Supplementary Information

The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the

nuclear envelope

Y. Wang, Y. Chen et al.

Stereo views of the TERB1_{T2BM}-TERB2_{NTD} complex and the TERB2_{MBM}-MAJIN_{NTD} complex

(a) Stereo view of the TERB1_{T2BM}-TERB2_{NTD} complex. TERB1_{T2BM} is shown as a stick model (yellow) with the electron density map (1.0σ) and TERB2_{NTD} is shown as green ribbon. (b) Stereo view of the TERB2_{MBM}-MAJIN_{NTD} complex. TERB2_{MBM} is shown as a stick model (magenta) with the electron density map (1.0σ) and MAJIN_{NTD} is shown as blue ribbon. (c) Stereo view of the density map (1.0σ) of the zinc-finger region in TERB1_{T2BM}. (d) Stereo view of the density map (1.0σ) of the interface between TERB2_{NTD} (green) and TERB1_{T2BM} (yellow). (e) Detailed interactions show a hydrophobic interface between the two TERB2_{MBM}-MAJIN_{NTD} protomers. (f) Ribbon diagram of six TERB2_{MBM}-MAJIN_{NTD} protomers from two adjacent asymmetric units. In one asymmetric unit, two TERB2_{MBM}-MAJIN_{NTD} protomers (chain B-E and chain C-F) form a heterotetramer, and the third protomer (chain A-D) forms another identical heterotetramer with its crystallograhically symmetric counterpart (chain A'-D'). (g) Superimposition of the two heterotetramers in (f).

RB1 TERB2 MAJ

Targeted disruption of the TTM complex in mice using the CRISPR/Cas9 method

(a) The Cas9/sgRNA-targeting site for mouse *Terb2^{Y56E}*. The sgRNA-targeting site and the protospacer adjacent motif (PAM) are indicated above the sequence. The desired mutations on genomic DNA are indicated by lower-case letters. The altered amino acid residue is indicated in red color. (b) $Terb2^{Y56E}$ mouse offspring were genotyped by tail biopsy with PCR and DNA sequencing of the mutation loci. Testis cDNA library from homozygous mice was also subjected to PCR and DNA sequencing to confirmed the desired mutation. (c) The Cas9/sgRNA-targeting site for mouse Terb2^{F188R}. The sgRNA-targeting site and the PAM are indicated above the sequence. The desired mutations on genomic DNA are indicated by lower-case letters, and the altered amino acid residue is indicated in red color. (d) $Terb2^{F188R}$ mouse offspring were genotyped by tail biopsy with PCR and DNA sequencing of the mutation loci. Testis cDNA library from homozygous mice was also subjected to PCR and DNA sequencing to confirmed the desired mutation. (e and f) Relative mRNA levels of Terb1, Terb2 and Majin were determined by RT-qPCR with testes from 2-week-old WT and Terb2^{Y56E} (e) or Terb2^{F188R} (f) littermates using GAPDH as the loading control. The averaged value for WT was normalized to 1. Results were from three independent experiments. Error bars: standard deviation; n=3. (g) Western blot of TERB2 in testes of 2-week-old mice. β -actin was used as the loading control. Source data are provided as a Source Data file.

Disruption of the TERB1-TERB2 and the TERB2-MAJIN interactions causes a meiotic arrest at Pachytene-like stage

(a) Hematoxylin and eosin-stained histological cross-sections of epididymis from 6-week-old male mice. There is no sperm in the epididymis from the *Terb2*^{*Y56E*} and *Terb2*^{*F188R*} mice. Scale bars, 100 μ m. (b) Propidium iodide (PI) fluorescence flow analysis of fixed testicular cells from WT, *Terb2*^{*Y56E*}, and *Terb2*^{*F188R*} mice at different ages. Cells were stained by propidium iodide (PI). 1N, haploid; 2N, diploid; 4N, tetraploid. (c) Hoechst 33342 fluorescence flow analysis of testicular cells from 6-week-old mice. The lack of more advanced tetraploid spermatocytes in the mutant mice is indicated in the regions circled in red. SP: Spermatogonia, pre-L: pre-Leptotene.

a

Telomeric localization of TERB1, TERB2 and MAJIN in spermatocytes

(**a**, **c**, **e**) Representative images showing the telomeric distribution of TERB1, TERB2 and MAJIN in WT pachytene spermatocytes or mutant spermatocytes at the most advanced stage. Spermatocyte spreads from 6-week-old mice of the indicated genotypes were immunostained for SYCP3 as well as TERB1 (a), or TERB2 (c) or MAJIN (e). DNA was stained by DAPI. The zoom-in views show one chromosome end from each spread. (**b**, **d**, **f**) Dot plot showing population of chromosome ends with TERB1 foci (b), TERB2 foci (d), or MAJIN foci (e) in one nucleus. n=15 nuclei were analyzed for each indicated genotypes. Source data are provided as a Source Data file.

Oocytogenesis is disrupted in TERB2-deficient mice

(a) Ovaries from 6-week-old mice of the indicated genotypes. Scale bars, 5 mm. (b) Body weight (top) and ovary size (the longest diameter) (bottom) of 6-week-old female mice of the indicated genotypes. (c) Ovary tissue sections from adult female mice stained with hematoxylin and eosin. Arrowheads indicate oocytes and growing follicles that are not observed in mutant ovaries. Scale bars, 0.5 mm. (d) Representative fetal oocytes from 19-dpc embryos at different stages stained with DAPI and antibodies of SYCP3 and SYCP1. Pac-like: Pachytene-like. (e) Quantification of the frequencies of meiotic stages shown in (d). Data are from three independent experiments of different mice. Error bars: standard deviation; n=3. More than 60 nuclei from each mouse were counted. Lep: Leptotene, Zyg: Zygotene, Pac-like: Pachytene-like, Pac: Pachytene, Dip: Diplotene, Dia: Diakinesis. Source data are provided as a Source Data file.

Disruption of the TERB1-TERB2 and the TERB2-MAJIN interactions leads to impairment of homologous association

(a) Immunostaining of SYCP3 and FISH detection of chromosome 5 on spermatocyte spreads from adult testes of different genotypes. (b) Quantification of the population of associated or separated chromosome 5. Data are from three independent experiments with different mice. Error bars: standard deviation; n=3. For each mouse, more than 50 spreads were counted for quantification. (c) IF-FISH analysis of chromosome 8 and SYCP3 on adult spermatocyte spreads. (d) Quantification of the population of associated or separated chromosome 8. Data are from three independent experiments with different mice. Error bars: standard deviation; n=3. For each mouse, more than 50 spreads or separated chromosome 8. Data are from three independent experiments with different mice. Error bars: standard deviation; n=3. For each mouse, more than 50 spreads were counted for quantification. Source data are provided as a Source Data file.

- SYCP3 - TelC - DAPI

The telomeric-NE attachment is disrupted in TERB2-deficient spermatocytes

IF-FISH analysis of telomeres (TelC-FISH) and SYCP3 immunostaining on sections of two-week-old testes of different genotypes as indicated. The zoom-in views show a nucleus for each genotype. Scale bars, $10 \mu m$.

FACS gating strategy examples

(a) Gating strategy example for Supplementary Figure 3b. (b) Gating strategy example for Supplementary Figure 3c.

Crystal data collection and refinement statistics

	TERB2 _{NTD} -TERB1 _{TBM} (Native)	TERB2 _{NTD} -TERB1 _{TBM} (Hg-SAD)
Data collection		
Wavelength	0.97853	0.97852
Space group	<i>P</i> 6 ₄ 22	<i>P</i> 6 ₄ 22
Cell dimensions		
a, b, c (Å)	126.9, 126.9, 90.4	124.8, 124.8, 89.3
α, β, γ (°)	90.0, 90.0, 120.0	90.0, 90.0, 120.0
Resolution (Å)	3.3	3.9
$R_{ m merge}$	0.076 (0.843) *	0.091 (1.188) *
Ι / σΙ	39.6 (2.4) *	264.0 (24.3) *
Completeness (%)	99.6 (96.1) *	100.0 (100.0) *
Redundancy	14.7 (9.9) *	246.2 (243.1) *
Refinement		
Resolution (Å)	46 96-3 30	
No of reflections	5 905	
$R_{\text{work}} / R_{\text{free}}$ (%)	28 9/33 7	
No. of atoms	20070000	
TERB2 _{NTD}	1.669	
TERB1 TBM	993	
Ion	1	
B-factors	-	
TERB2 _{NTD}	96.3	
TERB1 _{TBM}	99.2	
Ion	126.8	
R.m.s. deviations		
Bond lengths (Å)	0.003	
Bond angles (°)	0.629	
Ramanchandran plot		
Favored region	91.4%	
Allowed region	100.0%	
Outlier region	0.0%	

*Highest resolution shell is shown in parenthesis

Crystal data collection and refinement statistics

	MAJIN_TERB2
	(SeMet-SAD)
Data collection	
Wavelength	0.97776
Space group	C222
Cell dimensions	
a, b, c (Å)	107.7, 128.8, 86.9
α, β, γ (°)	90.0, 90.0, 90.0
Resolution (Å)	2.9
Rmerge	0.077 (0.655) *
Ι / σΙ	40.7 (3.4) *
Completeness (%)	99.9 (100.0) *
Redundancy	13.2 (13.5) *
Refinement	
Resolution (Å)	32.19-2.90
No. of reflections	13,729
$R_{\rm work} / R_{\rm free}$ (%)	21.2/26.2
No. of atoms	
MAJIN	2,632
TERB2	800
B -factors	
MAJIN	88.2
TERB2	101.9
R.m.s. deviations	
Bond lengths (Å)	0.013
Bond angles (°)	1.751
Ramanchandran plot	
Favored region	93.4%
Allowed region	100.0%
Outlier region	0.0%

*Highest resolution shell is shown in parenthesis

Observed and expected frequencies of genotypes in mice born from heterozygous Y56E and F188R mice

	Y56E		F188R			
	WT	Heterozygous	Homozygous	WT	Heterozygous	Homozygous
Observed no	52 (24.9%)	99 (47.4%)	58 (27.7%)	43 (26.5%)	79 (48.8%)	40 (24.7%)
Expected	25%	50%	25%	25%	50%	25%
χ^2	0.92		0.21			

 χ^2 is calculated by the sum of (observed-expected)²/expected. The null hypothesis (H0) is that pups were born close to the expected Mendelian ratio. Degrees of freedom (df) are 2.

Fertility studies

Mutant males mated with WT females

Mating	Y56E		F18	38R
	heterozygous	homozygous	heterozygous	homozygous
1	6	0	23	0
2	17	0	7	0
3	6	0	20	0
4	10	0	19	0
5	12	0	7	0
6	7	0	10	0

Mutant females mated with WT males

Mating	Y56E		F188R	
	heterozygous	homozygous	heterozygous	homozygous
1	6	0	5	0
2	7	0	10	0
3	6	0	8	0
4	4	0	2	0

For each genotype (Y56E heterozygous and homozygous, F188R heterozygous and homozygous) males (n=6) at 8 weeks were mated with two 8 week-old WT females for one consecutive month. After that females were sacrificed and the number of fetuses and pups was quantified. For each genotype (Y56E heterozygous and homozygous, F188R heterozygous and homozygous) females (n=4) at 8 weeks were mated with one 8 week-old WT females for one consecutive month. After that females were sacrificed and the number of fetuses and pups was quantified.