.8231 | 0.6027 | 0.0728 | 0.1515 | 0.2632 |
| 119R | 0.9735 | 0.8458 | 0.2984 | 0.2812 | 0.4576 |
| 1IB1 | 0.9253 | 0.796  | 0.2768 | 0.303  | 0.4545 |
| 1IBR | 0.8714 | 0.7323 | 0.2494 | 0.4302 | 0.3217 |
| 1IJK | 0.8638 | 0.6941 | 0.1841 | 0.2118 | 0.4091 |
| 1IQD | 0.9884 | 0.9501 | 0.6103 | 0.5976 | 0.7313 |
| 1IRA | 0.7552 | 0.6633 | 0.2516 | 0.4494 | 0.3774 |
| 1J2J | 0.9617 | 0.9209 | 0.5511 | 0.4429 | 0.9394 |
| 1JIW | 0.9499 | 0.9028 | 0.4971 | 0.407  | 0.7447 |
| 1JK9 | 0.9752 | 0.9315 | 0.5901 | 0.5584 | 0.7818 |
| 1JMO | 0.949  | 0.8719 | 0.4104 | 0.3933 | 0.5738 |
| 1JPS | 0.9783 | 0.8998 | 0.4979 | 0.4731 | 0.6667 |
| 1JTD | 0.9731 | 0.8924 | 0.5628 | 0.5408 | 0.7361 |
| 1JTG | 0.9391 | 0.8289 | 0.4322 | 0.5455 | 0.5517 |
| 1JWH | 0.953  | 0.8211 | 0.3538 | 0.3012 | 0.5556 |
| 1JZD | 0.9007 | 0.8082 | 0.5975 | 0.6197 | 0.6769 |
| 1K4C | 0.9809 | 0.9547 | 0.6186 | 0.4884 | 0.8936 |
| 1K5D | 0.9758 | 0.8895 | 0.5277 | 0.5556 | 0.6395 |
| 1K74 | 0.9603 | 0.869  | 0.4979 | 0.5125 | 0.6308 |
| 1KAC | 0.7108 | 0.6381 | 0.1219 | 0.24   | 0.3673 |
| 1KKL | 0.9137 | 0.6984 | 0.1776 | 0.1895 | 0.4    |
| 1KLU | 0.9094 | 0.8317 | 0.2629 | 0.2208 | 0.4857 |
| 1KTZ | 0.9425 | 0.8544 | 0.3986 | 0.321  | 0.8966 |
| 1KXP | 0.9227 | 0.7208 | 0.1925 | 0.3218 | 0.2642 |
| 1KXQ | 0.9266 | 0.8345 | 0.3842 | 0.4545 | 0.4667 |
| 1LFD | 0.9298 | 0.8829 | 0.4921 | 0.3836 | 0.875  |
| 1M10 | 0.8104 | 0.6459 | 0.1695 | 0.2812 | 0.3649 |
| 1M27 | 0.8443 | 0.7495 | 0.371  | 0.2593 | 0.9545 |
| 1MAH | 0.9529 | 0.8951 | 0.4785 | 0.5067 | 0.5758 |
| 1ML0 | 0.8408 | 0.8391 | 0.3537 | 0.3474 | 0.5    |
| 1MLC | 0.9532 | 0.8712 | 0.2796 | 0.2692 | 0.4667 |
| 1MQ8 | 0.9463 | 0.8529 | 0.4542 | 0.3953 | 0.7556 |
| 1N2C | 0.9862 | 0.8244 | 0.3716 | 0.466  | 0.3453 |
| 1NCA | 0.9742 | 0.8465 | 0.3164 | 0.3297 | 0.4412 |
| 1NSN | 0.975  | 0.9116 | 0.5236 | 0.4554 | 0.7727 |
| 1NW9 | 0.8386 | 0.7345 | 0.1557 | 0.2527 | 0.4423 |
| 10C0 | 0.68   | 0.6713 | 0.182  | 0.2024 | 0.4359 |

| 10FU | 0.9168 | 0.7516 | 0.1919 | 0.2069 | 0.3913 |
|------|--------|--------|--------|--------|--------|
| 10PH | 0.9917 | 0.9428 | 0.537  | 0.3951 | 0.8421 |
| 10YV | 0.8884 | 0.7919 | 0.4291 | 0.5616 | 0.5256 |
| 1PPE | 0.9786 | 0.9816 | 0.7682 | 0.7089 | 0.9655 |
| 1PVH | 0.9815 | 0.9307 | 0.4504 | 0.3095 | 0.8667 |
| 1PXV | 0.7879 | 0.7273 | 0.3644 | 0.5062 | 0.5694 |
| 1QA9 | 0.7378 | 0.6539 | 0.1808 | 0.3077 | 0.5854 |
| 1QFW | 0.8882 | 0.8169 | 0.2551 | 0.3194 | 0.4182 |
| 1R0R | 0.985  | 0.9737 | 0.6928 | 0.5949 | 0.94   |
| 1R6Q | 0.671  | 0.5947 | 0.0039 | 0.2338 | 0.3396 |
| 1R8S | 0.9578 | 0.9122 | 0.5982 | 0.6795 | 0.6974 |
| 1RKE | 0.8051 | 0.6892 | 0.2684 | 0.3908 | 0.4416 |
| 1RLB | 0.888  | 0.724  | 0.2419 | 0.2234 | 0.4565 |
| 1RV6 | 0.9035 | 0.8154 | 0.3645 | 0.4    | 0.6538 |
| 1S1Q | 0.8767 | 0.8679 | 0.45   | 0.4268 | 0.8333 |
| 1SBB | 0.9416 | 0.8199 | 0.323  | 0.25   | 0.6389 |
| 1SYX | 0.8021 | 0.6492 | 0.163  | 0.2812 | 0.6585 |
| 1T6B | 0.8274 | 0.7529 | 0.2977 | 0.3034 | 0.4286 |
| 1TMQ | 0.9746 | 0.934  | 0.5735 | 0.5854 | 0.6761 |
| 1UDI | 0.9728 | 0.9541 | 0.736  | 0.7342 | 0.8657 |
| 1US7 | 0.7831 | 0.6554 | 0.0732 | 0.1667 | 0.3721 |
| 1VFB | 0.9851 | 0.9242 | 0.5062 | 0.4419 | 0.7917 |
| 1WDW | 0.9845 | 0.9193 | 0.5347 | 0.5814 | 0.5682 |
| 1WEJ | 0.9597 | 0.8909 | 0.3723 | 0.3196 | 0.6327 |
| 1WQ1 | 0.9521 | 0.9114 | 0.6396 | 0.7532 | 0.6517 |
| 1XD3 | 0.9763 | 0.938  | 0.5754 | 0.4861 | 0.875  |
| 1XQS | 0.829  | 0.7384 | 0.21   | 0.3333 | 0.375  |
| 1XU1 | 0.8619 | 0.8278 | 0.3566 | 0.3529 | 0.5769 |
| 1Y64 | 0.8821 | 0.6353 | 0.1514 | 0.2474 | 0.2637 |
| 1YVB | 0.9711 | 0.9322 | 0.5495 | 0.4505 | 0.8723 |
| 1Z0K | 0.9463 | 0.9307 | 0.5206 | 0.4267 | 0.9143 |
| 1Z5Y | 0.9682 | 0.9205 | 0.6558 | 0.5833 | 0.913  |
| 1ZHH | 0.9025 | 0.7615 | 0.1869 | 0.2174 | 0.3846 |
| 1ZHI | 0.8732 | 0.7111 | 0.2161 | 0.2609 | 0.5455 |
| 1ZLI | 0.7504 | 0.8132 | 0.449  | 0.4951 | 0.7286 |
| 1ZM4 | 0.9013 | 0.7832 | 0.3143 | 0.2784 | 0.4737 |
| 2A1A | 0.9626 | 0.8854 | 0.4223 | 0.325  | 0.7429 |
| 2A5T | 0.897  | 0.783  | 0.2651 | 0.3182 | 0.4242 |
| 2A9K | 0.7985 | 0.6833 | 0.1532 | 0.2603 | 0.3455 |
| 2ABZ | 0.965  | 0.9317 | 0.567  | 0.5    | 0.8125 |
| 2AJF | 0.8163 | 0.6178 | 0.0627 | 0.1235 | 0.1724 |
| 2AYO | 0.8697 | 0.8069 | 0.3624 | 0.4756 | 0.5    |
| 2B42 | 0.9127 | 0.7688 | 0.4215 | 0.5222 | 0.5165 |
| 2B4J | 0.8583 | 0.6296 | 0.2076 | 0.2169 | 0.5    |
| 2BTF | 0.8823 | 0.7957 | 0.2855 | 0.3412 | 0.4531 |

| 2C0L | 0.7916 | 0.7408 | 0.2526  | 0.3662 | 0.3939 |
|------|--------|--------|---------|--------|--------|
| 2CFH | 0.9453 | 0.8953 | 0.5845  | 0.6622 | 0.7101 |
| 2FD6 | 0.9777 | 0.9013 | 0.3495  | 0.2581 | 0.6316 |
| 2FJU | 0.9309 | 0.6041 | 0.0918  | 0.0989 | 0.2368 |
| 2G77 | 0.9793 | 0.9463 | 0.6775  | 0.7037 | 0.76   |
| 2GAF | 0.7566 | 0.5639 | 0.02    | 0.1625 | 0.1262 |
| 2GTP | 0.9873 | 0.9598 | 0.7222  | 0.6522 | 0.8824 |
| 2H7V | 0.9603 | 0.8504 | 0.2697  | 0.2551 | 0.5556 |
| 2HLE | 0.9063 | 0.8731 | 0.497   | 0.5844 | 0.6429 |
| 2HMI | 0.9893 | 0.8841 | 0.3133  | 0.2283 | 0.5122 |
| 2HQS | 0.9327 | 0.8078 | 0.4143  | 0.5063 | 0.5063 |
| 2HRK | 0.9708 | 0.9324 | 0.5986  | 0.5185 | 0.8936 |
| 2125 | 0.9008 | 0.7526 | 0.239   | 0.3222 | 0.6042 |
| 219B | 0.89   | 0.6938 | 0.247   | 0.4091 | 0.4286 |
| 2IDO | 0.7518 | 0.7241 | 0.2359  | 0.3218 | 0.5957 |
| 2J0T | 0.8824 | 0.8991 | 0.5351  | 0.506  | 0.8077 |
| 2J7P | 0.9821 | 0.9301 | 0.6085  | 0.6413 | 0.7024 |
| 2JEL | 0.9329 | 0.9112 | 0.4038  | 0.3929 | 0.5893 |
| 2MTA | 0.953  | 0.8492 | 0.2953  | 0.3188 | 0.4231 |
| 2NZ8 | 0.9584 | 0.8823 | 0.5093  | 0.6    | 0.5926 |
| 2O3B | 0.9196 | 0.7975 | 0.3374  | 0.3617 | 0.5965 |
| 208V | 0.9532 | 0.8668 | 0.3319  | 0.2152 | 0.7727 |
| 200B | 0.6104 | 0.7156 | 0.2762  | 0.2821 | 0.9565 |
| 200R | 0.9682 | 0.886  | 0.4303  | 0.4078 | 0.5753 |
| 2OT3 | 0.962  | 0.9047 | 0.5747  | 0.6234 | 0.6857 |
| 20UL | 0.9844 | 0.9584 | 0.7007  | 0.7403 | 0.7917 |
| 20ZA | 0.8733 | 0.7835 | 0.3641  | 0.4138 | 0.4865 |
| 2PCC | 0.9287 | 0.8282 | 0.3166  | 0.2683 | 0.6111 |
| 2SIC | 0.9841 | 0.9428 | 0.563   | 0.5    | 0.8182 |
| 2SNI | 0.9912 | 0.9738 | 0.7223  | 0.6711 | 0.8947 |
| 2UUY | 0.9814 | 0.9248 | 0.5558  | 0.5195 | 0.8163 |
| 2VDB | 0.7745 | 0.7476 | 0.2165  | 0.2258 | 0.4038 |
| 2VIS | 0.9856 | 0.9068 | 0.4275  | 0.3488 | 0.6522 |
| 2VXT | 0.9758 | 0.9056 | 0.5211  | 0.4842 | 0.7077 |
| 2W9E | 0.9612 | 0.913  | 0.5188  | 0.4526 | 0.7544 |
| 2X9A | 0.5562 | 0.4718 | -0.0379 | 0.3171 | 0.52   |
| 2YVJ | 0.9373 | 0.8186 | 0.3371  | 0.321  | 0.5417 |
| 2Z0E | 0.9389 | 0.8706 | 0.4437  | 0.5055 | 0.6053 |
| 3A4S | 0.9363 | 0.7842 | 0.2797  | 0.2708 | 0.7647 |
| 3AAA | 0.8852 | 0.8364 | 0.4112  | 0.3976 | 0.569  |
| 3AAD | 0.7707 | 0.6918 | 0.1927  | 0.25   | 0.4231 |
| 3BIW | 0.8082 | 0.621  | 0.1367  | 0.15   | 0.2857 |
| 3BP8 | 0.6752 | 0.4709 | 0.1108  | 0.1282 | 0.2381 |
| 3BX7 | 0.8405 | 0.7882 | 0.4602  | 0.5542 | 0.6571 |
| 3CPH | 0.9785 | 0.943  | 0.5669  | 0.4588 | 0.8125 |

| 3D5S | 0.6335 | 0.6364 | 0.1493  | 0.2235 | 0.4043 |
|------|--------|--------|---------|--------|--------|
| 3DAW | 0.9688 | 0.9216 | 0.58    | 0.6765 | 0.6053 |
| 3EO1 | 0.9768 | 0.8729 | 0.4531  | 0.3654 | 0.717  |
| 3EOA | 0.9723 | 0.9104 | 0.4133  | 0.3649 | 0.6    |
| 3F1P | 0.8728 | 0.7772 | 0.3567  | 0.4607 | 0.6949 |
| 3FN1 | 0.6836 | 0.5828 | 0.1251  | 0.3226 | 0.4762 |
| 3G6D | 0.9777 | 0.9441 | 0.5464  | 0.4667 | 0.7778 |
| 3H11 | 0.9627 | 0.9384 | 0.6205  | 0.6914 | 0.6914 |
| 3H2V | 0.7543 | 0.6001 | -0.0044 | 0.1461 | 0.3939 |
| 3HI6 | 0.9776 | 0.9229 | 0.5386  | 0.4889 | 0.7213 |
| ЗНМХ | 0.9814 | 0.8562 | 0.4358  | 0.4022 | 0.5873 |
| 3K75 | 0.7977 | 0.6554 | 0.0464  | 0.1429 | 0.2667 |
| 3L5W | 0.9887 | 0.9634 | 0.5601  | 0.3696 | 0.9714 |
| 3L89 | 0.8237 | 0.6377 | 0.1259  | 0.2062 | 0.2703 |
| 3LVK | 0.9209 | 0.8507 | 0.3016  | 0.2588 | 0.4783 |
| 3MXW | 0.9776 | 0.898  | 0.421   | 0.3846 | 0.625  |
| 3P57 | 0.9112 | 0.8561 | 0.3496  | 0.3239 | 0.6571 |
| 3PC8 | 0.9408 | 0.8646 | 0.3866  | 0.3704 | 0.8571 |
| 3R9A | 0.9455 | 0.7921 | 0.2363  | 0.2258 | 0.3684 |
| 3RVW | 0.9841 | 0.9256 | 0.4942  | 0.3864 | 0.7556 |
| 3S9D | 0.9197 | 0.7803 | 0.3491  | 0.4024 | 0.6    |
| 3SGQ | 0.9569 | 0.9369 | 0.574   | 0.4615 | 0.9474 |
| 3SZK | 0.8213 | 0.5982 | 0.0829  | 0.16   | 0.2791 |
| 3V6Z | 0.961  | 0.873  | 0.3791  | 0.3673 | 0.5806 |
| 3VLB | 0.9542 | 0.8506 | 0.4524  | 0.4945 | 0.5625 |
| 4CPA | 0.9785 | 0.9389 | 0.5084  | 0.4125 | 0.825  |
| 4DN4 | 0.9864 | 0.965  | 0.5414  | 0.3656 | 0.9444 |
| 4FQI | 0.9534 | 0.5922 | 0.1541  | 0.134  | 0.2549 |
| 4FZA | 0.8759 | 0.64   | 0.3053  | 0.3171 | 0.4727 |
| 4G6J | 0.9719 | 0.887  | 0.4097  | 0.4157 | 0.5692 |
| 4G6M | 0.9613 | 0.8865 | 0.3369  | 0.3333 | 0.5179 |
| 4GAM | 0.8651 | 0.8076 | 0.3688  | 0.5851 | 0.2806 |
| 4GXU | 0.9687 | 0.6859 | 0.1459  | 0.1707 | 0.1918 |
| 4H03 | 0.8832 | 0.5509 | 0.1447  | 0.1842 | 0.2545 |
| 4HX3 | 0.7687 | 0.5971 | 0.1725  | 0.32   | 0.3582 |
| 4IZ7 | 0.8316 | 0.775  | 0.3029  | 0.2474 | 0.6316 |
| 4JCV | 0.9459 | 0.8434 | 0.1939  | 0.2151 | 0.3077 |
| 4LW4 | 0.9838 | 0.9434 | 0.5097  | 0.4375 | 0.6731 |
| 4M76 | 0.806  | 0.6101 | 0.1621  | 0.1683 | 0.4359 |
| 7CEI | 0.9153 | 0.7729 | 0.2917  | 0.3587 | 0.7021 |
| 9QFW | 0.9441 | 0.8583 | 0.3602  | 0.358  | 0.58   |
| BAAD | 0.6598 | 0.5539 | 0.1917  | 0.2444 | 0.4314 |
| BOYV | 0.8678 | 0.8174 | 0.4331  | 0.382  | 0.7234 |
| BP57 | 0.9412 | 0.8497 | 0.4042  | 0.3333 | 0.75   |
| CP57 | 0.9285 | 0.8676 | 0.3677  | 0.3023 | 0.7647 |

| mean | 0.9052 | 0.8135 | 0.3778 | 0.3903 | 0.5958 |
|------|--------|--------|--------|--------|--------|
|------|--------|--------|--------|--------|--------|

**Table S12.2** DBv5 complexes and its performance results at complex level using sequence-based model.

 Precision and recall calculated at threshold that maximizes MCC.

| PDB  | ROC-auc RRCP | <b>ROC-auc BS</b> | MCC BS  | Precision BS | Recall BS |
|------|--------------|-------------------|---------|--------------|-----------|
| 1A2K | 0.7975       | 0.7253            | 0.1471  | 0.1652       | 0.4634    |
| 1ACB | 0.9775       | 0.9124            | 0.5312  | 0.4842       | 0.8364    |
| 1AHW | 0.974        | 0.8892            | 0.4383  | 0.4158       | 0.6269    |
| 1AK4 | 0.7981       | 0.6791            | 0.085   | 0.1389       | 0.4688    |
| 1AKJ | 0.753        | 0.6389            | 0.2237  | 0.297        | 0.3846    |
| 1ATN | 0.5684       | 0.5596            | 0.0882  | 0.1382       | 0.3091    |
| 1AVX | 0.934        | 0.7803            | 0.2815  | 0.3158       | 0.5902    |
| 1AY7 | 0.8889       | 0.8036            | 0.3567  | 0.3763       | 0.8333    |
| 1AZS | 0.7121       | 0.6332            | 0.0384  | 0.1059       | 0.2       |
| 1B6C | 0.7562       | 0.6791            | 0.1138  | 0.1897       | 0.4       |
| 1BGX | 0.8257       | 0.5698            | 0.1147  | 0.2783       | 0.1739    |
| 1BJ1 | 0.9715       | 0.8777            | 0.3921  | 0.3095       | 0.7091    |
| 1BKD | 0.8388       | 0.7023            | 0.2843  | 0.4167       | 0.3883    |
| 1BUH | 0.8289       | 0.7971            | 0.3163  | 0.2737       | 0.6667    |
| 1BVK | 0.9908       | 0.9321            | 0.5597  | 0.43         | 0.9348    |
| 1BVN | 0.9465       | 0.9081            | 0.5645  | 0.5543       | 0.7083    |
| 1CGI | 0.9666       | 0.907             | 0.5763  | 0.5729       | 0.8209    |
| 1CLV | 0.9396       | 0.9468            | 0.6992  | 0.6753       | 0.8125    |
| 1D6R | 0.9604       | 0.9008            | 0.5135  | 0.4796       | 0.8393    |
| 1DE4 | 0.5251       | 0.3449            | -0.0428 | 0.0092       | 0.0149    |
| 1DFJ | 0.8013       | 0.6493            | 0.2224  | 0.3364       | 0.3854    |
| 1DQJ | 0.9754       | 0.9143            | 0.5282  | 0.4646       | 0.7541    |
| 1E4K | 0.7319       | 0.7216            | 0.2722  | 0.2596       | 0.5094    |
| 1E6E | 0.7996       | 0.6885            | 0.1495  | 0.2021       | 0.3333    |
| 1E6J | 0.9695       | 0.9381            | 0.5359  | 0.36         | 0.9474    |
| 1E96 | 0.7913       | 0.6632            | 0.2397  | 0.2232       | 0.625     |
| 1EAW | 0.9441       | 0.9049            | 0.4693  | 0.5161       | 0.7164    |
| 1EER | 0.8211       | 0.7558            | 0.2901  | 0.4035       | 0.4466    |
| 1EFN | 0.8129       | 0.7706            | 0.2731  | 0.2368       | 1         |
| 1EWY | 0.7325       | 0.7322            | 0.2207  | 0.2455       | 0.54      |
| 1EXB | 0.7104       | 0.473             | -0.0307 | 0.037        | 0.037     |
| 1EZU | 0.8695       | 0.6718            | 0.2609  | 0.3243       | 0.5581    |
| 1F34 | 0.6679       | 0.6165            | 0.151   | 0.2797       | 0.4024    |
| 1F51 | 0.7809       | 0.7338            | 0.3052  | 0.3977       | 0.4605    |
| 1F6M | 0.845        | 0.6657            | 0.1472  | 0.2526       | 0.3692    |
| 1FAK | 0.6315       | 0.5148            | -0.0348 | 0.0784       | 0.1951    |
| 1FC2 | 0.8182       | 0.8189            | 0.3652  | 0.3295       | 0.7632    |
| 1FCC | 0.7831       | 0.7675            | 0.3409  | 0.2596       | 0.6923    |
| 1FFW | 0.5723       | 0.6546            | 0.1958  | 0.2667       | 0.6667    |

| 1FLE | 0.8372 | 0.8344 | 0.4151 | 0.4333 | 0.7091 |
|------|--------|--------|--------|--------|--------|
| 1FQ1 | 0.8522 | 0.7684 | 0.2546 | 0.2353 | 0.5833 |
| 1FQJ | 0.9445 | 0.8542 | 0.5566 | 0.4941 | 0.7925 |
| 1FSK | 0.9618 | 0.8655 | 0.4071 | 0.3421 | 0.6842 |
| 1GCQ | 0.4972 | 0.4274 | -0.183 | 0.2549 | 0.7222 |
| 1GHQ | 0.7214 | 0.6123 | 0.0922 | 0.102  | 0.3846 |
| 1GL1 | 0.956  | 0.9451 | 0.6923 | 0.6296 | 0.9273 |
| 1GLA | 0.4073 | 0.5827 | 0.199  | 0.1868 | 0.4048 |
| 1GP2 | 0.9397 | 0.844  | 0.4259 | 0.3273 | 0.72   |
| 1GPW | 0.7569 | 0.6479 | 0.1345 | 0.2556 | 0.3239 |
| 1GRN | 0.8934 | 0.8096 | 0.4267 | 0.4421 | 0.6667 |
| 1GXD | 0.5345 | 0.623  | 0.0902 | 0.1215 | 0.25   |
| 1H1V | 0.8357 | 0.6319 | 0.0453 | 0.1339 | 0.2143 |
| 1H9D | 0.6969 | 0.63   | 0.2342 | 0.4035 | 0.6667 |
| 1HCF | 0.6706 | 0.7042 | 0.2046 | 0.2124 | 0.6486 |
| 1HE1 | 0.9281 | 0.8366 | 0.4325 | 0.4327 | 0.7627 |
| 1HE8 | 0.9053 | 0.6881 | 0.2031 | 0.1714 | 0.3529 |
| 1HIA | 0.9118 | 0.8644 | 0.5055 | 0.5    | 0.7895 |
| 1I2M | 0.8751 | 0.7707 | 0.3724 | 0.4312 | 0.5402 |
| 1I4D | 0.8968 | 0.6375 | 0.1252 | 0.191  | 0.2982 |
| 119R | 0.9778 | 0.8707 | 0.3769 | 0.3404 | 0.5424 |
| 1IB1 | 0.7218 | 0.7228 | 0.299  | 0.3036 | 0.5152 |
| 1IBR | 0.6817 | 0.5346 | 0.0876 | 0.2558 | 0.287  |
| 1IJK | 0.6863 | 0.5798 | 0.0205 | 0.11   | 0.25   |
| 1IQD | 0.9629 | 0.8558 | 0.4775 | 0.4224 | 0.7313 |
| 1IRA | 0.6908 | 0.636  | 0.1152 | 0.3186 | 0.3396 |
| 1J2J | 0.9289 | 0.8966 | 0.4869 | 0.3721 | 0.9697 |
| 1JIW | 0.9139 | 0.8626 | 0.3865 | 0.3    | 0.7021 |
| 1JK9 | 0.7248 | 0.6411 | 0.1723 | 0.25   | 0.4545 |
| 1JMO | 0.82   | 0.7176 | 0.2359 | 0.2393 | 0.459  |
| 1JPS | 0.9666 | 0.9044 | 0.4356 | 0.4019 | 0.6515 |
| 1JTD | 0.935  | 0.8992 | 0.5187 | 0.5    | 0.7083 |
| 1JTG | 0.839  | 0.747  | 0.2604 | 0.3818 | 0.4828 |
| 1JWH | 0.4135 | 0.494  | 0.0004 | 0.065  | 0.1778 |
| 1JZD | 0.8917 | 0.7542 | 0.5013 | 0.5    | 0.6462 |
| 1K4C | 0.9573 | 0.9346 | 0.5141 | 0.3846 | 0.8511 |
| 1K5D | 0.8914 | 0.7827 | 0.3939 | 0.4132 | 0.5814 |
| 1K74 | 0.7928 | 0.7083 | 0.2283 | 0.2598 | 0.5077 |
| 1KAC | 0.6982 | 0.6789 | 0.2022 | 0.2589 | 0.5918 |
| 1KKL | 0.7524 | 0.6353 | 0.1644 | 0.1828 | 0.3778 |
| 1KLU | 0.6622 | 0.6381 | 0.0623 | 0.0917 | 0.2857 |
| 1KTZ | 0.7392 | 0.6649 | 0.1659 | 0.2017 | 0.8276 |
| 1KXP | 0.8503 | 0.6689 | 0.1337 | 0.2353 | 0.3019 |
| 1KXQ | 0.8749 | 0.8675 | 0.4546 | 0.4519 | 0.6267 |
| 1LFD | 0.8749 | 0.8013 | 0.3314 | 0.2653 | 0.8125 |

| 1M10 | 0.6614 | 0.6009 | 0.0909  | 0.2143 | 0.3649 |
|------|--------|--------|---------|--------|--------|
| 1M27 | 0.7733 | 0.6359 | 0.1342  | 0.1607 | 0.8182 |
| 1MAH | 0.8521 | 0.8158 | 0.3481  | 0.3252 | 0.6061 |
| 1ML0 | 0.5458 | 0.6406 | 0.1692  | 0.1982 | 0.3333 |
| 1MLC | 0.9689 | 0.895  | 0.4009  | 0.3261 | 0.6667 |
| 1MQ8 | 0.8725 | 0.7282 | 0.1762  | 0.2119 | 0.5556 |
| 1N2C | 0.7722 | 0.6433 | 0.1573  | 0.2264 | 0.1727 |
| 1NCA | 0.9682 | 0.796  | 0.3557  | 0.3037 | 0.6029 |
| 1NSN | 0.9602 | 0.8742 | 0.4552  | 0.4343 | 0.6515 |
| 1NW9 | 0.74   | 0.7985 | 0.3256  | 0.34   | 0.6538 |
| 10C0 | 0.6443 | 0.6584 | 0.17    | 0.1786 | 0.5128 |
| 10FU | 0.5705 | 0.4999 | -0.0315 | 0.0667 | 0.1522 |
| 10PH | 0.969  | 0.8645 | 0.3512  | 0.2302 | 0.7632 |
| 10YV | 0.8675 | 0.8326 | 0.4088  | 0.4717 | 0.641  |
| 1PPE | 0.9413 | 0.9523 | 0.796   | 0.7308 | 0.9828 |
| 1PVH | 0.8671 | 0.7741 | 0.2369  | 0.1835 | 0.6667 |
| 1PXV | 0.6569 | 0.6445 | 0.1898  | 0.3406 | 0.6528 |
| 1QA9 | 0.694  | 0.6238 | 0.1621  | 0.2889 | 0.6341 |
| 1QFW | 0.8488 | 0.7744 | 0.294   | 0.3125 | 0.5455 |
| 1R0R | 0.9759 | 0.9531 | 0.5704  | 0.4943 | 0.86   |
| 1R6Q | 0.6713 | 0.5898 | 0.168   | 0.3187 | 0.5472 |
| 1R8S | 0.9022 | 0.8566 | 0.5221  | 0.5745 | 0.7105 |
| 1RKE | 0.6212 | 0.4682 | -0.0664 | 0.1558 | 0.3117 |
| 1RLB | 0.7585 | 0.6769 | 0.1134  | 0.1376 | 0.3261 |
| 1RV6 | 0.6735 | 0.591  | 0.1359  | 0.2577 | 0.4808 |
| 1S1Q | 0.7057 | 0.6244 | 0.0911  | 0.2368 | 0.6429 |
| 1SBB | 0.8658 | 0.761  | 0.2313  | 0.1905 | 0.5556 |
| 1SYX | 0.7437 | 0.6654 | 0.2116  | 0.2925 | 0.7561 |
| 1T6B | 0.7602 | 0.688  | 0.156   | 0.1863 | 0.3016 |
| 1TMQ | 0.9481 | 0.8986 | 0.5083  | 0.44   | 0.7746 |
| 1UDI | 0.7666 | 0.7547 | 0.3206  | 0.4059 | 0.6119 |
| 1US7 | 0.4387 | 0.4931 | 0.0416  | 0.1481 | 0.3721 |
| 1VFB | 0.9868 | 0.9184 | 0.5063  | 0.4141 | 0.8542 |
| 1WDW | 0.7951 | 0.5726 | 0.0491  | 0.1287 | 0.1477 |
| 1WEJ | 0.9354 | 0.8715 | 0.4021  | 0.313  | 0.7347 |
| 1WQ1 | 0.8966 | 0.8066 | 0.4955  | 0.5745 | 0.6067 |
| 1XD3 | 0.8426 | 0.7314 | 0.2277  | 0.2476 | 0.65   |
| 1XQS | 0.7082 | 0.6319 | 0.0812  | 0.2255 | 0.3194 |
| 1XU1 | 0.7116 | 0.774  | 0.2942  | 0.3011 | 0.5385 |
| 1Y64 | 0.6764 | 0.5095 | 0.033   | 0.1429 | 0.1978 |
| 1YVB | 0.9107 | 0.8224 | 0.42    | 0.3254 | 0.8723 |
| 1Z0K | 0.8448 | 0.8258 | 0.3997  | 0.3333 | 0.8857 |
| 1Z5Y | 0.8826 | 0.8315 | 0.4139  | 0.3956 | 0.7826 |
| 1ZHH | 0.6783 | 0.6329 | 0.085   | 0.1406 | 0.3462 |
| 1ZHI | 0.6491 | 0.5655 | 0.0426  | 0.1639 | 0.4545 |

| 1ZLI | 0.8303 | 0.8521 | 0.5205  | 0.5179 | 0.8286 |
|------|--------|--------|---------|--------|--------|
| 1ZM4 | 0.7375 | 0.7644 | 0.2133  | 0.1885 | 0.4035 |
| 2A1A | 0.6823 | 0.6441 | 0.1105  | 0.1364 | 0.4286 |
| 2A5T | 0.6979 | 0.588  | 0.0856  | 0.1776 | 0.2879 |
| 2A9K | 0.6848 | 0.5977 | 0.0908  | 0.1983 | 0.4182 |
| 2ABZ | 0.9249 | 0.9027 | 0.4921  | 0.4149 | 0.8125 |
| 2AJF | 0.7245 | 0.6825 | 0.2137  | 0.2105 | 0.4138 |
| 2AYO | 0.7106 | 0.6309 | 0.1732  | 0.3187 | 0.3718 |
| 2B42 | 0.8026 | 0.6902 | 0.2061  | 0.3241 | 0.3846 |
| 2B4J | 0.5442 | 0.5753 | 0.1378  | 0.16   | 0.5556 |
| 2BTF | 0.754  | 0.7395 | 0.2673  | 0.2835 | 0.5625 |
| 2C0L | 0.8    | 0.7016 | 0.2039  | 0.2857 | 0.4848 |
| 2CFH | 0.5676 | 0.5469 | 0.0015  | 0.2362 | 0.4348 |
| 2FD6 | 0.9691 | 0.8384 | 0.2706  | 0.1964 | 0.5789 |
| 2FJU | 0.9305 | 0.6637 | 0.1272  | 0.1196 | 0.2895 |
| 2G77 | 0.8738 | 0.8352 | 0.4     | 0.4369 | 0.6    |
| 2GAF | 0.5779 | 0.4356 | -0.0324 | 0.1181 | 0.1456 |
| 2GTP | 0.9381 | 0.9018 | 0.5603  | 0.4938 | 0.7843 |
| 2H7V | 0.9477 | 0.789  | 0.2452  | 0.2281 | 0.5778 |
| 2HLE | 0.6006 | 0.4847 | -0.0353 | 0.2    | 0.3143 |
| 2HMI | 0.9647 | 0.8517 | 0.3047  | 0.2095 | 0.5366 |
| 2HQS | 0.8638 | 0.7603 | 0.3429  | 0.4059 | 0.519  |
| 2HRK | 0.8541 | 0.7877 | 0.347   | 0.3303 | 0.766  |
| 2125 | 0.8504 | 0.7589 | 0.3121  | 0.369  | 0.6458 |
| 219B | 0.6583 | 0.5867 | 0.0403  | 0.25   | 0.3095 |
| 2IDO | 0.5012 | 0.4758 | -0.0768 | 0.1651 | 0.383  |
| 2J0T | 0.531  | 0.6068 | 0.113   | 0.2427 | 0.4808 |
| 2J7P | 0.8606 | 0.7735 | 0.3744  | 0.4516 | 0.5    |
| 2JEL | 0.9596 | 0.9312 | 0.5783  | 0.4706 | 0.8571 |
| 2MTA | 0.7087 | 0.6577 | 0.2316  | 0.2308 | 0.4615 |
| 2NZ8 | 0.9411 | 0.8546 | 0.4839  | 0.5248 | 0.6543 |
| 203B | 0.8368 | 0.7625 | 0.3042  | 0.3186 | 0.6316 |
| 208V | 0.8631 | 0.7688 | 0.2077  | 0.1505 | 0.6364 |
| 200B | 0.655  | 0.6567 | 0.1312  | 0.241  | 0.8696 |
| 200R | 0.9144 | 0.8293 | 0.3038  | 0.3056 | 0.4521 |
| 2OT3 | 0.8218 | 0.7201 | 0.2551  | 0.3333 | 0.5286 |
| 20UL | 0.9112 | 0.8667 | 0.5354  | 0.5273 | 0.8056 |
| 20ZA | 0.6692 | 0.5876 | 0.1704  | 0.2619 | 0.2973 |
| 2PCC | 0.5831 | 0.5663 | 0.0633  | 0.1176 | 0.3889 |
| 2SIC | 0.9792 | 0.8855 | 0.4402  | 0.3839 | 0.7818 |
| 2SNI | 0.9859 | 0.9379 | 0.5913  | 0.5393 | 0.8421 |
| 2UUY | 0.9484 | 0.8704 | 0.4345  | 0.413  | 0.7755 |
| 2VDB | 0.6768 | 0.7926 | 0.2824  | 0.2626 | 0.5    |
| 2VIS | 0.9793 | 0.8926 | 0.3993  | 0.2833 | 0.7391 |
| 2VXT | 0.9561 | 0.8639 | 0.4422  | 0.375  | 0.7385 |

| 2W9E | 0.9434 | 0.8823 | 0.4509  | 0.3818 | 0.7368 |
|------|--------|--------|---------|--------|--------|
| 2X9A | 0.4656 | 0.4909 | -0.0407 | 0.3204 | 0.66   |
| 2YVJ | 0.8372 | 0.787  | 0.2461  | 0.24   | 0.5    |
| 2Z0E | 0.709  | 0.5623 | 0.0528  | 0.2143 | 0.3158 |
| 3A4S | 0.7804 | 0.7306 | 0.2372  | 0.2553 | 0.7059 |
| ЗААА | 0.8363 | 0.7542 | 0.27    | 0.2613 | 0.5    |
| 3AAD | 0.5854 | 0.5213 | 0.1391  | 0.2159 | 0.3654 |
| 3BIW | 0.6987 | 0.6052 | 0.1092  | 0.1167 | 0.3333 |
| 3BP8 | 0.5703 | 0.4519 | 0.0208  | 0.0648 | 0.1667 |
| 3BX7 | 0.7496 | 0.6803 | 0.242   | 0.3707 | 0.6143 |
| 3CPH | 0.8827 | 0.8203 | 0.3231  | 0.2812 | 0.5625 |
| 3D5S | 0.5736 | 0.6369 | 0.1337  | 0.2111 | 0.4043 |
| 3DAW | 0.8579 | 0.7713 | 0.344   | 0.3853 | 0.5526 |
| 3EO1 | 0.9587 | 0.8281 | 0.3146  | 0.265  | 0.5849 |
| 3EOA | 0.974  | 0.914  | 0.4145  | 0.3452 | 0.6444 |
| 3F1P | 0.5545 | 0.4896 | -0.0297 | 0.2566 | 0.4915 |
| 3FN1 | 0.6035 | 0.5418 | -0.0134 | 0.2455 | 0.4286 |
| 3G6D | 0.9272 | 0.9012 | 0.4164  | 0.3486 | 0.7037 |
| 3H11 | 0.7319 | 0.6522 | 0.1105  | 0.254  | 0.3951 |
| 3H2V | 0.6671 | 0.6243 | 0.1129  | 0.1905 | 0.6061 |
| 3HI6 | 0.986  | 0.9422 | 0.6125  | 0.5204 | 0.8361 |
| 3HMX | 0.9637 | 0.7639 | 0.1943  | 0.2054 | 0.3651 |
| 3K75 | 0.5548 | 0.4651 | -0.0594 | 0.0855 | 0.2222 |
| 3L5W | 0.99   | 0.9666 | 0.5196  | 0.3182 | 1      |
| 3L89 | 0.6492 | 0.58   | 0.1046  | 0.1881 | 0.2568 |
| 3LVK | 0.7342 | 0.7086 | 0.2175  | 0.1881 | 0.413  |
| 3MXW | 0.9757 | 0.8957 | 0.5051  | 0.3932 | 0.8214 |
| 3P57 | 0.9401 | 0.8886 | 0.5024  | 0.3465 | 1      |
| 3PC8 | 0.7039 | 0.5539 | 0.1045  | 0.2385 | 0.7429 |
| 3R9A | 0.7988 | 0.7099 | 0.1929  | 0.1818 | 0.3509 |
| 3RVW | 0.9763 | 0.8534 | 0.3339  | 0.2522 | 0.6444 |
| 3S9D | 0.7537 | 0.6382 | 0.1537  | 0.2647 | 0.4909 |
| 3SGQ | 0.9471 | 0.8746 | 0.4148  | 0.3302 | 0.9211 |
| 3SZK | 0.6265 | 0.5334 | 0.0066  | 0.11   | 0.2558 |
| 3V6Z | 0.9593 | 0.8724 | 0.4283  | 0.36   | 0.7258 |
| 3VLB | 0.8206 | 0.6892 | 0.2625  | 0.3083 | 0.4625 |
| 4CPA | 0.9788 | 0.9674 | 0.6482  | 0.4878 | 1      |
| 4DN4 | 0.9846 | 0.9599 | 0.573   | 0.3889 | 0.9722 |
| 4FQI | 0.9176 | 0.5018 | 0.0721  | 0.0741 | 0.1569 |
| 4FZA | 0.6723 | 0.6582 | 0.1323  | 0.1692 | 0.4    |
| 4G6J | 0.9555 | 0.8853 | 0.4227  | 0.3925 | 0.6462 |
| 4G6M | 0.9667 | 0.8838 | 0.33    | 0.31   | 0.5536 |
| 4GAM | 0.6938 | 0.7061 | 0.312   | 0.4771 | 0.2653 |
| 4GXU | 0.9481 | 0.5684 | 0.0606  | 0.0874 | 0.1233 |
| 4H03 | 0.6806 | 0.4639 | 0.0217  | 0.0847 | 0.1818 |

| 4HX3 | 0.6868 | 0.6387 | 0.2     | 0.3163 | 0.4627 |
|------|--------|--------|---------|--------|--------|
| 4IZ7 | 0.7748 | 0.6932 | 0.1253  | 0.1466 | 0.4474 |
| 4JCV | 0.8666 | 0.7582 | 0.1689  | 0.176  | 0.3385 |
| 4LW4 | 0.8006 | 0.7023 | 0.2234  | 0.2135 | 0.3654 |
| 4M76 | 0.8591 | 0.7038 | 0.2305  | 0.2083 | 0.5128 |
| 7CEI | 0.5649 | 0.4796 | -0.0031 | 0.2185 | 0.5532 |
| 9QFW | 0.9453 | 0.8773 | 0.3808  | 0.3556 | 0.64   |
| BAAD | 0.6517 | 0.5582 | 0.15    | 0.2095 | 0.4314 |
| BOYV | 0.9054 | 0.8682 | 0.3615  | 0.3333 | 0.6596 |
| BP57 | 0.9193 | 0.8593 | 0.3931  | 0.2935 | 0.8438 |
| CP57 | 0.9135 | 0.8637 | 0.3753  | 0.3    | 0.7941 |
| mean | 0.8022 | 0.7286 | 0.2647  | 0.292  | 0.5532 |

**Table S12.3.** DImS complexes and its performance results at complex level using structure-based model. Precision and recall calculated at threshold that maximizes MCC.

| PDB  | ROC-auc RRCP | ROC-auc BS | MCC BS  | Precision BS | Recall BS |
|------|--------------|------------|---------|--------------|-----------|
| 1acb | 0.9899       | 0.9726     | 0.7163  | 0.6235       | 0.9636    |
| 1avw | 0.8855       | 0.7686     | 0.2706  | 0.369        | 0.4559    |
| 1ay7 | 0.9717       | 0.9129     | 0.5756  | 0.5063       | 0.9524    |
| 1b41 | 0.889        | 0.8149     | 0.3206  | 0.3077       | 0.5424    |
| 1b6c | 0.9572       | 0.8985     | 0.5452  | 0.4842       | 0.7931    |
| 1bdj | 0.4095       | 0.4609     | 0.03    | 0.0976       | 0.381     |
| 1blx | 0.6886       | 0.64       | 0.2124  | 0.2762       | 0.4462    |
| 1bun | 0.4786       | 0.1878     | -0.2567 | 0.0562       | 0.1852    |
| 1c1y | 0.9646       | 0.9022     | 0.4843  | 0.4048       | 0.8718    |
| 1cse | 0.9889       | 0.975      | 0.6976  | 0.5882       | 0.9615    |
| 1cxz | 0.596        | 0.5348     | -0.0158 | 0.1889       | 0.3208    |
| 1d0d | 0.8531       | 0.6509     | 0.0715  | 0.022        | 1         |
| 1dev | 0.6821       | 0.573      | 0.1568  | 0.4545       | 0.4762    |
| 1ds6 | 0.9124       | 0.7922     | 0.3923  | 0.4681       | 0.6027    |
| 1dtd | 0.9527       | 0.911      | 0.4981  | 0.4396       | 0.7843    |
| 1e44 | 0.839        | 0.7703     | 0.3573  | 0.5854       | 0.6761    |
| 1e96 | 0.8982       | 0.802      | 0.2903  | 0.2697       | 0.6       |
| 1eai | 0.9446       | 0.8597     | 0.4782  | 0.49         | 0.7656    |
| 1em8 | 0.8831       | 0.6972     | 0.2589  | 0.3214       | 0.587     |
| 1euv | 0.8972       | 0.8526     | 0.4283  | 0.5238       | 0.6286    |
| 1f2s | 0.9723       | 0.9701     | 0.7127  | 0.6386       | 0.9636    |
| 1f34 | 0.834        | 0.7637     | 0.3368  | 0.5          | 0.4563    |
| 1fm0 | 0.9388       | 0.8521     | 0.4336  | 0.5          | 0.7705    |
| 1g0v | 0.8893       | 0.9373     | 0.6741  | 0.8243       | 0.6778    |
| 1gl1 | 0.9663       | 0.958      | 0.6973  | 0.622        | 0.9444    |
| 1gzs | 0.944        | 0.9169     | 0.6436  | 0.7473       | 0.7312    |
| 1h4l | 0.9684       | 0.9426     | 0.6881  | 0.7283       | 0.7791    |

| 1he1 | 0.9545 | 0.8894 | 0.5279 | 0.5376 | 0.7692 |
|------|--------|--------|--------|--------|--------|
| 1i1q | 0.9663 | 0.8646 | 0.4192 | 0.4796 | 0.5165 |
| 1izn | 0.8863 | 0.8035 | 0.4582 | 0.8586 | 0.4048 |
| 1jdh | 0.8564 | 0.8745 | 0.4432 | 0.5952 | 0.4854 |
| 1jsd | 0.8952 | 0.777  | 0.5253 | 0.8182 | 0.4898 |
| 1jtd | 0.9467 | 0.865  | 0.4993 | 0.49   | 0.6806 |
| 1k90 | 0.7405 | 0.6429 | 0.1773 | 0.4468 | 0.2561 |
| 1ka9 | 0.9501 | 0.7752 | 0.2376 | 0.4    | 0.4    |
| 1l4d | 0.7614 | 0.645  | 0.0543 | 0.1789 | 0.3208 |
| 1luj | 0.8883 | 0.8793 | 0.4788 | 0.5556 | 0.5789 |
| 1m9x | 0.9205 | 0.7587 | 0.2705 | 0.268  | 0.6341 |
| 1nbf | 0.8566 | 0.8394 | 0.5306 | 0.7097 | 0.5841 |
| 1nf3 | 0.9264 | 0.7882 | 0.3595 | 0.4444 | 0.597  |
| 1oph | 0.9946 | 0.9352 | 0.4992 | 0.4138 | 0.7347 |
| 1p57 | 0.7838 | 0.6355 | 0.1268 | 0.2841 | 0.3571 |
| 1p6a | 0.6978 | 0.6149 | 0.0631 | 0.1978 | 0.36   |
| 1pzl | 0.8634 | 0.8308 | 0.3214 | 0.275  | 0.7333 |
| 1r0r | 0.9843 | 0.9794 | 0.686  | 0.5632 | 0.98   |
| 1r8s | 0.976  | 0.9427 | 0.6719 | 0.7262 | 0.7722 |
| 1s1q | 0.9054 | 0.8766 | 0.4925 | 0.4239 | 0.9286 |
| 1s6v | 0.9282 | 0.8029 | 0.266  | 0.1852 | 0.625  |
| 1s70 | 0.8852 | 0.7165 | 0.1958 | 0.45   | 0.2903 |
| 1sgp | 0.9606 | 0.9343 | 0.5425 | 0.4556 | 0.9318 |
| 1spb | 0.9166 | 0.8602 | 0.5418 | 0.6023 | 0.7067 |
| 1sq0 | 0.9241 | 0.7815 | 0.3107 | 0.3482 | 0.5571 |
| 1sq2 | 0.8758 | 0.7728 | 0.3054 | 0.3929 | 0.6226 |
| 1stf | 0.944  | 0.8697 | 0.4647 | 0.44   | 0.7857 |
| 1t6g | 0.8892 | 0.7141 | 0.1693 | 0.2609 | 0.3288 |
| 1ta3 | 0.8794 | 0.7099 | 0.3281 | 0.3804 | 0.473  |
| 1tbg | 0.6497 | 0.5414 | 0.0178 | 0.3684 | 0.2448 |
| 1te1 | 0.8148 | 0.5881 | 0.1968 | 0.2796 | 0.3939 |
| 1tgs | 0.9813 | 0.9698 | 0.7682 | 0.7125 | 0.95   |
| 1tx4 | 0.9504 | 0.8687 | 0.5606 | 0.6024 | 0.7042 |
| 1u0s | 0.89   | 0.8026 | 0.3529 | 0.4    | 0.7391 |
| 1uad | 0.8638 | 0.7982 | 0.3586 | 0.3258 | 0.7436 |
| 1ugh | 0.9396 | 0.9191 | 0.5732 | 0.5957 | 0.7887 |
| 1uuz | 0.9056 | 0.8263 | 0.4405 | 0.4583 | 0.7719 |
| 1uw4 | 0.8391 | 0.7067 | 0.1593 | 0.2929 | 0.4394 |
| 1v74 | 0.9456 | 0.9282 | 0.6565 | 0.6087 | 0.9825 |
| 1wmi | 0.5181 | 0.5324 | 0.1204 | 0.7426 | 0.7143 |
| 1wpx | 0.9693 | 0.9067 | 0.545  | 0.617  | 0.6105 |
| 1wrd | 0.8883 | 0.7828 | 0.4066 | 0.37   | 0.9487 |
| 1wui | 0.8967 | 0.8557 | 0.4437 | 0.7596 | 0.3835 |
| 1xd3 | 0.9793 | 0.9315 | 0.6715 | 0.716  | 0.7945 |
| 1xl3 | 0.954  | 0.8875 | 0.5288 | 0.4878 | 0.8163 |

| 1y4h | 0.9212 | 0.8615 | 0.4909  | 0.5604 | 0.7183 |
|------|--------|--------|---------|--------|--------|
| 1y8x | 0.8391 | 0.7689 | 0.2625  | 0.3721 | 0.5818 |
| 1yro | 0.9795 | 0.9393 | 0.4574  | 0.3125 | 0.8824 |
| 1z3e | 0.7557 | 0.5457 | -0.056  | 0.2083 | 0.4651 |
| 1zc3 | 0.7937 | 0.6154 | 0.0842  | 0.2593 | 0.3621 |
| 2a5d | 0.9426 | 0.833  | 0.4169  | 0.3932 | 0.7667 |
| 2ajf | 0.6752 | 0.6018 | -0.0192 | 0.0619 | 0.1034 |
| 2bex | 0.9034 | 0.7917 | 0.3272  | 0.466  | 0.4324 |
| 2ccl | 0.834  | 0.7929 | 0.4104  | 0.4891 | 0.7627 |
| 2d5r | 0.7938 | 0.6877 | 0.1746  | 0.2442 | 0.42   |
| 2d7c | 0.9464 | 0.9293 | 0.4978  | 0.3864 | 0.9714 |
| 2e2d | 0.9413 | 0.8798 | 0.4769  | 0.5146 | 0.7162 |
| 2f4m | 0.9502 | 0.9114 | 0.565   | 0.4762 | 0.8511 |
| 2f6m | 0.7558 | 0.7046 | 0.3425  | 0.6436 | 0.7558 |
| 2f9z | 0.9116 | 0.7491 | 0.2645  | 0.3152 | 0.537  |
| 2fi4 | 0.9711 | 0.909  | 0.5267  | 0.4681 | 0.8627 |
| 2ftx | 0.9163 | 0.8971 | 0.6221  | 0.6585 | 0.9474 |
| 2fun | 0.9563 | 0.8362 | 0.3736  | 0.3471 | 0.6462 |
| 2g2u | 0.954  | 0.8539 | 0.4432  | 0.505  | 0.622  |
| 2g45 | 0.9611 | 0.8538 | 0.3642  | 0.2979 | 0.9032 |
| 2ga9 | 0.7113 | 0.5267 | 0.0074  | 0.1495 | 0.1524 |
| 2grn | 0.868  | 0.7944 | 0.3298  | 0.2885 | 0.7317 |
| 2gzj | 0.8279 | 0.6713 | 0.2264  | 0.3579 | 0.6415 |
| 2hle | 0.906  | 0.7944 | 0.3067  | 0.4149 | 0.5571 |
| 2ido | 0.858  | 0.7802 | 0.4201  | 0.4752 | 0.7619 |
| 2ie4 | 0.8023 | 0.6097 | 0.1655  | 0.2083 | 0.2857 |
| 2j7q | 0.9594 | 0.9251 | 0.5938  | 0.5341 | 0.8704 |
| 2o3b | 0.9739 | 0.8923 | 0.5098  | 0.4434 | 0.8246 |
| 2ot3 | 0.9798 | 0.9308 | 0.6841  | 0.7179 | 0.7671 |
| 2p49 | 0.8189 | 0.7557 | 0.2317  | 0.2772 | 0.6667 |
| 2pr3 | 0.8693 | 0.7509 | 0.3294  | 0.3913 | 0.6316 |
| 2puo | 0.8575 | 0.7796 | 0.3615  | 0.4368 | 0.7755 |
| 2qdy | 0.8599 | 0.8578 | 0.4782  | 0.9072 | 0.4513 |
| 2r25 | 0.9721 | 0.9408 | 0.5947  | 0.5679 | 0.8214 |
| 2r2l | 0.9496 | 0.8255 | 0.432   | 0.7732 | 0.3713 |
| 2tld | 0.8273 | 0.7168 | 0.1561  | 0.1125 | 0.5294 |
| 2uuy | 0.9822 | 0.942  | 0.5783  | 0.5119 | 0.8776 |
| 2uyz | 0.893  | 0.7542 | 0.2318  | 0.2571 | 0.7105 |
| 2vut | 0.5334 | 0.6247 | 0.1843  | 0.2614 | 0.434  |
| 3bx1 | 0.9289 | 0.8126 | 0.4148  | 0.4239 | 0.619  |
| 3cr3 | 0.9537 | 0.8974 | 0.5018  | 0.3977 | 0.875  |
| 3d5r | 0.8041 | 0.7228 | 0.2354  | 0.2921 | 0.4906 |
| 3fap | 0.9201 | 0.7782 | 0.3176  | 0.2766 | 0.8387 |
| 4cpa | 0.9864 | 0.9479 | 0.5417  | 0.4268 | 0.875  |
| 4sgb | 0.9459 | 0.8892 | 0.5048  | 0.4831 | 0.8431 |

| mean | 0.8789 | 0.7985 | 0.3831 | 0.4438 | 0.6492 |
|------|--------|--------|--------|--------|--------|
|------|--------|--------|--------|--------|--------|

| PDB  | ROC-auc RRCP | ROC-auc BS | MCC BS  | Precision BS | Recall BS |
|------|--------------|------------|---------|--------------|-----------|
| 1acb | 0.9678       | 0.8986     | 0.6241  | 0.6508       | 0.7455    |
| 1avw | 0.8679       | 0.7594     | 0.3706  | 0.4211       | 0.5882    |
| 1ay7 | 0.9117       | 0.8467     | 0.406   | 0.4198       | 0.8095    |
| 1b41 | 0.6955       | 0.6456     | 0.1931  | 0.2439       | 0.339     |
| 1b6c | 0.8035       | 0.6964     | 0.2496  | 0.3125       | 0.431     |
| 1bdj | 0.5226       | 0.5969     | 0.2162  | 0.1875       | 0.5714    |
| 1blx | 0.641        | 0.5545     | 0.0206  | 0.1558       | 0.1846    |
| 1bun | 0.3366       | 0.2247     | -0.2133 | 0.0753       | 0.2593    |
| 1c1y | 0.832        | 0.7155     | 0.2001  | 0.2658       | 0.5385    |
| 1cse | 0.9799       | 0.9677     | 0.7628  | 0.7586       | 0.8462    |
| 1cxz | 0.593        | 0.56       | 0.1195  | 0.2727       | 0.3962    |
| 1d0d | 0.6726       | 0.2629     | -0.0676 | 0.0116       | 0.5       |
| 1dev | 0.4405       | 0.4137     | -0.0486 | 0.325        | 0.3095    |
| 1ds6 | 0.8131       | 0.7094     | 0.1802  | 0.3529       | 0.3288    |
| 1dtd | 0.8883       | 0.8724     | 0.4507  | 0.4235       | 0.7059    |
| 1e44 | 0.6135       | 0.5978     | 0.1113  | 0.4494       | 0.5634    |
| 1e96 | 0.7315       | 0.675      | 0.1586  | 0.2051       | 0.4       |
| 1eai | 0.8563       | 0.8616     | 0.5176  | 0.5152       | 0.7969    |
| 1em8 | 0.6648       | 0.5564     | -0.0046 | 0.1765       | 0.3261    |
| 1euv | 0.8143       | 0.7498     | 0.3478  | 0.5          | 0.5       |
| 1f2s | 0.9018       | 0.916      | 0.7103  | 0.7377       | 0.8182    |
| 1f34 | 0.685        | 0.6804     | 0.2114  | 0.39         | 0.3786    |
| 1fm0 | 0.9089       | 0.877      | 0.5938  | 0.7049       | 0.7049    |
| 1g0v | 0.6983       | 0.8216     | 0.4643  | 0.5914       | 0.6111    |
| 1gl1 | 0.9394       | 0.9402     | 0.663   | 0.6522       | 0.8333    |
| 1gzs | 0.8764       | 0.8268     | 0.4545  | 0.6375       | 0.5484    |
| 1h4l | 0.6805       | 0.6421     | 0.1064  | 0.2892       | 0.2791    |
| 1he1 | 0.859        | 0.7715     | 0.4493  | 0.5714       | 0.5538    |
| 1i1q | 0.8013       | 0.747      | 0.2347  | 0.35         | 0.3077    |
| 1izn | 0.6289       | 0.5792     | 0.1131  | 0.519        | 0.1952    |
| 1jdh | 0.7973       | 0.7765     | 0.4958  | 0.6711       | 0.4951    |
| 1jsd | 0.4569       | 0.4227     | -0.0259 | 0.2842       | 0.1837    |
| 1jtd | 0.9127       | 0.8361     | 0.39    | 0.4211       | 0.5556    |
| 1k90 | 0.5318       | 0.5791     | 0.0806  | 0.3483       | 0.189     |
| 1ka9 | 0.7093       | 0.5539     | 0.0443  | 0.2533       | 0.2       |
| 1l4d | 0.5808       | 0.5865     | 0.0494  | 0.1786       | 0.283     |
| 1luj | 0.8224       | 0.8352     | 0.3154  | 0.4471       | 0.4       |
| 1m9x | 0.8028       | 0.7549     | 0.284   | 0.2927       | 0.5854    |
| 1nbf | 0.7742       | 0.6383     | 0.3252  | 0.561        | 0.4071    |

**Table S12.4.** DImS complexes and its performance results at complex level using sequence-based model.

 Precision and recall calculated at threshold that maximizes MCC:

| 1nf3 | 0.7412 | 0.649  | 0.3068  | 0.4217 | 0.5224 |
|------|--------|--------|---------|--------|--------|
| 1oph | 0.961  | 0.7373 | 0.3133  | 0.2692 | 0.5714 |
| 1p57 | 0.6869 | 0.5527 | 0.0683  | 0.2442 | 0.3    |
| 1p6a | 0.7247 | 0.6254 | 0.1538  | 0.2449 | 0.48   |
| 1pzl | 0.5795 | 0.6727 | 0.2141  | 0.2459 | 0.5    |
| 1r0r | 0.9662 | 0.9586 | 0.6609  | 0.6308 | 0.82   |
| 1r8s | 0.8604 | 0.8151 | 0.4367  | 0.5542 | 0.5823 |
| 1s1q | 0.7497 | 0.6764 | 0.2153  | 0.3059 | 0.619  |
| 1s6v | 0.8719 | 0.8171 | 0.2453  | 0.1772 | 0.5833 |
| 1s70 | 0.5422 | 0.4834 | -0.076  | 0.1765 | 0.0968 |
| 1sgp | 0.9722 | 0.9584 | 0.7031  | 0.6452 | 0.9091 |
| 1spb | 0.7845 | 0.7491 | 0.4661  | 0.5679 | 0.6133 |
| 1sq0 | 0.7491 | 0.6005 | 0.0748  | 0.2069 | 0.2571 |
| 1sq2 | 0.7689 | 0.7538 | 0.3335  | 0.4177 | 0.6226 |
| 1stf | 0.8524 | 0.7968 | 0.3357  | 0.4    | 0.5714 |
| 1t6g | 0.8123 | 0.7178 | 0.2543  | 0.3373 | 0.3836 |
| 1ta3 | 0.7336 | 0.6116 | 0.2402  | 0.3118 | 0.3919 |
| 1tbg | 0.5208 | 0.5861 | 0.2246  | 0.5568 | 0.3427 |
| 1te1 | 0.512  | 0.5377 | 0.0757  | 0.1977 | 0.2576 |
| 1tgs | 0.9473 | 0.9052 | 0.5633  | 0.6143 | 0.7167 |
| 1tx4 | 0.8631 | 0.7836 | 0.4084  | 0.5135 | 0.5352 |
| 1u0s | 0.771  | 0.7662 | 0.3558  | 0.4247 | 0.6739 |
| 1uad | 0.895  | 0.8267 | 0.4062  | 0.3784 | 0.7179 |
| 1ugh | 0.8208 | 0.7651 | 0.2536  | 0.4125 | 0.4648 |
| 1uuz | 0.7188 | 0.6167 | 0.0733  | 0.2651 | 0.386  |
| 1uw4 | 0.762  | 0.6758 | 0.2135  | 0.3506 | 0.4091 |
| 1v74 | 0.8219 | 0.7594 | 0.3176  | 0.4684 | 0.6491 |
| 1wmi | 0.5134 | 0.4985 | -0.0217 | 0.6944 | 0.4762 |
| 1wpx | 0.8016 | 0.634  | 0.1337  | 0.2738 | 0.2421 |
| 1wrd | 0.6312 | 0.5513 | 0.0849  | 0.2625 | 0.5385 |
| 1wui | 0.7123 | 0.6572 | 0.1162  | 0.3978 | 0.1796 |
| 1xd3 | 0.922  | 0.8061 | 0.4279  | 0.5513 | 0.589  |
| 1xl3 | 0.4819 | 0.5332 | 0.0341  | 0.1939 | 0.3878 |
| 1y4h | 0.7024 | 0.6217 | 0.1323  | 0.3415 | 0.3944 |
| 1y8x | 0.6612 | 0.6321 | 0.1665  | 0.3118 | 0.5273 |
| 1yro | 0.7287 | 0.559  | 0.0231  | 0.0978 | 0.2647 |
| 1z3e | 0.5809 | 0.4754 | -0.0667 | 0.1974 | 0.3488 |
| 1zc3 | 0.8377 | 0.7449 | 0.2841  | 0.3947 | 0.5172 |
| 2a5d | 0.81   | 0.7432 | 0.2741  | 0.3483 | 0.5167 |
| 2ajf | 0.568  | 0.5904 | 0.0226  | 0.092  | 0.1379 |
| 2bex | 0.7045 | 0.686  | 0.2324  | 0.3978 | 0.3333 |
| 2ccl | 0.4909 | 0.4764 | -0.0214 | 0.2667 | 0.339  |
| 2d5r | 0.7075 | 0.6927 | 0.179   | 0.2647 | 0.36   |
| 2d7c | 0.7578 | 0.8419 | 0.4099  | 0.3733 | 0.8    |
| 2e2d | 0.8344 | 0.7968 | 0.326   | 0.4432 | 0.527  |

| 2f4m | 0.5992 | 0.6369 | 0.1548  | 0.2361 | 0.3617 |
|------|--------|--------|---------|--------|--------|
| 2f6m | 0.6247 | 0.5969 | 0.1279  | 0.5647 | 0.5581 |
| 2f9z | 0.823  | 0.745  | 0.2381  | 0.32   | 0.4444 |
| 2fi4 | 0.9467 | 0.8764 | 0.4486  | 0.4512 | 0.7255 |
| 2ftx | 0.7369 | 0.6311 | 0.1843  | 0.4744 | 0.6491 |
| 2fun | 0.7424 | 0.6498 | 0.0369  | 0.15   | 0.1846 |
| 2g2u | 0.8089 | 0.6793 | 0.1273  | 0.2907 | 0.3049 |
| 2g45 | 0.9249 | 0.7491 | 0.3281  | 0.3151 | 0.7419 |
| 2ga9 | 0.4802 | 0.4129 | -0.0323 | 0.1111 | 0.0857 |
| 2grn | 0.6062 | 0.5523 | 0.0558  | 0.1609 | 0.3415 |
| 2gzj | 0.6076 | 0.5649 | 0.0911  | 0.2976 | 0.4717 |
| 2hle | 0.7084 | 0.5386 | 0.0416  | 0.25   | 0.2571 |
| 2ido | 0.6387 | 0.571  | 0.0445  | 0.2809 | 0.3968 |
| 2ie4 | 0.6609 | 0.5317 | -0.0377 | 0.0488 | 0.0571 |
| 2j7q | 0.9213 | 0.8573 | 0.5131  | 0.5441 | 0.6852 |
| 2o3b | 0.8849 | 0.7974 | 0.3963  | 0.425  | 0.5965 |
| 2ot3 | 0.892  | 0.8188 | 0.4031  | 0.4937 | 0.5342 |
| 2p49 | 0.7199 | 0.6101 | 0.0497  | 0.1978 | 0.4286 |
| 2pr3 | 0.6491 | 0.6234 | 0.1031  | 0.2703 | 0.3509 |
| 2puo | 0.6785 | 0.6807 | 0.2432  | 0.3924 | 0.6327 |
| 2qdy | 0.505  | 0.4981 | -0.0679 | 0.4194 | 0.2    |
| 2r25 | 0.8156 | 0.7844 | 0.3122  | 0.4118 | 0.5    |
| 2r2l | 0.7346 | 0.6635 | 0.229   | 0.5769 | 0.2228 |
| 2tld | 0.9887 | 0.959  | 0.3957  | 0.2    | 1      |
| 2uuy | 0.9498 | 0.8791 | 0.5009  | 0.5    | 0.7347 |
| 2uyz | 0.677  | 0.5387 | 0.0574  | 0.1923 | 0.3947 |
| 2vut | 0.6276 | 0.6368 | 0.2278  | 0.3026 | 0.434  |
| 3bx1 | 0.8407 | 0.6851 | 0.1593  | 0.2529 | 0.3492 |
| 3cr3 | 0.9141 | 0.8156 | 0.3632  | 0.3467 | 0.65   |
| 3d5r | 0.6164 | 0.5277 | 0.0963  | 0.2043 | 0.3585 |
| 3fap | 0.75   | 0.6715 | 0.1931  | 0.2466 | 0.5806 |
| 4cpa | 0.9531 | 0.9475 | 0.621   | 0.481  | 0.95   |
| 4sgb | 0.9127 | 0.9066 | 0.5912  | 0.5833 | 0.8235 |
| mean | 0.7469 | 0.6883 | 0.2421  | 0.3663 | 0.4798 |

**Table S12.5** CAPRI targets used for independent validation and its performance results at complex level.

 Precision and recall calculated at threshold that maximizes MCC.

| Target | PDB  | Used in               | ROC-auc<br>interacting<br>pairs BIPSPI | ROC-Auc<br>interacting<br>pairs<br>PAIRpred | ROC-<br>Auc<br>binding<br>site | мсс    | Precision | Recall |
|--------|------|-----------------------|----------------------------------------|---------------------------------------------|--------------------------------|--------|-----------|--------|
| T58    | 4G9S | Ispred4 &<br>PAIRpred | 0.927                                  | 0.897                                       | 0.822                          | 0.389  | 0.375     | 0.943  |
| T56    | 4EEF | Ispred4 &<br>PAIRpred | 0.796                                  | 0.763                                       | 0.701                          | 0.000  | 0.097     | 0.887  |
| T40    | 3E8L | Ispred4 &<br>PAIRpred | 0.907                                  | 0.921                                       | 0.767                          | 0.243  | 0.212     | 0.951  |
| Т39    | 3FM8 | Ispred4 &<br>PAIRpred | 0.839                                  | 0.796                                       | 0.702                          | -0.050 | 0.000     | 0.000  |

| T32  | 3BX1 | Ispred4 &<br>PAIRpred                        | 0.882  | 0.897 | 0.710 | 0.194        | 0.157    | 0.800  |
|------|------|----------------------------------------------|--------|-------|-------|--------------|----------|--------|
| T41  | 2WPT | Ispred4 &<br>PAIRpred                        | 0.938  | 0.858 | 0.902 | 0.634        | 0.846    | 0.611  |
| T50  | 3R2X | Ispred4 &<br>PAIRpred                        | 0.831  | 0.903 | 0.679 | 0.058        | 0.058    | 1.000  |
| T47  | 3U43 | Ispred4 &<br>PAIRpred                        | 0.954  | 0.889 | 0.857 | 0.452        | 0.400    | 0.875  |
| T29  | 2VDU | Ispred4 &<br>PAIRpred                        | 0.965  | 0.829 | 0.874 | 0.202        | 0.133    | 1.000  |
| T01  | 1KKL | Ispred4                                      | 0.875  | -     | 0.638 | 0.107        | 0.106    | 1.000  |
| T03  | 1KEN | lspred4                                      | 0.964  | -     | 0.691 | 0.013        | 0.049    | 0.838  |
| T08  | 1NPE | lspred4                                      | 0.820  | -     | 0.628 | -<br>0.08544 | 0.058824 | 0.0508 |
| T10  | 1URZ | lspred4                                      | 0.719  | -     | 0.716 | 0.262        | 0.479    | 0.344  |
| T11  | 10HZ | Ispred4                                      | 0.919  | -     | 0.935 | 0.697        | 0.700    | 0.894  |
| T13  | 1YNT | lspred4                                      | 0.959  | -     | 0.836 | 0.310        | 0.288    | 0.552  |
| T14  | 1S70 | Ispred4                                      | 0.891  | -     | 0.654 | 0.197        | 0.208    | 0.980  |
| T15  | 1V74 | Ispred4                                      | 0.936  | -     | 0.898 | 0.360        | 0.385    | 1.000  |
| T16  | 1TA3 | lspred4                                      | 0.961  | -     | 0.880 | 0.245        | 0.191    | 1.000  |
| T22  | 1SYX | lspred4                                      | 0.750  | -     | 0.632 | 0.020        | 0.238    | 0.122  |
| T23  | 2B8W | Ispred4                                      | 0.896  | -     | 0.779 | 0.260        | 0.2920   | 0.904  |
| T25  | 2J59 | lspred4                                      | 0.947  | -     | 0.868 | 0.108        | 0.169    | 1.000  |
| T27  | 2025 | lspred4                                      | 0.877  | -     | 0.604 | 0.074        | 0.076    | 0.667  |
| T38  | 3FM8 | lspred4                                      | 0.684  | -     | 0.633 | 0.273        | 0.370    | 0.294  |
| T46  | 3Q87 | lspred4                                      | 0.883  | -     | 0.649 | 0.154        | 0.095    | 0.667  |
| T53  | 4JW2 | lspred4                                      | 0.9508 | -     | 0.857 | 0.294        | 0.25     | 1      |
| T54  | 4JW3 | Ispred4                                      | 0.9417 | -     | 0.900 | 0.582        | 0.631    | 0.774  |
| MEAN |      | All: 0.885;<br>used in<br>PAIRpred:<br>0.927 | 0.8614 | 0.762 | 0.230 | 0.264        | 0.7366   |        |

Table S12.6 Performance evaluation for CAPRI binding site prediction, all scores mixed together.

| Auc binding site | MCC   | Precision | Recall |
|------------------|-------|-----------|--------|
| 0.763            | 0.297 | 0.315     | 0.549  |

#### References

- Fan, D. *et al.* (2008) Self-association of human PCSK9 correlates with its LDLR-degrading activity. *Biochemistry*, **47**, 1631–9.
- Heffernan, R. *et al.* (2015) Improving prediction of secondary structure, local backbone angles and solvent accessible surface area of proteins by iterative deep learning. *Sci. Rep.*, **5**, 11476.
- Hirano, Y. et al. (2017) Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. *Nat. Plants*, **3**, 17010.
- Minhas, F. ul A.A. et al. (2014) PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Proteins, 82, 1142–55.
- Mitchell, T. *et al.* (2014) Pharmacologic Profile of the Adnectin BMS-962476, a Small Protein Biologic Alternative to PCSK9 Antibodies for Low-Density Lipoprotein Lowering. *J. Pharmacol. Exp. Ther.*, **350**, 412–424.
- Platt, J.C. and Platt, J.C. (1999) Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. *Adv. LARGE MARGIN Classif.*, 61--74.
- Porollo,A. and Meller,J. (2007) Prediction-based fingerprints of protein-protein interactions. In, *Proteins: Structure, Function and Genetics*. Wiley Subscription Services, Inc., A Wiley Company, pp. 630–645.
- Savojardo, C. *et al.* (2017) ISPRED4: Interaction sites PREDiction in protein structures with a refining grammar model. *Bioinformatics*, **33**, 1656–1663.

Yuan,Z. (2005) Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. *BMC Bioinformatics*, **6**, 248.

Zadrozny,B. and Elkan,C. (2002) Transforming classifier scores into accurate multiclass probability estimates. In, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining -KDD '02., p. 694.