SUPPLEMENTAL MATERIAL TO:

Toll-like receptor signaling drives Btk-mediated autoimmune disease

Jasper Rip¹, Marjolein J.W. de Bruijn¹, Marjolein K. Appelman¹, Simar Pal Singh^{1,2}, Rudi W. Hendriks^{1,#} and Odilia B.J. Corneth^{1,#}

¹Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands

² Department of Immunology, Erasmus MC Rotterdam, The Netherlands

[#]Authors contributed equally

Antigen	Fluorochrome	Clone	Manufacturer
Flow cytomet	rv		
B220	AF700	RA3-6B2	BD Biosciences
CD1d	BV421	1B1	BD Biosciences
CD3	APC-efl780	17A2	eBioscience
	BV421	145-2C11	BD Biosciences
CD4	AF700	GK1.5	eBioscience
	PCP-cy5.5	RM3-5	eBioscience
CD5	APC	Ly-1	eBioscience
CD11b	AF700	M1/70	eBioscience
CD19	APC-ef780	1D3	BD Biosciences
	PCP-Cy5.5	eBio1D3	eBioscience
CD21/35	FITC	eBio4E3	eBioscience
	BV605	7G6	BD Biosciences
CD23	PE-Cy7	B3B4	BD Biosciences
CD25	BV605	PC61	Biolegend
CD43	PE	S7	BD Biosciences
CD80	PCP-cy5.5	GL1	BD Biosciences
CD86	PE-cy7	GL1	BD Biosciences
CD95	PE-CF594	Jo2	BD Biosciences
CD138	APC	281-2	BD Biosciences
IgD	FITC	11-26c.2a	eBioscience
	BV711	11-26c.2a	BD Biosciences
lgM	PE-Cy7	II/41	BD Biosciences
lgG1	FITC	A85-1	BD Biosciences
CTLA4	PE	UC10-4F10-11	BD Biosciences
CXCR5	Biotin	2G8	BD Biosciences
FoxP3	FITC	FJK-16s	eBioscience
ICOS	APC	C398.4A	eBioscience
IFN-γ	PE-Cy7	XMG1.2	eBioscience
IL-6	PE	MP5-20F3	BD Biosciences
IL-10	FITC	JES5-16E3	eBioscience
PD-1	BV421	J43	BD Biosciences
TLR7	PE	A94B10	BD Biosciences
TLR9	PE	J15A7	BD Biosciences
Streptavidin	APC-efl780	-	eBioscience
	PE-Cy7	-	eBioscience
	BV711	-	BD Biosciences

Table S1A. Antibodies used for FACS

Antigen	Fluorochrome	Clone	Manufacturer
Phosphoflow			
CD3	BV421	145-2C11	BD Bioscience
B220	AF700	RA3-6B2	BD Biosciences
lgD	BV711	11-26c.2a	BD Biosciences
lgM	PE-Cy7	II/41	BD Biosciences
pCD79a (Y182)	AF647	D1B9	Cell signaling Technologies
pSyk (Y348)	PE	L120-722	BD Biosciences
pAkt (T308)	-	D25E6	Cell signaling Technologies
pAkt (S473)	-	D9E	Cell signaling Technologies
pPLCγ2 (Y759)	AF647	K86-689.37	BD Biosciences
pS6 (S240/S244)	-	D68F8	Cell signaling Technologies
anti-Rabbit	PE	-	Jackson ImmunoResearch
Streptavidin	BV786	-	BD Biosciences

Table S1B. Antibodies used for Phosphoflow

 Table S1C.
 Antibodies used for MACS procedures

Antigen	Fluorochrome	Clone	Manufacturer
CD5	Biotin	53-7.3	BD Bioscience
CD11b	Biotin	M1/70	eBioscience
CD138	Biotin	281-2	BD Bioscience
CD43	Biotin	eBioR2/60	eBioscience
CD95	Biotin	Jo2	BD Bioscience
Gr-1	Biotin	RB6-8C5	eBioscience
TER-119	Biotin	TER119	eBioscience

Genotype		Reactivity of autoantibodies*)
Wild-type	#1	-
	#2	-
	#3	-
CD19-hBtk	#1	Histones (++), RNP-A (++), RNP-C (++)
	#2	RNP-A (++), RNP-C (+)
	#3	Histones (++), RNP-A (++), RNP-C (++), SmB (+)
	#4	RNP-A (+)
	#5	Histones (++), RNP-A (++), RNP-C (++)
	#6	Histones (++), RNP-A (++), RNP-C (++)
	#7	Histones (++), RNP-A (+), RNP-C (+)
Myd88 ^{-/-} CD19-hBtk	#1	-
	#2	-
	#3	-

Table S2. Autoantibody reactivity in aged WT, CD19-hBtk mice and *Myd88^{-/-}* CD19-hBtk mice.

*) Autoantibody reactivity in 28-33 week-old mice, as measured by Line Immunoblot Assay.

Supplementary Figure 1. Gating strategy phosphoflow and analysis of pCD79a and pPLC γ 2 in B cells after stimulation.

(A) Gating strategy for live cells by viability marker staining, followed by gating for single lymphocytes. From live lymphocytes, we gated for splenic B cells (B220⁺CD3⁻IgD⁺IgM⁺). (B) Fold Change (FC) increase of median fluoresence intensity (MFI) values compared to WT unstimulated (which was set to 1.0) for phosphorylation of CD79a and PLC γ 2 in B cells that were activated by the indicated stimuli. Symbols represent individual mice and bars indicate mean values.CD19-hBtk and WT mice were 8-10 weeks old; n = 4-5 per group; **p<0.01 by Mann-Whitney U test.

Supplementary Figure 2. Gating strategy for cytokine stainings, B cell subsets and plasma cells.

(A) For all stainings, we first gated for single live B and T cells, based on CD19 and CD3 expression. (B) For B cell subset cytokine staining, we gated within CD19⁺CD3⁻ B cells for CD5⁺ B-1 cells (CD19⁺B220^{int}CD5⁺), marginal zone B cells (CD19⁺B220⁺CD1d^{high}CD23⁻IgD⁻) and follicular B cells (CD19⁺B220⁺CD1d⁻CD21⁺CD23⁺IgD⁺). Expression of IFNγ, IL-6 and IL-10 within total B cells are shown as examples. (C) From B cells, we gated for germinal center B cells (CD19⁺IgD⁻CD95⁺). (D) From T cells, we gated on CD4+ cells that highly express PD-1 and are CXCR5-positive. Foxp3 and CTLA4 were used to separate T follicular helper cells (Tfh; CD3⁺CD4⁺CXCR5⁺PD1⁺FoxP3⁻) and T follicular regulatory cells (Tfr; CD3⁺CD4⁺CXCR5⁺PD1⁺FoxP3⁺); representative flow cytometry graphs for these gating strategies. (E) From CD11b-negative lymphocytes, we gated for IgM⁺, IgG1⁺ and IgG2bc⁺ plasma cells (PC; CD11b⁻IgG1⁻IgG2bc⁻IgM⁺CD138⁺, CD11b⁻IgG1⁺CD138⁺ and CD11b⁻IgG2bc⁺CD138⁺ respectively).

Supplementary Figure 3 (**A**) Retrospective Kaplan-Meier incidence curve showing *IgH.TE* μ mice (solid line) and *Myd88* ^{-/-} *IgH.TE* μ mice (dotted line). (**B**) Pie chart summarizing frequencies of splenic PtC-recognizing (PtC⁺) and non PtC-recognizing (PtC⁻) CLL cases from nine *IgH.TE* μ mice (*left*) and eleven *Myd88* ^{-/-} *IgH.TE* μ mice (*right*), as indicated. Log Rank test was performed to calculate the significance for survival differences between indicated groups.

Supplementary Figure 4. The autoimmune phenotype of CD19-hBTK mice, compared with *Myd88^{-/-}* CD19-hBtk mice.

(A) Absolute numbers of bone marrow (BM) IgM⁺, IgG1⁺ and IgG2bc⁺ plasma cells (PC; CD11b⁻IgG1⁻ IgGbc⁻IgM⁺CD138⁺, CD11b⁻IgG1⁺CD138⁺ and CD11b⁻IgG2bc⁺CD138⁺ respectively). Numbers are per single femur. (B) Histological analysis of salivary gland sections for CD3⁺ T cells (blue) and IgM⁺ B cells (red) (top panel) and GL7⁺ GC B cells (blue) and IgD⁺ B cells (red) (lower panel) at 28-33 weeks of age. Representative pictures are shown, n= 3 per group. (C) Histological analysis for IgM (upper panel) and IgG2c (lower panel) immune complex deposition in kidney glomeruli at 28-33 weeks of age. Representative pictures are shown, n= 3 per group. (D) Line Immunoblot Assay (LIA) for extractable nuclear antigens. The indicator reference is located on the left. On top of the LIA strips, five immunoblots are indicated by numbers: the cut-off control (1) and representative pictures of CD19-hBtk (2,3), wild-type (4) and *Myd88^{-/-}* CD19-hBtk (5) mice. Only CD19-hBtk mice stained positive for autoantibodies, in these specific cases for RNP-A, RNP-C and histones.