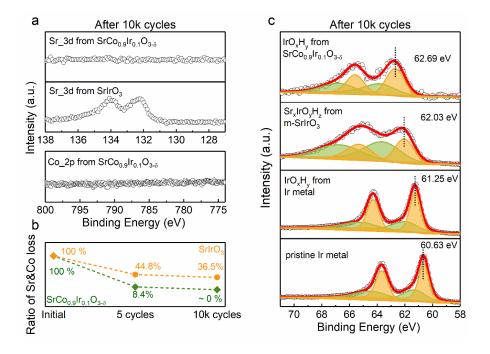
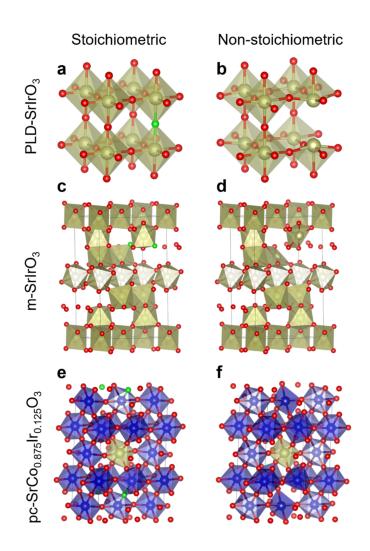

Supplementary information for

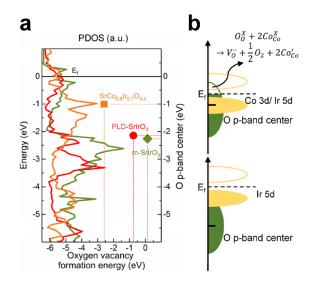
Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid


Chen et al.

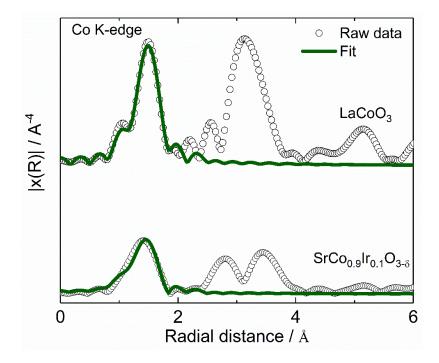
Supplementary Figure 1. CV of m-SrIrO₃. The CV measurements from m-SrIrO₃ during a 4h chronopotentiometric test at $10 \text{ mA cm}_{\text{GEO}}^{-2}$. The CV is recorded at 10 mV s^{-1} after pausing the chronopotentiometric test, and the current is normalized to BET surface area.

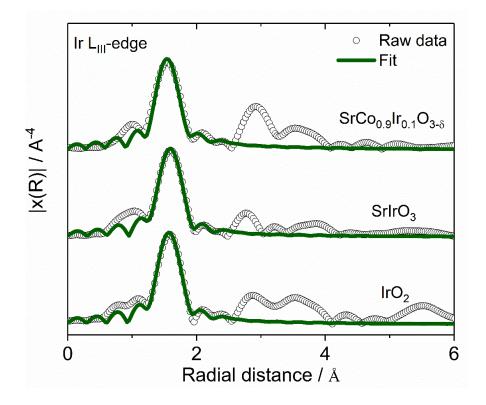


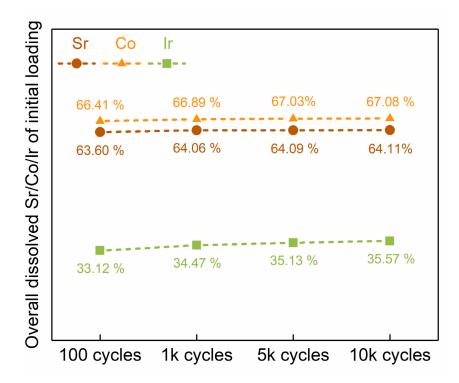
Supplementary Figure 2. Specific activity comparison in 5 cycles. Tafel plots of the specific activities of $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$ and $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ in 0.1 M HClO4. The $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ is a perovskite with cubic structure and is reported with good activity for OER in alkaline electrolyte.¹ The BET area for $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ is 0.100 m²g⁻¹. Here, firstly, the initial specific activity of $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ is one to two orders of magnitude lower than that of $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$. Secondly, within 5 cycles, the activity of $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ fast degraded while the $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$ maintained its activity. These two results confirmed Co itself in $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$ has little contribute to the observed activity of $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$. Additionally, as discussed in the following sections, a rapid dissolution of Sr and Co is expected in acidic electrolytes. The much lower current densities from $SrCo_{0.9}Ti_{0.1}O_{3-\delta}$ also indicate that the leaching of Sr and Co won't give a "fake" high OER current. It is indeed the Ir-rich surface on $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$ that gives the high OER activity. In addition, an estimated maximum current due to Sr and Co leaching in initial 5 cycles is more than two orders of magnitude lower than the measured OER current from $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$. (see the estimation of the current due to Sr and Co leaching in the **Methods**)

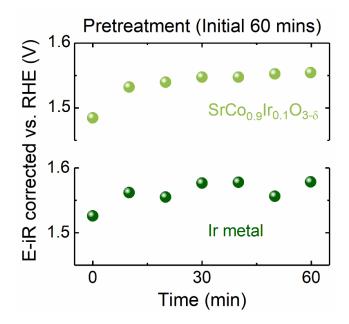


Supplementary Figure 3. XPS characterization. a, Sr_3d and Co_2p XPS from m-SrIrO₃ and SrCo_{0.9}Ir_{0.1}O_{3-δ} after 10k CV cycles. **b**, the ratio of residual Sr and Co in the surface of m-SrIrO₃ and SrCo_{0.9}Ir_{0.1}O_{3-δ} after 10k CV cycles. **c**, Ir_4f XPS from Ir, m-SrIrO₃, and SrCo_{0.9}Ir_{0.1}O_{3-δ} after 10k CV cycles. The signal from pristine Ir metal is also presented for comparison. XPS fit parameters for Ir_4f of all samples are shown in **Supplementary Table 5**.


As shown in **Supplementary Figure 3a**, after 10k cycles, the content of residual Sr and Co from the surface region of SrCo_{0.9}Ir_{0.1}O_{3- δ} is below the detection limitation of XPS. As summarized in **Supplementary Figure 3b**, a high amount of Sr (36.5 %) remains in the surface region of m-SrIrO₃ after 10k cycles. The spectra of Ir_4f from different samples are shown in **Supplementary Figure 3c**. The Ir_4f signal from Ir metal is also measured for comparison. By 10k cycles, the Ir_4f 7/2 peak shifts from 60.63 eV to 61.25 eV. This binding energy shift over Ir metal is similar to what has been reported in previous studies focusing on the formation of hydrous IrO_x on metallic Ir surface.^{2, 3} From m-SrIrO₃ after 10k cycles, a binding energy of 62.03 eV of Ir_4f 7/2 peak is observed. An even higher binding energy of 62.69 eV of Ir_4f 7/2 peak is observed from SrCo_{0.9}Ir_{0.1}O_{3- δ} is different from those formed on m-SrIrO₃ and Ir metal.


Supplementary Figure 4. Crystal structural models. The structural models for stoichiometric and non-stoichiometric PLD-SrIrO₃ (**a&b**), m-SrIrO₃ (**c&d**) and pc-SrCo_{0.875}Ir_{0.125}O₃ (**e&f**). The spheres in red, golden brown and blue colour represent O, Ir, and Co. The oxygen at the oxygen vacancy site is marked as green sphere. The Sr is not shown in all structural models. The non-stoichiometric phase for each compound is obtained after a comprehensive search for the most stable oxygen-deficient configuration.


Supplementary Figure 5. PDOS characterization. a, Calculated projected density of states (PDOS) of O 2p, O p-band centers, and oxygen vacancy formation energies from m-SrIrO₃, PLD-SrIrO₃ and SrCo_{0.9}Ir_{0.1}O_{3-δ}. The calculated O p-band center from SrCo_{0.9}Ir_{0.1}O₃ (-1.0 eV) is very close to the Fermi level. Instead, the O p-band centers from PLD-SrIrO₃ (-2.14 eV) and m-SrIrO₃ (-2.26 eV) are far away from the Fermi level. From a high vacancy formation energy of 0.14 eV, the formation of oxygen vacancies in m-SrIrO₃ is expected to be more difficult than SrCo_{0.9}Ir_{0.1}O₃. The PLD-SrIrO₃ is in pseudo-cubic structure and shows a relatively low vacancy formation energy of -0.75 eV, indicating the pseudo-cubic structure can facilitate the formation of oxygen vacancies. Nevertheless, a high amount of oxygen vacancies is expected in the SrCo_{0.9}Ir_{0.1}O₃ due to a much low vacancy formation energy of -2.59 eV. **b**, Schematic of band structures for PLD-/m-SrIrO₃ and SrCo_{0.9}Ir_{0.1}O₃. The formation of oxygen vacancies with the release of O₂ is presented using Kroger-Vink notation. A strong hybridization between O 2p band and Co 3d/Ir 5d in the SrCo_{0.9}Ir_{0.1}O₃ induces the release of lattice oxygen for the formation of oxygen vacancies.


Supplementary Figure 6. EXAFS fitting. Fourier transformed k3-weighted Co K edge EXAFS recorded from LaCoO₃ and SrCo_{0.9}Ir_{0.1}O_{3- δ}. A one-shell model was used to fit the first peak in the FT EXAFS spectra. The fitting ranges in k-space and R-space are 2-12 Å⁻¹ and 1-2 Å, respectively. Detailed results are in **Supplementary Table 7**.

Supplementary Figure 7. EXAFS fitting. Fourier transformed k3-weighted Ir L_{III}-edge EXAFS recorded from $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$, $SrIrO_3$ and IrO_2 . A one-shell model was used to fit the first peak in the FT EXAFS spectra. The fitting ranges in k-space and R-space are 2-12 Å⁻¹ and 1-2 Å, respectively. Detailed results are in **Supplementary Table 8**.

Supplementary Figure 8. Cation dissolution during CV. Overall dissolved Sr, Co, and Ir as % of initial loading during the CV cycling test from Figure 5a. At the first 100 cycles, a mass loss of 63.60 %, 66.41 %, and 33.12 % is found for Sr, Co, and Ir, respectively. This is due to the initial surface reconstruction process. Nevertheless, in the following 9.9k cycles, only tiny amounts of Sr, Co, and Ir are dissolved from $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$.

Supplementary Figure 9. Pre-treatment by chronopotentiometry. The pre-treatment (initial 60 min) by chronopotentiometry at 10 mA cm⁻² for SrCo_{0.9}Ir_{0.1}O_{3-δ} and Ir metal.

	SrCo _{0.9} Ir	0.103-δ				
Space	P nma					
group						
a(Å)	5.4620	6(5)				
b(Å)	7.7716	5(1)				
c(Å)	5.4634	4(5)				
	Sr					
Wyckoff	4c					
site	(0.0048(12), 1/4	, -0.0049(38))				
Occ.	1					
Uiso (Å ²)	J _{iso} (Å ²) 0.0273					
	Со	Ir				
Wyckoff	4b					
site	(0, 0, 1)	1/2)				
Occ.	0.907(0.003)	0.093(0.003)				
Uiso (Å ²)	0.032	26				
	01					
Wyckoff	4c					
site	(0.0682(57), 1/4	4, 0.493(13))				
Occ.	1*					
Uiso (Å ²)	0.06	61				
	02					
Wyckoff	8d					
site	(0.200(2), -0.0070((63), 0.2549(31))				
Occ.	1*					
Uiso (Å ²)	0.08	71				

Supplementary Table 1. Refined structure information

*The occupancy of oxygen was fixed during the refinement.

	Pristine SrIrO ₃				5 times cycled m-SrIrO ₃			
				Ś	Sr			
	3d _{3/2}	3d5/2	3d _{3/2}	3d5/2	3d _{3/2}	3d5/2	3d _{3/2}	3d5/2
Binding energy (eV)	132.3	130.55	133.35	131.81	132.88	131.15	134.49	132.62
FWHM (eV)	1.09	1	2.69	2.42	0.97	1.08	3.51	2.77
]	ĺr			
	4f5/2	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f5/2	4f _{7/2}	4f5/2	4f _{7/2}
Binding energy (eV)	63.33	60.33	64.7	61.7	64.19	61.19	66.35	63.35
FWHM (eV)	1.87	1.57	2.96	3.15	2.59	1.98	4.19	3.99

Supplementary Table 2. XPS fit parameters for Sr_3d and Ir_4f of m-SrIrO3

	Pr	istine Sr	Co _{0.9} Ir _{0.1} C) _{3-δ}	5 tim	es cycled	SrC0 _{0.9} Ir ₀	.1 Ο 3-δ
				5	Sr			
			3d _{3/2}	3d5/2				
Binding energy (eV)	/	,	133.6	131.83		,	/	
FWHM (eV)			2.42	2.38				
]	[r			
	$4f_{5/2}$ *	4f _{7/2}	4f5/2	4f _{7/2}	4f5/2	4f _{7/2}	4f5/2	4f _{7/2}
Binding energy (eV)	62.7	59.7	64.98	61.98	63.98	60.98	65.53	62.53
FWHM (eV)	2.84	2.84	2.79	2.79	2.33	1.75	4.14	4.29

Supplementary Table 3. XPS fit parameters for Sr_3d and Ir_4f of SrCo_{0.9}Ir_{0.1}O₃₋₈.

* The FWMH for the doublet from Ir_4f in Pristine $SrCo_{0.9}Ir_{0.1}O_{3-\delta}$ is constrained to be equal.

		4f _{5/2}	4f _{7/2}	$4f_{5/2}sat_1$	$4f_{5/2}$ sat ₂	$4f_{7/2}sat_1$
Pristine	Binding energy (eV)	64.59	61.61	65.56	67.6	62.57
IrO ₂	FWHM (eV)	1.11	0.92	2.19	2.01	2.41
Cycled	Binding energy (eV)	64.61	61.63	65.49	67.76	62.51
IrO ₂	FWHM (eV)	1.06	0.95	2.49	2.31	2.76

Supplementary Table 4. XPS fit parameters for Ir_4f of IrO₂.

	Pristine Ir			10k times cycled m-SrIrO ₃			rO ₃	
	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}
Binding energy (eV)	63.67	60.63	64.41	61.28	65.28	62.03	66.71	63.63
FWHM (eV)	1.04	0.88	2.77	2.03	2.13	1.63	3.72	3.15
		10k times	cycled Ir		10k times cycled SrC00.9Ir0.1O3-δ			
	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}	4f _{5/2}	4f _{7/2}
Binding energy (eV)	64.28	61.25	65.21	61.97	65.58	62.69	66.8	63.84
FWHM (eV)	1.02	0.91	3.1	2.45	1.55	1.59	2.84	2.84

Supplementary Table 5. XPS fit parameters for Ir_4f of pristine Ir and 10k times cycled Ir, m-SrIrO₃, and SrCo_{0.9}Ir_{0.1}O_{3-δ}.

Sample	O vacancy percent (%)	Oxygen vacancy formation
		enthalpy (eV)
PLD-SrIrO ₃	4.167	-0.74589
m-SrIrO ₃	3.125	0.14067
$SrCo_{0.9}Ir_{0.1}O_{3-\delta}$	4.167	-2.58998

Supplementary Table 6. Oxygen vacancy formation enthalpy

Supplementary Table 7. Fitting parameters of the Fourier-transformed k³-weighted Co Kedge EXAFS from LaCoO₃ and SrCo_{0.9}Ir_{0.1}O_{3-δ}.

	Co-O (Å)	CN ¹	$\sigma^2 (\text{\AA}^2)^2$	ΔE_0^3
LaCoO ₃	1.927(0.009)	6.0(0.5)	0.0031(0.0012)	0.19(0.96)
SrCo0.9Ir0.1O3-8	1.909(0.012)	4.1(0.5)	0.0070(0.0019)	-0.77(1.22)

1. **CN:** Coordination number

2. σ^2 : Mean-square-displacement in R

3. ΔE_0 : Energy shift

Supplementary Table 8. Fit parameters of the Fourier-transformed k3-weighted Ir L_{III}edge EXAFS from IrO₂, m-SrIrO₃ and SrCo_{0.9}Ir_{0.1}O_{3-δ}.

	Ir-O (Å)	CN	σ^2 (Å ²)	ΔE_0
IrO ₂	1.970(0.019)	6.0(1.0)	0.0016(0.0024)	12.6(2.2)
m-SrIrO ₃	1.989(0.020)	6.3(1.2)	0.0022(0.0026)	13.4(2.3)
$SrCo_{0.9}Ir_{0.1}O_{3\text{-}\delta}$	1.933(0.019)	4.9(0.9)	0.0006(0.0023)	12.5(2.3)

Supplementary References

- Su C, *et al.* SrCo_{0.9}Ti_{0.1}O_{3-delta} as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. *Acs Appl. Mater. Inter.* 7, 17663-17670 (2015).
- 2. Li T, *et al.* Atomic-scale insights into surface species of electrocatalysts in three dimensions. *Nat. Catal.* **1**, 300-305 (2018).
- 3. Pfeifer V, *et al.* The electronic structure of iridium oxide electrodes active in water splitting. *Phys Chem Chem Phys* **18**, 2292-2296 (2016).