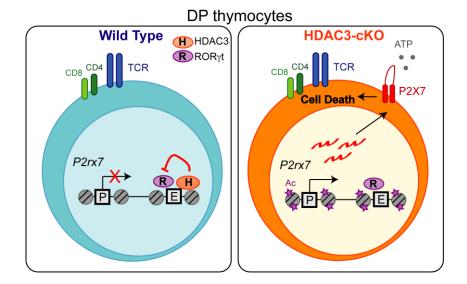

Supplementary Figures



Supplementary Figure 1. P2X7 receptor expression during T cell development. (A) Expression profile of P2rx7 in thymic developmental stages (DN1-SP) and splenic naive CD4 and CD8 T cells. RNA-seq data was acquired from the Immunological Genome Consortium via the RNA-seq Gene Skyline (immgen.org). (B) P2X7 receptor protein expression in DN (CD4 CD8), ISP (CD4 CD8 TCR β), DP (CD4 CD8 CD8), CD4SP (CD4 CD8 TCR β), and CD8SP (CD4 CD8 TCR β). FACS plot depict representative P2X7 receptor expression for each thymic stage and its corresponding gMFI. The plot below depicts mean \pm SEM of gMFI of 4 mice from 3 independent experiments.

Supplementary Figure 2. Etoposide treatment of WT and HDAC3-deficient thymocytes.

Thymocytes from WT and HDAC3-cKO mice were treated with or without 2.5ug/mL of etoposide for 1 hour or 18.5 hours. Plots show mean ± SEM of the frequency of YO-PRO-1⁺ DP thymocytes from 3-4 mice per group. Plots were gated from FVD (to remove necrotic cells) DP thymocytes. Etoposide treatment does not increase YO-PRO-1 staining after one hour, however after 18.5 hours etoposide treatment leads to a similar frequency of YO-PRO-1⁺ DP thymocytes between WT and HDAC3-cKO mice.

Supplementary Figure 3. Model. In WT DP thymocytes, HDAC3 associates with the P2rx7 enhancer to repress its expression and reduce DP thymocyte sensitivity to extracellular ATP. However, when HDAC3 is absent, the P2rx7 gene locus is hyperacetylated, ROR γ t promotes the expression of P2rx7, and HDAC3-deficient DP thymocytes show increased cell death via ATP. Hence, HDAC3 may function to repress ROR γ t transcriptional activity at the P2rx7 enhancer to repress P2rx7 expression in DP thymocytes.