CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

A Synthetic Mirror Image of Kalata B1 Reveals that Cyclotide Activity Is Independent of a Protein Receptor

Lillian Sando,^[a] Sónia Troeira Henriques,^[a, b] Fiona Foley,^[a] Shane M. Simonsen,^[a] Norelle L. Daly,^[a] Kristopher N. Hall,^[c] Kirk R. Gustafson,^[d] Marie-Isabel Aguilar,^[c] and David J. Craik^{*[a]}

cbic_201100450_sm_miscellaneous_information.pdf

Figure S.1. Two-dimensional ¹H NMR spectra of D-kalata B1 (500 MHz, 298 K, pH 5.2, 95% $H_2O / 5\% D_2O$). A) TOCSY spectrum with spin systems identified. Resonances for Gly11, Asn15 and Asn29 are absent from this display due to exchange broadening but were identified at lower pH. Trp23 was absent from the TOCSY spectra but could be identified by NOESY. B) Fingerprint region of NOESY spectrum with intra-residual H α -HN crosspeaks labelled with residue numbers, red and blue lines corresponding to intra and inter-residual steps respectively illustrate the sequential walk, which is used to link the spin systems together during the assignment process. The sequential connectivity pattern is broken at the Pro residues, Gly¹¹ and Asn²⁹. Crosspeaks for the latter two were observed in spectra recorded under other solution conditions and are indicated by boxes.

Figure S.2. Schematic representations of spectral data and secondary structure for D-kalata B1. A) Summary of the sequential and medium range NOE connectivities for D-kalata B1. The chemical shift index (CSI) for each residue is shown as a bar plot, with values of ± 1 indicating a shift deviation from random coil values of > 0.1 ppm, The ${}^{3}J_{HN-H_{-}}$ coupling constants above 8 Hz and below 6 Hz are shown as filled triangles pointing upward or downward, respectively. The ϕ angle restraint of 100° \pm 80° for Val¹⁰ is represented as an open triangle. Residues with χ_{1} angle restraints are shown as filled bars, slowly exchanging amide protons as filled circles and sequential and medium-range NOEs shown with heights corresponding to the relative NOE intensities. B) Schematic diagram of the secondary structure of D-kalata B1 showing the interstrand NOE (solid lines) and potential hydrogen bonds (dashed lines). Inter-residual HN-HN, H α -HN and H α -H α NOEs are shown with arrows. For clarity, sequential NOEs are omitted. The α -carbon atoms are labelled according to their residue numbers. The peptide bonds between the proline residues and their preceding residues are denoted as either *cis* or *trans*. The hydrogen bonds were inferred from slow exchange data and preliminary structure calculations.

Figure S.3. Membrane binding of native kalata B1 and D-kalata B1 analysed by surface plasmon resonance. A) Native kalata B1 and B) D-kalata B1 were injected during 180 s (association phase) over POPC/POPE (4:1) lipid surfaces deposited on a L1 chip. Dissociation of the peptide from the membrane was followed for 600 s (dissociation phase). Different concentrations of peptide were injected (0, 5, 10, 20, 30, 40, 50, 60, 80 μ M), and selected sensorgrams are labelled to assist with identification. C) Deposition of membrane vesicles composed of POPC/POPE (4:1) in the L1 chip (2 μ L/min, 25 min). 20 mM NaOH solution was injected after the lipid deposition to remove loosely bound vesicles. The peptide was injected over the lipid surface during 180 s (here exemplified with 50 μ M 75% L / 25% D-kalata B1 mixture) and peptide dissociation was followed for 600 s. Peptide/lipid ratio at the end of peptide association phase can be determined by converting the response units (RU) into moles of peptide and lipid (1 RU ~ 1pg/mm² of lipid or peptide). M_w POPC/POPE (4:1) ~ 752; M_w kalata B1 = 2892.33.

Residue	HN	Hα	Hβ	Others
Gly	8.667	4.14, 3.487	-	
Leu ²	7.649	4.962	1.812, 1.592	Hγ 1.384, Hδ ₁ * 0.881, Hδ ₂ * 0.808
Pro ³	-	4.964	2.353, 1.627	H δ * 3.667, H γ 2.054, 1.946
Val ⁴	8.035	4.559	2.486	Hγ ₁ * 0.774, Hγ ₂ * 0.73
Cys⁵(I)	7.966	4.342	3.271, 2.94	
Gly ⁶	8.38	3.697, 3.606	-	
Glu ⁷	7.042	4.638	1.737, 1.675	Hγ 2.361, 2.188
Thr ⁸	8.418	4.435	4.32	Η _{γ2} * 1.035
Cys ⁹ (II)	8.223	4.93	3.092, 2.701	
Val ¹⁰	8.486	3.689	1.958	Hγ ₁ * 0.927, Hγ ₂ * 0.861
Gly ¹¹	8.549	4.187, 3.715	-	
Gly ¹²	8.157	4.359, 3.954	-	
Thr ¹³	7.758	4.602	3.972	Hγ ₂ * 1.024
Cys ¹⁴ (III)	8.461	4.588	2.971, 2.558	
Asn ¹⁵	11.477	4.586	2.648, 2.648	Hδ ₂₁ 7.566, Hδ ₂₂ 6.755
Thr ¹⁶	9.741	4.177	3.733	Η _{γ2} * 1.213
Pro ¹⁷	-	4.141	2.212, 1.795	Hδ 4.108, 3.593, H γ 2.033, 1.899
Gly ¹⁸	8.695	4.095, 3.592	-	
Cys ¹⁹ (IV)	7.6	5.257	3.736, 2.512	
Thr ²⁰	9.342	4.418	3.932	Η _{γ2} * 1.009
Cys ²¹ (V)	8.818	4.474	2.979, 2.676	
Ser ²²	8.866	4.667	3.753, 3.753	
Trp ²³	7.898	3.965	3.148, 3.148	$H\delta_1$ 7.214, $H\varepsilon_1$ 10.315, $H\varepsilon_3$ 7.318,
				Η η_2 7.115, Η ζ_2 7.417, Η ζ_3 7.005
Pro ²⁴	-	3.346	1.591, -0.405	Η δ 3.095, 3.095, Η γ 1.233, 1.16
Val ²⁵	8.2	4.089	1.816	Hγ ₁ * 0.765, Hγ ₂ * 0.716
Cys ²⁶ (VI)	7.626	4.948	3.127, 2.622	
Thr ²⁷	9.742	4.963	3.589	Η _{γ2} * 0.766
Arg ²⁸	8.612	4.641	1.607, 1.551	Hδ 3.093, 3.061, Hγ* 1.318
Asn ²⁹	-	4.292	2.979, 2.735	Hδ ₂₁ 7.502, Hδ ₂₂ 6.857

Table S.1. ¹H Chemical shifts (ppm) of D-kalata B1 at pH 5.2 and 298 K.

	Protein
NMR distance and dihedral restraints	
Distance constraints	
Total NOE	265
Intra-residue	0
Inter-residue	265
Sequential (<i>i – j</i> = 1)	109
Medium-range (<i>i – j</i> ≤ 4)	56
Long-range (<i>i – j</i> ≥ 5)	100
Intermolecular	0
Hydrogen bonds	10
Total dihedral angle restraints	
φ	15
χ1	9
Structure statistics	
Violations (mean and s.d.)	
Distance restraints (Å)	0.038 ± 0.002
Dihedral angle restraints (°)	0.44 ± 0.13
Max. dihedral angle violation (°)	2.5
Max. distance restraint violation (Å)	0.3
Deviations from idealized geometry	
Bond lengths (Å)	0.005 ± 0.0002
Bond angles (°)	0.67 ± 0.03
Impropers (°)	0.67 ± 0.026
Average pairwise r.m.s. deviation** (Å)	
Backbone	0.36 ± 0.10
Heavy	0.94 ± 0.19

Table S.2. NMR and refinement statistics for D-kalata B1