Title: Repeated human deciduous tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability

Authors: Miki Soda¹, Issei Saitoh^{1,*}, Tomoya Murakami¹, Emi Inada², Yoko Iwase¹, Hirofumi Noguchi³, Shinji Shibasaki⁴, Mie Kurosawa¹, Tadashi Sawami¹, Miho Terunuma⁵, Naoko Kubota², Yutaka Terao⁶, Hayato Ohshima⁷, Haruaki Hayasaki¹ & Masahiro Sato⁸

Affiliations: ¹ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan.

² Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

³ Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.

⁴ Faculty of Dentistry, Niigata University, Niigata, Japan.

⁵ Department of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.

⁶ Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.

⁷ Division of Anatomy and Biology of the Hard Tissue, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.

⁸ Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan.

*Corresponding Author: Issei Saitoh, D.D.S., Ph. D.

Division of Pediatric Dentistry

Graduate School of Medical and Dental Science, Niigata University

2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan Tel: +81 - 25 - 227 - 2911; Fax: +81 - 25 - 227 - 6911

E-mail: isaito@dent.niigata-u.ac.jp

Supplementary Figure Legends:

Figure S1: (i) Typical iPSC morphology of the HDDPC-derived iPSC colony derived from one of 12 lines generated after quadruple transfections. (ii), (iii) Morphology of the HDDPC-derived iPSCs derived from the other two of 12 lines generated after quadruple transfections. These two lines failed to show typical iPSC morphology. Bar = $500 \mu m$.

Figure S2: RT-PCR analysis of mRNA expression for endogenous *OCT3/4* and *SOX2*. Lanes ① Primary HDDPCs, ② HDDPCs after the single transfection, ③ HDDPCs after the double transfection, ④ HDDPCs after the triple transfection, ⑤ no template control (designated as –RT), and ⑥ iPSCs established from HDDPCs in our laboratory¹¹ (used as positive control). PCR primers are listed in Supplementary Table 1. M, 100-bp ladder markers.

Figure S3: RT-PCR analysis of mRNA expression for endogenous *NANOG* and *KLF4*. Lanes ① Primary HDDPCs, ② HDDPCs after the single transfection, ③ HDDPCs after the double transfection, ④ HDDPCs after the triple transfection, ⑤ no template control (designated as –RT), and ⑥ iPSCs established from HDDPCs in our laboratory¹¹ (used as positive control). PCR primers are listed in Supplementary Table 1. M, 100-bp ladder markers.

Figure S4: RT-PCR analysis of mRNA expression for endogenous *TNSALP* and *GAPDH*. Lanes ① Primary HDDPCs, ② HDDPCs after the single transfection, ③ HDDPCs after the double transfection, ④ HDDPCs after the triple transfection, ⑤ no template control (designated as –RT), and ⑥ iPSCs established from HDDPCs in our laboratory¹¹ (used as positive control). PCR primers are listed in Supplementary Table 1. M, 100-bp ladder markers.

Supplementary Table Legend:

Table S1: Primer sets used for RT-PCR analysis.

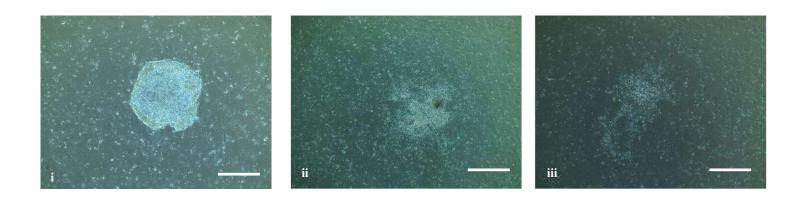


Figure S1

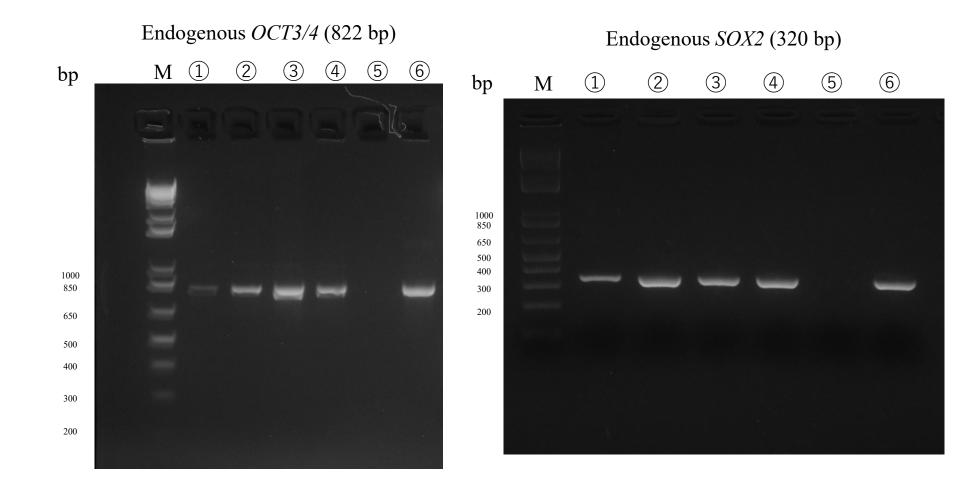


Figure S2

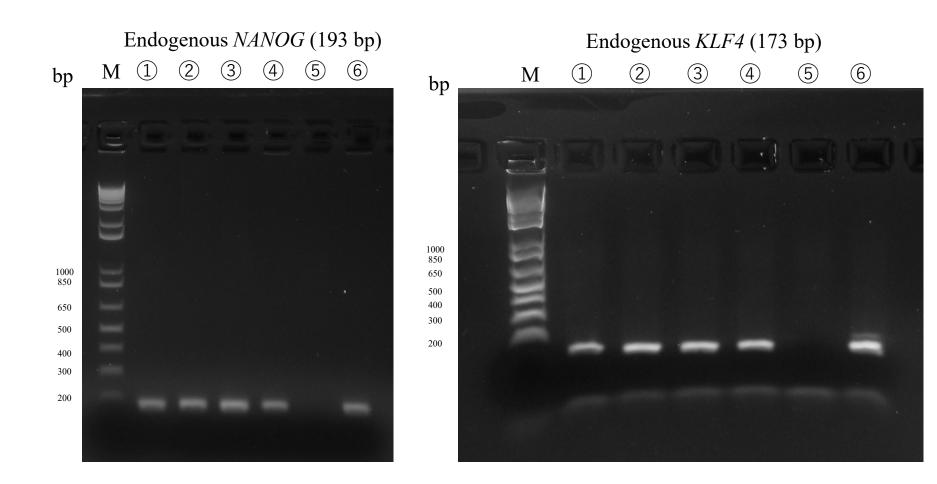


Figure S3

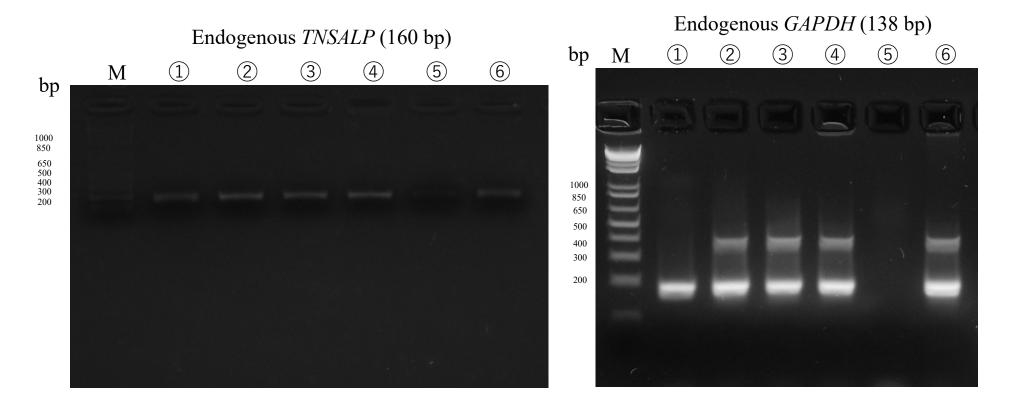


Figure S4

Table S1: Primer sets used for RT-PCR analysis

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	Product Size (bp)	Reference
OCT3/4	ATTTCACCAGGCCCCCGGCT	GCTGATCTGCTGCAGTGTGGGT	822	Ref. 11
SOX2	AGGACCAGCTGGGCTACCCG	GGCGCCGGGGAGATACATGC	320	Ref. 11
NANOG	TTGGAAGCTGCTGGGGAAG	GATGGGAGGAGGGAGAGGA	193	Ref. 27
KLF4	CGTGCTGAAGGCGTCGCTGA	GGGTGCACGAAGAGACCGCC	173	Ref. 28
TNSALP	TGGCCCCCATGCTGAGTGACAC	TGGCGCAGGGGCACAGCAGAC	160	Ref. 29
GAPDH	GCACCGTCAAGGCTGAGAAC	TGGTGAAGACGCCAGTGGA	138	Ref. 27