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Supplementary Methods 
 
Ventricular model 
The beating heart simulation is performed with a rotationally symmetric left ventricle 
model, as shown in Fig. S4. The ventricular wall is simultaneously stimulated by the same 
time profile of calcium ion concentration as the single twitch simulation. The 
momentum equation of the heart wall is given as follows.   
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Here, Ω<  is the ventricle wall in the unloaded condition, 𝒖 = 𝒖(𝑿, 𝑡)  is the 
displacement of the material point 𝑿 ∈ Ω< at time 𝑡, and 𝜌 is the density of the heart 
muscle (𝜌 = 1.366Kg/mJ ). ΓK  is the blood–wall interface at time 𝑡  and 𝒏  is the 
outward normal vector on ΓK. 𝑃567	is the intracavity pressure, which is determined by 
combining the conservation equation of the blood volume:  
 
𝑉̇567 = 𝐹NO − 𝐹QRK 
 
where 𝑉567 is the intracavity volume, 𝐹NO	is the inflow from the preload and the 𝐹QRK 
is the outflow to the afterload. These flows are determined from the relationship 
between the intracavity pressure 𝑃567 and the pressure behind the valves, represented 
by the rectifiers in Fig. S4.  
𝜫 is the first Piola-Kirchhoff stress tensor, composed of active and passive stresses:  
 
𝜫 = 𝜫act + 𝜫pas 
 
The active stress 𝜫act is derived from the active tension 𝑇YZK with  
 



𝜫act =
𝑇YZK
𝜆 𝒇⨂𝒇 ⋅ 𝑭2					 

 
where 𝑭 = 𝑰 + ∂𝒖/ ∂𝑿  is the deformation gradient tensor and 𝜆 = ‖𝑭𝒇‖  is the 
stretch along the myofibril fiber direction1. The fiber orientation is twisted from 90 to -
60 degrees in the circumferential direction, from the internal wall to the outer wall, 
along the transmural direction. The active tension 𝑇YZK per unit area in the unloaded 
configuration, the nominal stress, is given by 	
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Here, the dynamics Monte Carlo simulation for a half-sarcomere model composed of 
𝑛h=12 pairs of thick and thin filaments are performed in each finite element to give the 
individual spring force 
 

𝐹mn 𝜉N,l	
	 p = 1/2𝑘 𝜉N,l	

	 w 
 
with strain 𝜉N,l  of the attached myosins ( 𝛿k,N,l = 1 ). The stiffness is supposed 
asymmetric with values of 2 pN/nm in tension and 0.4 pN/nm in compression (for details 
see Marcucci et al.2). The spring strain 𝜉N,l  at time 𝑡 was given by considering the 
power stroke distance 𝑝𝑠N,l(𝑡)  and the sliding distance from the most recent 
attachment time 𝑡k,N,l  
 

𝜉N,l(𝑡) = 𝜉N,ln𝑡k,N,lp + 𝑝𝑠N,l(𝑡) +
1
2 𝑆𝐿< {𝜆

(𝑡) − 𝜆n𝑡k,N,lp| , t > 𝑡k,N,l	

 
Here, 𝑆𝐿<  is the sarcomere length in the unloaded condition, and the initial strain 
𝜉N,ln𝑡k,N,lp at the attachment was randomly chosen from the Boltzmann distribution 
determined by the strain energy of the spring. The above dependence of the spring 
strain on the stretch 𝜆 of the finite element is the feedback from the finite element 
ventricle model to the Monte Carlo molecular model. On each thick filament, there are 
𝑛m  myosin molecules, which underwent repeated attachment and detachment with 
the thin filament. The value of 𝑛m = 49 takes into account the geometry of the 
sarcomere and the bi-dimensional simplification used in the model as described in our 
previous work2. 𝑆𝐴< is the cross-sectional area of a single thin filament and 𝑅d=0.5 



denotes the volume density of the muscle fibers within trabecula. The details of how to 
deal numerically this coupling in the simulation is given in our previous work1. 
The passive stress is determined by the potential:  
 
𝑊�6� = 𝑊������ + 𝜅(det(𝑭) − 1)w +𝑊�����(𝜆) +𝑊����6���(𝜆)	 
 
The first term represents the homogeneous potential of the Mooney-Rivlin body:  
 
𝑊������ = 𝑐s(𝐼�s − 3) + 𝑐w(𝐼�s − 3)w + 𝑐J(𝐼�s − 3)w(𝐼�w − 3) 
 

Here, 𝐼�s = det(𝑪)�s/J𝑇𝑟(𝑪) , 	𝐼�w = det(𝑪)�w/J {𝑇𝑟(𝑪)w − 𝑇𝑟(𝑪𝟐)|  represents 

reduced invariant determined by the right Cauchy-Green deformation tensor 𝑪 = 𝑭2𝑭 
(c1=40Pa, c2=2000Pa, c3=40Pa). The second term is the potential for volumetric 
deformation (𝜅 = 10�Pa). The third and fourth terms represent the potentials given by 
titin and collagen. These potentials are functions of the stretch 𝜆  along the fiber 
direction.  
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Supplementary Figures: 
 

 

Figure S1: Percentages of active motors in the relaxed muscle with and without the 
effect of the MyBP-C. Under the simplification that myosin binding protein-C (MyBP-C) 
has no stabilizing effect in the myosin SRX state, a uniform and random distribution of 
the constitutively active motors is generated (crosses). To include the stabilizing effect, 
as an extreme case, a complete stabilization of the OFF state is assumed in the C-zone 
of the thick filament (about one half of the whole length starting from the M-line), 
while along the rest of the filament is imposed a uniform and random distribution 
(filled circles). In both cases, the whole amount of constitutively ON motors is the 
same (3%). 
 
  



 
Figure S2: Effect of the different distributions of the constitutively active motors due to 
the presence of the MyBP-C, on the activated regions at high [Ca2+]. At SL=1.9 µm (upper 
figure), the simulated effect of the MyBP-C (circles), leads to a wider fully activated 
region at high [Ca2+], and, consequently, to a higher tension with the same parameters 
for the active cycle, respect the uniformly distributed constitutively active heads 
(squares). The effect is seen also at SL=2.3 µm (lower figure), even though the difference 
is smaller due to the wider fully activated region for the longer SLs.  



 

Figure S3: Normalized tension-[Ca2+] at different SLs, in the presence or absence of the 
stabilizing effect of the MyBP-C. When normalized on the maximum tension generated 
at SL=1.9 µm, the increase of the tension at higher SLs is smaller when the 
constitutively active motors are concentrated toward the free end of the thick filament 
by the supposed stabilizing effect of the MyBP-C. This is due to the simulated smaller 
reservoir, related to the wider fully activated region. 
  



 
Figure S4: Finite element ventricle model. A rotationally symmetric model has been used 
for the FEM of the left ventricle. Lumped model for the peripheral circuit, fiber 
orientation and calcium transients are also shown and described in the text. 


