S6 Table. MAE of our proposed approach against the other model set-ups from the ensemble mean mean \pm sd estimate of the 50 runs. LSTM = LSTM model using the full depth of the Landsat time series and climate data; $LSTM_{perm} = LSTM$ model but the temporal patterns of both the predictive and the target variables were randomly permuted while instantaneous relationships between predictive and target variables were kept; $LSTM_{msc} = LSTM$ model but the Landsat time series for each band were replaced by their mean seasonal cycle, while using the actual values of air temperature (T_{air}), precipitation (P), global radiation (Rg), and vapor pressure deficit (VPD); $LSTM_{annual} = LSTM$ model but the Landsat time series for each band were replaced by their annual mean, while using the actual values of T_{air} , P, Rg, and VPD, RF = Random Forest model using the actual values of the Landsat time series and climate data. | | Seasonal | Seasonal anomaly | Across-site | Interannual anomaly | |-----------------|--------------------|--------------------|-------------------|---------------------| | LSTM | 0.81 ± 0.01 | 0.42 ± 0.003 | 0.48 ± 0.02 | 0.22 ± 0.003 | | $LSTM_{msc}$ | 0.83 ± 0.01 | 0.42 ± 0.002 | 0.50 ± 0.02 | 0.22 ± 0.002 | | $LSTM_{annual}$ | 0.89 ± 0.02 | 0.42 ± 0.006 | 0.51 ± 0.02 | 0.22 ± 0.006 | | $LSTM_{perm}$ | 0.86 ± 0.01 | 0.43 ± 0.003 | 0.50 ± 0.02 | 0.22 ± 0.003 | | RF | 0.91 ± 0.00004 | 0.51 ± 0.00008 | 0.51 ± 0.0001 | 0.24 ± 0.00009 |