Appendix A: Supplmentary Data

Wt %	CI ¹	CI Fe free	EL Avg ²	EL Fe free	Bulk Earth ³	Bulk Earth Fe free
SiO ₂	34.00	52.99	41.51	60.55	34.44	51.230
TiO ₂	0.11	0.17	0.1	0.15	0.00	0.002
Al ₂ O ₃	2.50	3.90	2.14	3.12	3.00	4.469
Cr ₂ O ₃	0.00	0.00	0.27	0.39	0.00	0.010
Fe ₂ O ₃	0.00	0.00	0	0.00	0.000	0.000
FeO	36.16	0.00	0	0.00	0.000	0.000
MnO	0.39	0.61	0.15	0.21	0.00	0.002
MgO	24.58	38.31	22.43	32.72	25.54	37.986
CaO	2.03	3.16	0.69	1.00	2.39	3.559
Na ₂ O	1.04	1.62	0.82	1.19	0.24	0.361
K ₂ O	0.10	0.16	0.09	0.13	0.02	0.000
P_2O_5	0.00	0.00	0.23	0.34		0.000
H ₂ O+	0.00	0.00	0.23	0.35		0.000
H ₂ O-	0.00	0.00	0.14	0.20		0.000
Fe(m)		0.00	20.21	0.00	32.00	0.000
Ni		0.00	1.53	0.00	0.02	0.027
Со		0.00	0.08	0.00		0.000
FeS	0.00	0.00	8.57	0.00		0.000
С	0.00	0.00	0.25	0.36		0.000
Other	0.00	0.00	0.93	0.00		0.000
Total	100.91	100.91	100.34	100.70	97.66	97.65

Table A1. Bulk chemical compositions used for starting materials and bulk silicate Earth.

1. Newsom (1995); 2. Jarosewich (1990); 3. McDonough and Sun (1995)

evaporation process.	Model 1: Steady-state atmosphere	Model 2: Larger body in protostellar gas	Model 3: Smaller body in protostellar gas	Model 4: Free evaporation
Melt Radius (km)	700	700	50	50
PH_2 (far field) bar	1.000E-12	1.000E-04	1.000E-04	1.00E-12
P total (far field) bar	1.000E-08	1.083E-04	1.040E-04	1.04E-11
T (K)	2000	2000	2000	2000
ds/dt (cm/s)	6.801E-07	5.125E-07	5.264E-07	1.263E-05
wt%MgO	38.31	38.31	38.31	38.31
wt%SiO ₂	52.99	52.99	52.99	52.99
wt%CaO	3.16	3.16	3.16	3.16
$w\%Al_2O_3$	5.54	5.54	5.54	5.54
J_{evan}^{24} Mg (moles cm ⁻² s ⁻¹)	1.099E-07	8.317E-06	8.208E-06	1.099E-07
$J_{\rm net}^{24}$ Mg (moles cm ⁻² s ⁻¹)	6.091E-09	4.483E-09	4.553E-09	1.084E-07
PMg saturation (bar)	1.833E-05	1.388E-03	1.370E-03	1.833E-05
PMg (bar) adjacent surface	1.732E-05	1.387E-03	1.369E-03	2.502E-07
Saturation	0.94457	0.99946	0.99945	0.01365
$J_{\rm evan}^{28}$ Si (moles cm ⁻² s ⁻¹)	5.226E-07	3.956E-05	3.956E-05	5.226E-07
$J_{\rm net}^{28}$ Si (moles cm ⁻² s ⁻¹)	2.769E-08	2.070E-08	2.124E-08	5.124E-07
PSiO saturation (bar)	1.181E-04	8.940E-03	8.938E-03	1.181E-04
PSiO (bar) adjacent surface	1.118E-04	8.935E-03	8.933E-03	2.302E-06
Saturation	0.94701	0.99948	0.99946	0.01950
IC_{a} (moles cm ⁻² s ⁻¹)	2 761E-12	2 386F-12	7 420F-10	1 781F-08
I Al total (moles cm ⁻² s ⁻¹)	1 761E 20	1.960E-12	1 /31E 09	3 /35E 08
Total gas flux (moles cm^{-2}	1.70112-20	1.900E-24	1.45112-09	J.4JJE-00
s ⁻¹)	2.909E-08	2.518E-08	2.587E-08	6.208E-07
J ²⁴ Mg/J ²⁴ Mg _{congruent}	0.37272	0.36803	0.36877	0.36083
J ²⁸ Si/J ²⁸ Si _{congruent}	1.82470	1.82970	1.82890	1.83750
J Ca/ J Ca _{congruent}	0.00330	0.00330	0.00330	0.00344
$J \operatorname{Al}_{\text{total}}/J \operatorname{Al}_{\text{total, congruent}}$	1.092E-11	1.407E-15	2.050E-14	2.295E-07
$\alpha_{\rm eq}$ (melt/vapor) ²⁵ Mg/ ²⁴ Mg	1.000274	1.000274	1.000274	1.000274
$\alpha_{\rm evap}$ (vapor/melt) 25 Mg/ 24 Mg	0.986900	0.986900	0.986900	0.986900
$\alpha_{\rm net}$ (vapor/melt) ²⁵ Mg/ ²⁴ Mg	0.999106	0.999719	0.999719	0.987073
$\alpha_{\rm eq}$ (melt/vapor) ²⁹ Si/ ²⁸ Si	1.000617	1.000617	1.000617	1.000617
$\alpha_{\rm evap}$ (vapor/melt) ²⁹ Si/ ²⁸ Si	0.989800	0.989800	0.989800	0.989800
$\alpha_{\rm net}$ (vapor/melt) ²⁹ Si/ ²⁸ Si	0.998871	0.999379	0.999378	0.989985

Table A2. Parameters for four evaporation models as evaluated at t = 50 seconds into the evaporation process.

D 24 Mg gas (cm ² s ⁻¹)	3.6015E+08	34585.07	36015.02	3.6015E+11
D ²⁸ Si gas (cm ² s ⁻¹)	1.8504E+08	17771.53	18506.30	1.8506E+11