Effect of Chemical Permeation Enhancers on Skin Permeability: In silico screening using Molecular Dynamics simulations

Rakesh Gupta^{1,*}, Sridhar Dwadasi¹, Beena Rai¹ and Samir Mitragotri²

Physical Science Research Area, Tata Research Development and Design Centre, TCS Research, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune – 411013, India ²School of Engineering and Applied Sciences and Wyss Institute, Harvard University *Corresponding author: gupta.rakesh2@tcs.com

Fax : 91-20-66086399

Phone : 91-20-66086203

Supporting Information

S1. Systems used in simulations

Table S1. The details of the permeation enhancers and number of the enhancers used in each simulation.

Name	Functional group	Number of Permeation enhancers (1 w/v)	Number of Permeation enhancers (3 w/v)	Number of Permeation enhancers (5 w/v)
Oleic Acid (OLE)	Acid	15	45	75
Palmitic Acid (PLA)	Acid	16	48	80
Geranic Acid (GRA)	Acid	25	75	125
Undecanoic acid (UND)	Acid	22	66	110
DMSO (DMS)	DMSO	57	171	285
Geraniol (GOL)	Unsaturated alcohol	27	81	135
Glyceryl monooleate (GMO)	Glyceryl ester	12	36	60
Isopropyl palmiate (ISP)	ester	14	42	70
Limonene (LEM)	Unsaturated monoterpene	31	93	155
Octylpyrrolidone (OCT)	Pyrrolidone	21	63	105

S2. Parameterization of CPEs

Figure S1. Mapping of the molecules into Martini beads (down). a) geraniol, b) geranic acid, c) isopropyl palmitate, d) monoolein, e) limonene, f) n-octyl pyrrolidone, g) palmitic acid, h) oleic acid and i) undecanoic acid. Images were created using VMD software.

The mapping of the atoms into beads was carried out based on MARTINI philosophy. Each bead consists of 3 or 4 atoms, and the bead types were assigned based on the polarity. Bonded parameters of molecules Geraniol, Geranic Acid, Isopropyl Palmitate, Monoolein, Limonene, N-octyl Pyrrolidone were developed by modifying the coarse grain (CG) bonding parameters till a reasonable match of the bonded distributions is obtained as compared to those obtained from atomistic simulations. Also, the bulk density of the CG simulation was compared to the atomistic simulation. All atom simulations, with atleast 300 molecules were carried out for 30 ns and the trajectories were sampled to obtain bond and angle distributions and the bulk density. CG simulations with atleast 300 molecules (number equal to those taken in all atom simulations) were run for 10 ns with a time step of 25 fs, from which the bond and angle distributions and bulk density were obtained. The parameterization of bond parameters was quite straight forward in structures without a ring, but was tricky with ring containing structures (limonene and N-octyl pyrrolidone). The bonded parameters for limonene were taken from those of tyrosine as given in the martini amino acids files [1, 2].

Figures S1-S4 show the comparison of bond and angle distributions obtained from CG (martini) simulations and all atom simulations. These are in reasonable agreement. It should

be kept in mind that in coarse graining, we may not get an exact match with atomistic distributions. Care should be taken that the bonds/angles do not get too rigid. Thus in a few cases (Ex: Fig S1 b1), it can be seen that the distributions match in mean position while the probability may not be as steep. These values gave us reasonable match with bulk density as reported in the main text. Table s1 gives the bonded parameters of the six molecules.

Figure S2. Bond and angle distributions for Geraniol.

Figure S3. Bond and angle distributions for Geranic Acid.

Figure S4. Bond and angle distributions for Isopropyl palmitate.

Figure S5. Bond and angle distributions for Monoolein

	Ge	raniol						
	Dood tymog	h (nm)			$I/m a l m m^2$			
h1	Beau types	0_0 (IIII)		$\mathbf{K}_{b}(\mathbf{K})$	<u>J/IIIOI IIIII)</u>			
b1 b2	F3-C2	0.350		1/30				
02	02-03	0.420		1500 V (V	I/ m a1)			
1		θ_0 (deg)		<u>K_θ (K.</u>	J/ mol)			
a1	P3-02-03	130		15				
Garania A sid								
	Bead types	$h_{\rm o}$ (nm)		Кь (К	$I/mol nm^2$			
h1	P3-C1	0.350		1500				
b1 b2		0.550		1500				
02		θ_{a} (deg)		K_{0} (K	I/ mol)			
a1	P3-C1-C1	130		15	5/ III01)			
u1		150		15				
Isopropyl Palmitate								
	Bead types	b_0 (nm)		K _b (K	$J/mol nm^2$)			
b1	SC2-P3	0.260		5000	5000			
b2	P3-C1	0.370		1250				
b3, b4, b5	C1-C1	0.470		1250	1250			
		θ_{o} (deg)	θ_0 (deg)		J/ mol)			
al	SC2-P3-C1	138.56		25				
a2	P3-C1-C1	160.00		15				
a3, a4	C1-C1-C1	160.00		15	15			
	Moi	noolein						
	Bead types	b _o (nm)		K _b (K	J/mol nm ²)			
b2, b3	C2-C2, C2-C1	0.475		1250				
b4	C1-Na	0.375		1250				
b5	Na-P4	0.375		1250				
		θ_{o} (deg)		K_{θ} (K.	K_{θ} (KJ/ mol)			
a1, a2	C1-C2-C2, C2-C2-	150	150		25			
	C1							
a3	C2-C1-Na	140		15				
a4	C1-Na-P4	125		25	25			
	Lin	nonene						
	Bead types	b _o (nm)		K_b (KJ/mol nm ²)				
b1	SC5-SC3	0.320		5000				
b2,b3,b4	SC3-C5, SC3-SC4, C5-SC4	0.270		constraint				
		θ_{o} (deg)	θ_{o} (deg)		K_{θ} (KJ/ mol)			
a1	SC5-SC3-C5	150	150		50			
a2	SC5-SC3-SC4	150		50				
		φ _o (deg)	K _φ (K.	J/mol)	n			
d1	SC5-SC5-SC4-SC3	0.00	50.0	/	2			
			•					

 Table S2. Bonded parameters for molecules

Octyl Pyrrolidone					
	Bead types	b _o (nm)	K_b (KJ/mol nm ²)		
b1	C1-C1	0.47	2000		
b2	C1-P3	0.25	1750		
b3	P3-Na	0.180	constraint		
b4	P3-SNd	0.230	constraint		
b5	Na-SNd	0.192	constraint		
		θ_{o} (deg)	K_{θ} (KJ/ mol)		
al	C1-C1-P3	180	20		

Figure S6. Snapshots of final configuration of skin double layer interacting with chemical permeation enhancers (at 3w/v concentration). Both side view (shows permeation of CPE's) and top view (shows dispersion or agglomeration of CPEs inside the layers) are shown. All systems were run for 3 µs. The skin lipid constituent CER, CHOL and FFA are shown (in point form of VMD software) in red, green and blue colors, respectively. The solvent (ethanol and water) are shown here. The permeation enhancers are shown in VDW form of VMD software.

Figure S7. Snapshots of final configuration of skin double layer interacting with chemical permeation enhancers (at 5w/v concentration). Both side view (shows permeation of CPE's) and top view (shows dispersion or agglomeration of CPEs inside the layers) are shown. All systems were run for 3 µs. The skin lipid constituent CER, CHOL and FFA are shown (in point form of VMD software) in red, green and blue colors, respectively. The solvent (ethanol and water) are shown here. The permeation enhancers are shown in VDW form of VMD software.

S3. Radial distribution function of CPEs

Figure S8. The radial distribution function g(r) of each permeation enhancer with skin lipid constituents (at 3 %w/v and 5 %w/v concentration), calculated in last 500 ns of production run. The peaks in g(r) profiles show the extent of the interaction between permeation enhancers and the particular lipid constituent.

S4. Mean Square displacement of CPEs

Figure S9. The mean square displacement of each permeation enhancers in skin lipid bilayer. The MSD was calculated in last 1 µs of production run.

Figure S10. Comparison of experimental property enhancement ratio (ER) and the calculated property (1/<S>) from simulations for system 3%w/v and 5 %w/v. Both properties are plotted on different graphs due to the difference in the magnitude of each property.

References:

1. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P. and Marrink, S.J., 2008. The MARTINI coarse-grained force field: extension to proteins. Journal of chemical theory and computation, 4(5), pp.819-834

2. de Jong, D.H., Singh, G., Bennett, W.D., Arnarez, C., Wassenaar, T.A., Schäfer, L.V., Periole, X., Tieleman, D.P. and Marrink, S.J., 2012. Improved parameters for the martini coarse-grained protein force field. Journal of Chemical Theory and Computation, 9(1), pp.687-697.