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Supplementary Methods 1 

Scanning site effect 

In order to rule out potential effects of the recording site on the identified brain patterns, we 

computed four independent ANOVAs (one for each pattern) with the pattern rate of occurrences 

as dependent variables, and the patient’s clinical condition and scanning site as independent 

factors. None of the patterns’ occurrence probabilities were mediated by scanning site (main 

effect of scanning site: pattern 1, F(2,116)=1.5, p=0.22; pattern 2, F(2,116)=1.2, p=0.3; pattern 3, 

F(2,116)=0.99, p=0.4; pattern 4, F(2,116)=0.21, p=0.8). There was a significant main effect of the 

clinical condition on the occurrence probabilities for pattern 1 (F(2,116)=40, p<10
-13

), pattern 2 

(F(2,116)=3.6, p<0.03)
 
and pattern 4 (F(2,116)=24, p<10

-8
) but not for pattern 3 (F(2,116)=0.84, 

p=0.4). However, the scanning site × clinical condition interaction was not significant for any of 

the patterns (pattern 1, F(4,116)=1.3, p=0.28; pattern 2, F(4,116)=0.82, p=0.99; pattern 3, 

F(4,116)=1.1, p=0.4; pattern 4, F(4,116)=0.08, p=0.52). These results confirm the absence of a 

main effect due to the scanning site and the absence of an interaction between clinical condition 

and scanning site. 

 

Supplementary Methods 2 

Pattern characterization with graph theory markers  

To better characterize the identified patterns, a quantitative description by means of graph theory 

metrics was performed to reveal complexity that might not have been evident from the estimated 

coordination matrices. We estimated the patterns’ spatial complexity, weighted edged physical 

distance, modularity, efficiency, and their capacity for information flow (integration, segregation). 

A bootstrapping procedure (10.000 repetitions) was implemented to obtain a median and 

confidence value for each metric. In each repetition a phase coherence matrix was computed from 

the median of a random sampling of 3033 of images corresponding to each brain pattern in 

dataset 1. The sampling number (3033) was chosen as the 75% of the images corresponding to the 

pattern with the smallest representation.  

 

The spatial complexity of the patterns was estimated from the variance and entropy of the 

distribution of edge weights (fig. S2 A-D). Entropy was calculated by transforming the 

distribution of values into probability distributions and then applying Shannon’s formula, thus a 

higher entropy reflects a more uniform distribution of edge weights. The procedure was computed 

in 1 dimension (transforming the whole matrix into a single distribution) and 2 dimensions (using 



a sliding kernel of 11x11 elements and averaging the result for each kernel position). The relative 

distribution of the sum of positive / negative weights across patterns is displayed in fig. S2 E-F.  

 

The characteristic physical brain distance (fig. S2H) of each pattern was estimated from the 

average of the product of each edge weight (after taking its absolute value) by their respective 

euclidean distance (normalized by the maximum value).  

 

Efficiency was calculated based on the path length: high global efficiency suggests short mean 

path lengths, so that the information transfer can occur in parallel and more efficient processes. 

We computed the efficiency associated to each pattern from the corresponding matrices (after 

taking absolute values) applying the efficiency_wei command from the Brain Connectivity 

Toolbox (BCT) (fig. S2 K). 

 

The network modularity (Q) quantifies how well the network can be partitioned into communities 

or modules that maximize the proportion of intra-community edges and minimizes the proportion 

of inter-community edges. We computed the community structure and the associated modularity 

value of the weighted signed networks that correspond to each of the coordination patterns. This 

was performed applying the community_louvain function in BCT (fig. S2 L).  

 

Two related measures, integration and segregation, were calculated using the metrics proposed by 

Deco et al. Integration was defined as the size of the largest component in the matrix 

corresponding to each pattern. Segregation was defined as the size of the largest component in the 

matrix corresponding to the number of independent components. The components were obtained 

after identifying the corresponding connected nodes in the matrix. Note that we considered 

absolute values because our analysis accounted for communication between the nodes, 

independently of whether the coupling was positive or negative. To obtain a measure independent 

of the chosen threshold, the final result followed from computing the integral of this curve in the 

range of the thresholds between 0 and 1. (fig. S2 I-J).  

 

Finally, to estimate the network properties in relation to conscious states, for each individual the 

respective probability of each brain pattern was multiplied by the associated median of the 

corresponding metric. This procedure yielded weighted average values of the network properties 

for each individual. The results are summarized in fig. S3. 

  



 

Fig. S1. The four recurrent dynamic coordination patterns emerge at different dimensionalities. 

(A) Left: Dynamic functional coordination patterns obtained from Dataset 1 using k=3, 5, 6 and 7 

number of clusters in the k-means algorithm. For each value of k, patterns are ordered based on their 

similarity to underlying anatomical connectivity, from the least (left) to the most similar (right). Right: 

Probability of each pattern’s occurrence as a function of their similarity to the structural connectivity 

matrix for each k-means cluster size. The rate versus coherence-structure relationship is weak for 

healthy control individuals (green), suggesting a diversity of dynamic changes in typical wakeful 

conditions. The increased rate versus coherence-structure slope in patients (red, blue) suggests that 

spontaneous neuronal activity mostly traces the fixed network defined by structural connectivity. (B) 

Left panel shows the similarity of pattern 1 for k=4 with respect to all pattern obtained for k=3 to 7. 

Right panel presents a similar analysis for pattern 4. These results show an equivalence across the first 

and the last patterns obtained for different k-values. The fact that these patterns are the main source of 

distinction between clinical conditions suggest that the main results of our work are robust against 

variations in the k parameter. (C) The variability of dynamic coordination patterns found by the 

clustering procedure is maximal with k=4 clusters. For each selection of number of clusters in the k-



means algorithm, we computed the correlation matrices between all the upper triangular parts of the 

resulting centroids. These are the correlation matrices shown next to the symbols, which indicate the 

variance of their entries. The peak of the variance was found at k=4 clusters, indicating that this choice 

of the parameter for the k-means algorithm results in the highest variability of the patterns. For smaller 

k values, distinct patterns appear merged into a single one, while for larger k values repeated patterns 

appear, thus diminishing the variance. 

 

Notes: The patterns are ordered based on their similarity to underlying anatomical connectivity, from 

the least (left) to the most similar (right). HC: healthy controls, UWS: unresponsive wakefulness 

syndrome, MCS: minimally conscious state; pKW = Kruskal-Wallis test p-value, Rho= Spearman rank 

correlation between the rate and group, UWS/MCS p= Wilcoxon test p-value for the MCS/UWS 

comparisons, C= coherence. 

  



 

Fig. S2. Network analysis of the identified patterns shows that consciousness-related 

patterns are characterized by higher spatial complexity, long-distance negative edges, 

community structure, and high efficiency. A quantitative description by means of graph theory 

metrics was performed to reveal underlying complexity that may not be evident from the direct 

observation of the coordination patterns. The patterns’ spatial complexity (entropy, variance in 

one and two dimensions) decreased with the pattern index, from the most complex pattern 1 to the 

least complex pattern 4 (A-D). Patterns 1 and 2 were characterized by a large proportion of 

negative links, with pattern 1 presenting the highest negative/positive ratio (E-G). Pattern 4 

showed smaller average weighted physical distances (H), smaller integration (I), larger 

segregation (J) and smaller efficiency (K) than all the other patterns. (L) In contrast, pattern 1 

was characterized by the highest modularity and hence by the presence of a community structure 



which, in combination with the other metrics, supports that this pattern represents a complex and 

information-efficient transient organization of whole-brain functional coordination. 

 

Notes: Boxplots represent medians with interquartile range and maximum-minimum values. 

  



 

 

Fig. S3. Network properties reflect the state of consciousness. For each participant, we 

computed the weighted average modularity (A), efficiency (B), integration (C) and weighted link 

distance (D). The participant-specific measures were computed as the sum of the product of the 

each one’s pattern probability by the median value of each graph-measure. All measures 

presented increased values with respect to the state of consciousness, with efficiency, integration 

and distance showing significantly higher values in patients in a minimally conscious state (MCS) 

as compared to patients in unresponsive wakefulness syndrome/vegetative state (UWS). 

 

Notes: HC: healthy controls. Boxplots represent medians with interquartile range and maximum-

minimum values (whiskers). KW = Kruskal-Wallis test, Spe = Spearman rank 

correlation. 

  



 

 

Fig. S4. Robustness of the extracted coordination patterns. (A) Clustering of phase-based 

coherence was estimated separately for the three scanning sites and revealed the emergence of 

the same coordination patterns as in the main analysis performed on the combined data of all 

sites together. (B) Correlation between phase-based coordination values extracted from the site-

specific patterns and the analysis performed using the combined data of all sites. Note that in all 

cases the index of the most similar pattern is the same in the site-specific and combined-site 

analysis (diagonal in the matrix). 

 

Notes: (A) The patterns are ordered based on their similarity to underlying anatomical 

connectivity, from the least (left) to the most similar (right). Brain rendered networks (transverse 

view) show the top 10% links among regions of interest, with the absolute value of C > 0.2; 

positive/negative edges indicate positive/negative coherence. Network abbreviations: Aud = 

auditory, DMN = default mode network, FP = frontoparietal, Mot = motor, Sal = salience, Vis = 

visual.  



 

 

Fig. S5. Etiology, chronicity age, and gender do not mediate patients’ temporal dynamics. 

Across all sites, patients do not differ with respect to how likely the coordination patterns are to 

occur in each group as a function of etiology, chronicity, age and gender. Main effects were 

significant only in terms of clinical group, with patients in minimally conscious state (MCS) 

showing higher occurrence probabilities for pattern 1 and lower rates for pattern 4 as compared to 

patients in unresponsive wakefulness syndrome (UWS). None of the quantified interactions was 

significant. 

 

Notes: TBI: traumatic brain injury (8UWS, 17MCS), ANOX: anoxia (21UWS, 11MCS), oth: 

other etiologies (7UWS, 14MCS). Chronicity, time since injury acute: <30 days (6UWS, 7MCS), 

subacute 30-100 days (12UWS, 8MCS), chronic: >100 days (18UWS, 27MCS). Age: <35y 

(12UWS, 15MCS), 35-52y (13UWS, 12MCS), >52y (11UWS, 15MCS). Gender, F: females 

(12UWS, 14MCS), M: males (24UWS, 28MCS). 

 



 

Fig. S6. The structural connectivity network is defined from DSI and contains systems-

based ROIs. (A) Network of DSI structural connectivity between the 42 regions of interest 

(ROIs) used in the main analysis. To downsample the network, we considered 30mm spheres 

centered at each ROI, and computed the mean structural connectivity between all of the original 

998 regions within each pair of spheres. (B) Network representation of the resampled structural 

connectivity network rendered on top of a smoothed cortical surface. Only the top 50% 

connections are shown. Each node represents one of the 42 ROIs. Nodes and within-network 

connections are colored according to the labels of each network, and between-network 

connections appear in grey. Before determining this choice of ROIs, we evaluated several 

parcellation schemes. Brain parcellations were attempted using atlases of the cerebral cortex into 

7 and 17 networks in FreeSurfer surface space and MNI152, the Anatomical Labeling (AAL) 

atlas including 116 cortical and subcortical sphere-ROIs. The network-level atlases time series 

extraction was successful for the pilot data from controls but was compromised as a result of 

algorithm failure during the time series extraction for some patients. FreeSurfer, for example, 

failed at the level of reconstruction for some UWS patients, as also recently shown by Annen and 

colleagues. 

 

Notes: Network abbreviations Aud: Auditory, DMN: default mode network, FP: frontoparietal, 

Mot: motor, Sal: salience, Vis: Visual. 

  



 

 

Fig. S7. Transition probabilities normalized by the patterns’ probabilities of occurrence. 

The analysis in Figure 2A is replicated subtracting for each participant the corresponding null-

model transition probability matrix, as obtained by surrogate state sequences that are randomly 

shuffled versions of the original sequences.  

  



 

 

Fig. S8. Entropy rate increases with respect to the state of consciousness. For each 

participant, the predictability of the dynamic sequence of patterns was quantified using the 

entropy rate (i.e. Markov entropy). The entropy rate was computed from the corresponding 

patterns’ probabilities and the transition probability matrices. Sequence predictability decreased 

systematically with the individuals’ state of consciousness.  

  



 

 

Fig. S9. Pattern validation in dataset 2 (“Canada”) and dataset 3 (“Anesthesia”). To verify 

the validity of the identified patterns in these datasets, we performed the following two 

analyses. (A) First, we replicated the unsupervised learning (k-means clustering) used in dataset 1 

(Figures 1 and S4) in datasets 2 and 3. The obtained patterns are shown in the left panel and the 

similarity (Pearson’s linear correlation coefficient) of these patterns with respect to those from 

dataset 1 are shown in the right panel. Note that the unsupervised learning method (k-means 

clustering) can yield suboptimal results when the number of samples / observations is low relative 

to the number of features / dimensions. Because of this, the patterns are likely affected by the 

smaller number of participants included in datasets 2 and 3 vs. dataset 1 (n=125 in dataset 1, n=11 

in dataset 2 and n=23 in dataset 3). (B) As performed in the main manuscript, we first applied a 

unsupervised method based on pattern detection in dataset 1 via k-means, and on the subsequent 

labeling of each phase coherence matrix in datasets 2 and 3 according to their distance to the 

centroids detected in dataset 1, i.e. each volume was assigned the label corresponding to the 



centroid (as obtained in dataset 1) that was the closest to the phase coherence matrix at that 

volume. We then averaged the temporal series of phase coherence matrices that were assigned 

each label in datasets 2 and 3. The resulting average patterns are shown in the left panel. These 

patterns present a high similarity to the patterns obtained from dataset 1, and then generalized to 

datasets 2 and 3 (right panel).  

  



 

 

Fig. S10. Dataset slope comparisons. top Datasets are compared with respect to the slopes 

representing the relationship between rates of pattern occurrence and corresponding functional-

structural similarity. The slopes are displayed for each group across all datasets. bottom Between-

group statistical comparisons (p: Wilcoxon rank sum test values).  

 

Notes: UWS: unresponsive wakefulness syndrome (17 awake, 6 anesthetized), MCS: minimally 

conscious state (23 awake, 14 anesthetized), HC: healthy controls (21 awake), EMCS: emergence 

from the MCS (3 anesthetized), Ut-: unresponsive patients who do not show command following 

on mental imagery tasks (6 awake), Ut+: non-behavioral minimally conscious state/cognitive-

motor dissociation (5 awake). Boxplots represent medians with interquartile range and maximum-

minimum values (whiskers). 

  



 

Fig. S11. Replication of the structural-functional analysis with different granularity of the 

structural matrix reduction. The original DSI matrix was reduced to the functional ROIs using 

either spheres of 10 mm (left panel), 20 mm (middle panel) and 30 mm (right panel). In all cases 

similar results were obtained for the slopes characterising the probability of the patterns and their 

corresponding functional-structural correlation (bottom panels). 30 mm spheres were used in all 

other analyses in this work.  

  



Table S1. Patients’ demographic and clinical characteristics per scanning site (n = 112). 

 

       

Coma Recovery Scale-Revised 
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#CRS-R 

assessme

nts 

1 Liège MCS F 34 1 3034 3 3 2 2 0 2 5 

1 Liège MCS M 62 2 13 0 3 2 1 0 1 6 

1 Liège MCS F 59 3 21 1 3 2 0 0 2 7 

1 Liège MCS M 30 1 246 3 2 2 2 0 1 3 

1 Liège MCS M 83 3 13 3 0 2 1 0 0 5 

1 Liège MCS M 34 3 1077 3 5 2 0 1 1 4 

1 Liège MCS M 52 3 20 3 3 2 2 1 2 4 

1 Liège MCS M 47 1 533 3 5 2 1 0 2 13 

1 Liège MCS M 38 3 1854 1 3 2 2 0 1 4 

1 Liège MCS M 29 3 64 1 3 2 1 0 2 2 

1 Liège MCS M 41 2 9900 3 3 2 2 0 2 8 

1 Liège MCS M 23 1 301 1 3 2 1 0 2 6 



1 Liège MCS M 53 2 1241 0 3 2 2 0 2 5 

1 Liège MCS F 46 3 242 1 3 2 1 0 1 7 

1 Liège MCS M 60 1 15 3 5 5 3 1 1 1 

1 Liège MCS M 61 1 135 3 4 2 1 0 2 7 

1 Liège MCS M 68 1 360 0 3 2 0 0 2 3 

1 Liège MCS M 35 1 1331 3 0 2 1 0 2 10 

1 Liège MCS F 48 1 291 2 1 2 2 0 1 8 

1 Liège MCS M 73 3 35 0 2 0 1 0 1 3 

1 Liège MCS M 23 1 645 3 3 0 1 0 2 8 

1 Liège MCS M 11 2 1482 3 4 2 2 1 2 9 

1 Liège MCS M 66 1 674 3 0 1 2 0 1 5 

1 Liège UWS F 52 3 283 1 0 2 2 0 1 8 

1 Liège UWS M 36 2 6709 1 0 2 1 0 2 6 

1 Liège UWS M 30 2 743 1 0 2 1 0 2 7 

1 Liège UWS M 74 2 92 1 0 1 1 0 1 9 

1 Liège UWS F 44 2 8 0 0 1 0 0 1 4 

1 Liège UWS M 67 3 43 1 0 2 1 0 1 5 

1 Liège UWS M 63 2 30 1 1 2 2 0 2 1 

1 Liège UWS M 31 1 849 1 1 2 1 0 2 11 

1 Liège UWS M 87 3 7 0 0 2 1 0 1 1 

1 Liège UWS F 41 2 1572 1 0 1 1 0 2 8 

1 Liège UWS F 50 2 38 0 0 0 2 0 1 3 



1 Liège UWS M 44 2 27 1 0 1 0 0 2 1 

1 Liège UWS F 16 2 27 1 0 1 1 0 1 6 

1 Liège UWS F 49 2 129 1 0 0 1 0 2 5 

1 Liège UWS M 36 2 2031 1 0 1 2 0 2 6 

1 Liège UWS M 34 2 7814 1 0 1 1 0 2 5 

1 Liège UWS F 49 2 277 1 0 2 2 0 1 5 

1 NY MCS F 56 3 1004 Diagnosis on clinical consensus NA 

1 NY MCS F 24 3 645 3 3 2 0 0 1 1 

1 NY MCS F 57 3 1722 4 3 5 0 0 2 2 

1 NY MCS F 58 2 373 2 3 5 2 0 2 1 

1 NY MCS F 27 1 1719 3 4 5 1 0 2 1 

1 NY MCS M 39 3 1410 0 2 4 0 0 2 4 

1 NY MCS F 59 1 4564 1 1 2 0 0 2 5 

1 NY MCS M 26 1 3366 1 3 2 1 0 2 4 

1 NY MCS F 27 2 2049 2 3 1 2 0 2 4 

1 NY MCS M 55 1 1896 3 4 5 2 0 2 5 

1 NY UWS M 40 2 2097 1 1 2 1 0 1 2 

1 NY UWS M 39 1 1660 1 1 2 0 0 1 2 

1 NY UWS F 24 1 982 1 0 1 0 0 2 1 

1 NY UWS M 38 1 1960 0 0 0 0 0 2 2 

1 NY UWS M 53 2 1132 1 0 2 0 0 2 3 

1 NY UWS M 27 1 1948 0 1 2 0 0 2 9 



1 Paris MCS M 66 2 96 3 2 2 3 1 2 1 

1 Paris MCS F 38 2 7 1 3 2 1 0 2 2 

1 Paris MCS M 74 1 62 2 3 2 1 0 1 2 

1 Paris MCS M 54 2 260 3 1 5 2 1 2 1 

1 Paris MCS M 44 2 50 3 3 3 1 0 2 2 

1 Paris MCS M 20 1 62 3 3 5 1 0 2 2 

1 Paris MCS M 26 3 78 1 3 3 1 0 2 2 

1 Paris MCS F 63 2 65 1 3 2 1 0 1 2 

1 Paris MCS M 68 3 49 3 3 3 1 0 2 1 

1 Paris UWS M 22 2 96 1 0 1 1 0 2 2 

1 Paris UWS M 25 2 17 2 0 2 1 0 1 2 

1 Paris UWS M 24 1 90 1 1 0 1 0 1 1 

1 Paris UWS F 49 2 81 1 2 1 2 0 2 1 

1 Paris UWS F 48 3 33 1 2 2 1 0 1 2 

1 Paris UWS M 34 1 41 1 1 2 1 0 1 2 

1 Paris UWS M 26 2 65 1 0 1 2 0 1 2 

1 Paris UWS F 36 3 31 1 0 2 1 0 1 2 

1 Paris UWS F 52 2 45 1 0 2 1 0 2 2 

1 Paris UWS M 25 1 2178 1 1 2 2 0 2 1 

1 Paris UWS F 29 3 1651 0 0 1 1 0 1 2 

1 Paris UWS M 47 3 16 1 0 1 1 0 1 1 

1 Paris UWS M 67 2 193 0 1 1 1 0 1 2 



2 

Lond 

Ont Ut+ 

M 38 1 4552 1 0 2 1 0 2 21 

2 

Lond 

Ont Ut+ 

F 44 1 7446 0 1 0 0 0 2 11 

2 

Lond 

Ont Ut+ 

F 35 2 739 0 0 2 1 0 2 5 
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Lond 

Ont Ut+ 

M 19 2 75 2 1 1 1 
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2 4 
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Lond 

Ont Ut+ 

F 51 2 326 1 0 1 1 0 1 6 
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Lond 
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M 57 
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1129 1 1 2 1 
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1 7 
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Lond 

Ont Ut- 

F 20 

3 

2051 1 1 1 1 0 2 5 

2 

Lond 

Ont Ut- 

F 43 

2 

1674 1 0 2 1 
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1 7 
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Lond 

Ont Ut- 

M 20 

2 

1455 1 1 0 1 0 2 5 

2 

Lond 

Ont Ut- 

F 52 2 2380 1 0 2 1 0 1 5 

2 

Lond 

Ont Ut- 

F 14 2 903 1 0 2 1 0 1 5 



3 Liège EMCS F 34 1 418 4 5 6 3 2 3 9 

3 Liège EMCS M 29 1 2424 3 5 6 3 1 3 6 

3 Liège EMCS M 18 1 429 3 4 4 1 2 1 8 

3 Liège MCS M 57 1 189 1 0 2 2 0 1 13 

3 Liège MCS M 24 1 2690 3 3 2 0 0 2 12 

3 Liège MCS M 23 1 421 3 3 3 1 1 2 5 

3 Liège MCS M 29 1 244 1 3 2 2 0 1 6 

3 Liège MCS M 60 2 722 3 1 1 1 0 2 5 

3 Liège MCS F 29 3 745 0 2 1 1 0 2 8 

3 Liège MCS F 55 1 202 3 4 5 2 0 2 8 

3 Liège MCS M 22 1 2977 2 3 5 2 0 1 6 

3 Liège MCS M 52 1 57 4 5 5 1 0 2 4 

3 Liège MCS M 22 1 1108 1 2 1 1 0 2 7 

3 Liège MCS M 63 3 18 1 1 5 3 1 1 4 

3 Liège MCS M 26 1 2129 3 0 2 2 0 2 6 

3 Liège MCS F 30 1 599 0 2 1 2 0 1 8 

3 Liège MCS F 30 2 2411 3 3 1 1 0 2 7 

3 Liège UWS M 26 3 235 0 0 2 1 0 1 5 

3 Liège UWS F 53 3 24 1 0 2 1 0 1 2 

3 Liège UWS M 41 1 419 0 1 1 1 0 2 6 

3 Liège UWS M 48 1 52 1 0 1 1 0 2 8 

3 Liège UWS M 25 1 722 1 0 2 1 0 1 11 



3 Liège UWS M 46 3 1113 1 0 1 0 0 1 6 

 

DS=Dataset Dataset 1,2: patients scanned in sedation-free condition; dataset 3: patients scanned under propofol anesthesia 

Diagnosis: MCS: minimally conscious state, UWS: vegetative state/ unresponsive wakefulness syndrome, EMCS: emergence from the minimally 

conscious state, Ut+: behaviorally unresponsive wakefulness syndrome showing command following only on mental imagery tasks, alternatively 

known as cognitive-motor dissociation, Ut-: behaviorally vegetative state/ unresponsive wakefulness syndrome not showing command-following 

on mental imagery tasks.  

Etiology: 1: traumatic brain injury, 2: anoxia, 3: other 

Coma Recovery Scale-Revised subscales (*denotes MCS, †denotes emergence from MCS) 

 Auditory function 4: Consistent Movement to Command*, 3: Reproducible Movement to Command*, 2: Localization to Sound, 1: Auditory 

Startle, 0: None  

 Visual function 5: Object Recognition*, 4: Object Localization: Reaching*, 3: Visual Pursuit*, 2: Fixation*, 1: Visual Startle, 0: None  

 Motor function 6: Functional Object Use†, 5: Automatic Motor Response*, 4: Object Manipulation*, 3: Localization to Noxious 

Stimulation*, 2: Flexion Withdrawal, 1: Abnormal Posturing, 0: None/Flaccid 

 Oromotor/Verbal function 3: Intelligible Verbalization*, 2: Vocalization/Oral Movement, 1: Oral Reflexive Movement, 0: None 

 Communication scale 2: Functional: Accurate†, 1: Non-Functional: Intentional*, 0: None 

 Arousal scale 3: Attention, 2: Eye Opening without stimulation, 1: Eye Opening with stimulation 0: Unarousable



Table S2. Network-level ROIs used as seed areas. The regions were defined as 10mm-diameter 

spheres around peak x,y,z coordinates selected from the literature.  

 

Intrinsic connectivity network  Brodmann area [centered at x, y, z] 

Default mode network  

Posterior cingulate cortex/precuneus 31 [0 -52 27] 

Medial prefrontal cortex 9 [-1 54 27] 

Lateral parietal cortex [left] [right] 39 [-46 -66 30] [49 -63 33] 

Inferior temporal cortex [left] [right] 21 [-61 -24 -9] [58 -24 -9] 

Frontoparietal network  

Dorsolateral prefrontal cortex [left] [right] 9 [-43 22 34] [43 22 34] 

Inferior parietal lobule [left] [right] 40 [-51 -51 36] [51 -47 42] 

Premotor cortex left [left] [right] 6 [-41 3 36] [41 3 36] 

Midcingulate cortex 23 [0 -29 30] 

Angular gyrus [left] [right] 39 [-31 -59 42] [30 -61 39] 

Salience  

Orbital frontoinsula [left] [right] 12 [-40 18 -12] [42 10 -12] 

Temporal pole [left] [right] 38 [-52 16 -14] [52 20 -18] 

Paracingulate 32 [0 44 28] 

Dorsal anterior cingulate  24 [-6 18 30]  

Supplementary motor area [left] [right] 6 [-4 14 48] [4 14 48] 

Parietal operculum [left] [right] 40 [-60 -40 40] [58 -40 30] 

Ventrolateral prefrontal cortex  47 [42 46 0] 

Dorsolateral prefrontal cortex [left] [right] 46 [-38 52 10] [30 48 22] 

Auditory  

Superior transverse temporal gyrus [left] [right]  41/42 [-44 -6 11] [44 -6 11] 

Precentral gyrus [left] [right] 6 [-53 -6 8] [58 -6 11] 

Anterior cingulate cortex 24 [6 -7 43] 

Sensorimotor  

Primary motor cortex [left] [right] 3 [-39 -26 51] [38 -26 48] 

Supplementary motor area [0 -21 48] 

Visual  



Primary visual cortex [left] [right] 17 [-13 -85 6] [8 -82 6] 

Secondary visual cortex [left] [right] 18 [-6 -78 -3] [6 -78 -3] 

Associative visual cortex [left] [right] 19 [-30 -89 20] [30 -89 20] 
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