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1. Model Fitting and Parameter Estimation

1.1 Matrix eQTL

The set of correlations rλk for all transcript-SNP pairs λ and tissues k = 1, . . . ,K can be conve-

niently calculated using the R package Matrix eQTL by Shabalin (2012). The package is designed

for fast eQTL analysis in individual tissues. Matrix eQTL accounts for covariates and can filter

transcript-SNP pairs by the distance between their genomic locations. Once Matrix eQTL is

applied separately for each tissue, the t-statistics it reports can be transformed into correlations

using the simple transformation

rλk =
tλk√
dk + t2λk

where dk is the number of degrees of freedom in the tests for tissue k and is also reported by

Matrix eQTL. The set of correlations can then be combined in a single matrix with rows rλ.

1.2 Modified EM Algorithm

We wish to estimate the parameter θ = (µ0,∆,Σ,p) from the observed z-statistics {zλ : λ ∈ Λ},

which are computed directly from the sample correlations rλk obtained from Matrix eQTL.

In order to make the estimation of θ tractable, we assume that the random vectors Zλ are

independent. The likelihood of the model then has a simple product form, depending only on the

unknown parameter θ, and the observed z-statistics {zλ}:

L({zλ}|θ) =
∏
λ∈Λ

∑
γ∈{0,1}K

pγ fγ(zλ | θ), (1.1)

where fγ(· | θ) is the probability density function of the NK
(
µ0 · γ,∆ + Σ · γγT

)
distribution.

Remark: It is important to note that the parameter θ concerns only the (common) marginal

distribution of the random vectors Zλ, and is unaffected by their dependence. The assumption

that the random vectors Zλ are independent facilitates estimation of θ, but does not impose any

constraints on the marginal dependence structure of Zλ.
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We estimate the parameter θ by seeking to maximize the logarithm of the likelihood (1.1). The

log-likelihood is not concave, and there appears to be no closed form solution to the maximization

problem. Thus one must to rely on iterative algorithms that produce a sequence of parameters

θ(t) converging to a (local) maximum of the likelihood. A direct approach employing a generic

software routine for numerical maximization of the likelihood function would be computationally

intensive, as each iteration would require multiple (at least 2K) calculations of the likelihood

function around the estimate obtained at the previous iteration. A much faster convergence can

be achieved by applying a modification of Expectation Maximization (EM) algorithm. Details

are given below.

We treat the unobserved tissue-specificity information vector Γλ ∈ {0, 1}K as a latent variable.

The joint likelihood of both observed and latent variables is:

L(z,γ | θ) = pγ fγ(z | θ).

The EM algorithm operates in an iterative fashion. Let θ(t) = (µ
(t)
0 ,∆(t),Σ(t),p(t)) be the esti-

mate of the model parameters after t iterations. The estimate θ(t+1) is defined by

θ(t+1) = arg max
θ

Q(θ : θ(t)),

where

Q(θ : θ(t)) =
∑
λ

EΓλ|zλ,θ(t)
[

logL(zλ,Γλ|θ)
]
.

The expectation of the log-likelihood is calculated with respect to the conditional distribution of

Γλ given the observed vector of correlations zλ and the model parameters θ(t).

Consider the conditional expectation appearing in Q(θ : θ(t)). Let p(γ | θ) denote the proba-

bility of the configuration γ under the probability mass function p associated with the parameter

θ, and define

p(γ | z, θ) = P(Γλ = γ | z, θ) =
p(γ | θ)fγ(z | θ)∑
γ′ p(γ′ | θ)fγ′(z | θ)
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The objective function Q(θ : θ(t)) then has the form

Q(θ : θ(t)) =
∑
λ

∑
γ

p(γ | zλ, θ(t))
[

log p(γ | θ) + log fγ(zλ | θ)
]

Maximization of Q with respect to θ leads to the explicit formula

p(γ | θ(t+1)) =
∑
λ

p(γ | zλ, θ(t))
/
|Λ|

where |Λ| is the number of gene-SNP pairs under consideration. There appears to be no closed

form solution for the iterates of µ
(t)
0 , Σ(t) and ∆(t). However, in practice, most of the probability

mass of p is concentrated at the two extreme cases γ = 0 and γ = 1, reflecting the fact that most

transcript-SNP pairs are associated in no tissues or all tissues. Approximating Q(·) by restricting

the second sum to γ = 0, 1 leads to explicit (approximate) estimates of µ0, Σ and ∆ via the

following first order conditions:

∆(t+1) =
∑
λ

p(0 | zλ, θ(t))zλz
T
λ

/∑
λ

p(0 | zλ, θ(t))

µ
(t+1)
0 =

∑
λ

p(1 | zλ, θ(t))zλ

/∑
λ

p(1 | zλ, θ(t))

Σ(t+1) + ∆(t+1) =
∑
λ

p(1 | zλ, θ(t))(zλ − µ
(t+1)
0 )(zλ − µ

(t+1)
0 )T

/∑
λ

p(1 | zλ, θ(t))

At some iterations the estimates Σ(t+1) may fail to be non-negative definite. In such cases we force

Σ(t+1) to be non-negative definite by calculating its singular value decomposition and dropping

terms with negative coefficients (negative eigenvalues).

Starting with an initial parameter value θ(0), we perform sequential updates in the manner

described above until the change in the likelihood falls below a pre-set threshold. To assess the

reliability of the estimate one may run the algorithm multiple times using distinct starting points.

In our experiments the algorithm tends to converge to the same estimate regardless of the starting

point.
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2. Proof of Lemma 2.1

Proof. Let S be a subset of {1, . . . ,K} with cardinality |S| = r. It follows from the defining

properties of the multivariate normal distribution that if U ∼ NK(µ, A) then US ∼ Nr(µS, AS).

Therefore we have that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
(µ0 · γ)S, (∆ + Σ · γγT )S

)
(2.2)

Here and in the remainder of the proof we follow the convention that γ ranges over {0, 1}K , and

ζ ranges over {0, 1}r. Elementary arguments show that

(µ0 · γ)S = µ0,S · γS and (∆ + Σ · γγT )S = ∆S + ΣS · γSγTS

It then follows from (2.2) that

ZS ∼
∑

γ∈{0,1}K
pγ Nr

(
µ0,S · γS, ∆S + ΣS · γSγTS

)
=

∑
ζ∈{0,1}r

∑
γ:γS=ζ

pγ Nr
(
µ0,S · γS, ∆S + ΣS · γSγTS

)

=
∑

ζ∈{0,1}r
Nr
(
µ0,S · ζ, ∆S + ΣS · ζζT

) ∑
γ:γS=ζ

pγ

=
∑

ζ∈{0,1}r
pζ,SNr

(
µ0,S · ζ, ∆S + ΣS · ζζT

)
,

which is the desired expression for distribution of ZS. �

3. Proof of Theorem 3.2

3.1 Continuity and Monotonicity of F (t)

Lemma 3.1 Let U be a bounded, non-negative random variable. For t > 0 define

G(t) = E[U |U6 t ] =
E[U I(U6 t) ]

P(U6 t)
. (3.3)

Then the following hold:
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1. G is non-decreasing and right continuous;

2. If P(U = t) = 0 then G is continuous at t;

3. If P(a < U < b) > 0 for each 0 < a < b < L then G is strictly increasing on (0, L).

Proof. To show that G is non-decreasing it suffices to show that G(t + δ) − G(t) > 0 for each

fixed t > 0 and δ > 0. If G(t) = 0 then the result is immediate as the function G is non-negative.

If G(t) is positive, then

G(t+ δ)−G(t) =
E[U I(U6 t+ δ) ]

P(U6 t+ δ)
− E[U I(U6 t) ]

P(U6 t)

=
E[U I(U6 t+ δ) ]P(U6 t) − E[U I(U6 t) ]P(U6 t+ δ)

P(U6 t+ δ)P(U6 t)
.

By elementary arguments the numerator of the last fraction can be expressed as

E[U I(t < U6 t+ δ) ]P(U6 t) − E[U I(U6 t) ]P(t < U6 t+ δ)

> tP(t < U6 t+ δ)P(U6 t) − tP(U6 t)P(t < U6 t+ δ) (3.4)

= 0.

Thus G is non-decreasing. Right continuity of G follows by applying the monotone convergence

theorem to the numerator and denominator in (3.3). If P(U = t) = 0 then continuity of G at

t follows from the dominated convergence theorem in a similar fashion. Finally, if P(t < U <

t+δ) > 0 then the inequality in (3.4) is strict, and the final claim follows by considering t ∈ [0, L)

and δ > 0 such that t+ δ < L. �

Lemma 3.2 For i = 0, . . . ,m let fi be the density of the d-variate normal distribution Nd(µi,Σi)

and let c1, . . . , cm be positive constants. If at least one of f1, . . . , fm is not equal to f0, then

md

({
x : f0(x) =

∑m
j=1 cj fj(x)

})
= 0

where md(·) denotes Lebesgue measure on Rd.
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Proof. Define h(x) = f0(x) −
∑m
j=1 cj fj(x) and let A = {x : h(x) = 0}. As h is continuous, A

is a closed subset of Rd. We establish the result by way of contradiction. Consider first the case

in which d = 1 and h(x) = 0 for each x ∈ R. By an easy argument, we can assume that the

densities fi, i = 0, 1, . . . ,m are distinct and that m > 1. Let µi and σi be, respectively, the mean

and variance of the distribution specified by the density fi. Let (σj , µj) be the largest element,

under the usual lexicographic order, of the set {(σi, µi) : 0 6 i 6 m}. Considering the limit of

h(x)/fj(x) as x tends to infinity, we conclude that cj = 0 if j 6= 0 or 1 = 0 if j = 0. In either case

we obtain a contradiction, and therefore h(x) cannot be identically equal to zero.

The remainder of the proof proceeds by induction on d. Consider first the case d = 1. Note

that h(x) is an analytic function of the real variable x. If m1(A) > 0 then there exists M < ∞

such that m1(A ∩ [−M,M ]) > 0. In particular, there are infinitely many points of A in the

compact set [−M,M ]. Thus A has a limit point x0, and h(x0) = 0 as A is closed. As the zeros of

a non-zero analytic function are necessarily isolated, it follows that h(x) is identically zero. This

contradicts the argument given above, and we conclude that m1(A) = 0.

Assume now that the lemma holds for dimensions 1, . . . , d− 1, and consider the general case

of dimension d. Suppose that md(A) > 0. By Fubini’s theorem, there exist a Borel measurable

set B ⊂ R such that (i) m1(B) > 0 and (ii) for every xd ∈ B the section

A(xd) = {xd−1
1 : (xd−1

1 , xd) ∈ A} ⊆ Rd−1

has (d − 1)-dimensional Lebesgue measure greater than zero. (Here xd−1
1 denotes the ordered

sequence x1, . . . , xd−1.) Note that h(x) = 0 can be written in the equivalent form

0 = f0(xd−1
1 |xd) f0(xd) −

m∑
j=1

cj fj(x
d−1
1 |xd) fj(xd) x ∈ A (3.5)

where fj(x
d−1
1 |xd) denotes the conditional density of xd−1

1 given xd under fj , and fj(xd) denotes

the marginal density of xd under fj . If for each xd ∈ B the conditional densities fj(x
d−1
1 |xd) are
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equal on A(xd) then (3.5) becomes

0 = f0(xd) −
m∑
j=1

cj fj(xd) xd ∈ B,

which contradicts the induction hypothesis. Suppose then that for some xd ∈ B the conditional

densities fj(x
d−1
1 |xd) are not all equal on A(xd). Then equation (3.5) becomes

0 = f0(xd−1
1 |xd) −

m∑
j=1

c′j fj(x
d−1
1 |xd) xd−1

1 ∈ A(xd)

where c′j = cj fj(xd)/f0(xd). Our assumption regarding the conditional densities ensures that

fj(x
d−1
1 |xd) is different from f0(xd−1

1 |xd) for some j > 1, again contradicting the induction

hypothesis. This completes the proof. �

Lemma 3.3 Let η(z) be local false discovery rate defined as

η(z) := P(Γ = 0 |Z = z) =
p0f0(z)

f(z)
.

and assume that every diagonal entry of Σ is positive. Then the following hold.

1. infz∈Rd η(z) = 0.

2. For every c > 0 the Lebesgue measure of the set {z : η(z) = c} in RK is zero.

Proof. Proof of 1: As η(z) is always positive, it is enough to show that there exists z ∈ Rd and

γ ∈ {0, 1}K such that f0(bz)/fγ(bz)→ 0 as b→∞. From the exponential form of the multivariate

normal densities, it can be seen that the last relation will hold if the matrix ∆−1−(∆+Σ·γγT )−1

has an eigenvalue greater than zero.

Let x0 be an eigenvector of the matrix ∆ corresponding to the smallest eigenvalue λmin(∆)

(which is positive by assumption). Assume without loss of generality that ||x0|| = 1. Using the

variational formula for eigenvalues, and the relationship between the eigenvalues of a matrix and
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those of its inverse, we find that

λmax(∆−1 − (∆ + Σ · γγT )−1) = max
z:||z||=1

zT (∆−1 − (∆ + Σ · γγT )−1)z

> max
z:||z||=1

zT∆−1z − max
z:||z||=1

zT (∆ + Σ · γγT )−1z

= λmax(∆−1) − λmax((∆ + Σ · γγT )−1)

= λmin(∆) − λmin(∆ + Σ · γγT )

> xT0 ∆x0 − xT0 (∆ + Σ · γγT )x0

= xT0 (Σ · γγT )x0

Let 1 6 i 6 K be any index for which x0,i 6= 0. If γ is the binary K-vector having a 1 in position

i and all other entries equal to 0, then it is easy to see that the last expression above is σii x
2
0,i,

which is positive.

Proof of 2: This follows immediately from Lemma 3.2

Proposition 3.4 The function F (t) defined as

F (t) := E(η(Z) | η(Z) 6 t) =
E[η(Z) I(η(Z) 6 t)]

P(η(Z) 6 t)
.

is continuous and strictly increasing on the interval (0, Lη), where Lη = supz∈Rd η(z) < 1.

Proof: Note that F (t) is of the form g(t) in (3.3) with U = η(Z). Part 2 of Lemma 3.3 establishes

that P(η(bZ) = t) = 0, and continuity of F then follows from Lemma 3.1. For 0 < a < b < Lη

we have

P(a < η(Z) < b) = P(η(Z) ∈ (a, b)) = P(Z ∈ η−1(a, b)).

As η(z) is continuous η−1(a, b) is an open subset of Rd. Moreover, η−1(a, b) is non-empty by Part

1 of Lemma 3.3. Thus P(a < η(Z) < b) > 0 as the density f of Z is positive on Rd. Continuity of

F (t) then follows from Lemma 3.1. �
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3.2 Proof of Theorem 3.2

Lemma 3.5 Let G1, G2, . . . : [0, 1] → R be non-decreasing functions. For fixed α ∈ (0, Lη) define

θn = sup{t : Gn(t) 6 α} and let θ ∈ (0, 1) be the unique number such that F (θ) = α. If

Gn(t)→ F (t) for each t in a dense subset T of [0, 1] then θn → θ.

Proof. Suppose by way of contradiction that |θn− θ| 6→ 0. Then there exists δ1, δ2 > 0 such that

{θ − δ1, θ + δ2} ⊆ T and an infinite subsequence nk of 1, 2, . . . such that either θnk 6 θ − 2δ1

for each k > 1 or θnk > θ + 2δ2 for each k > 1. In the first case, the definition of θn and the

monotonicity of Gn imply

α 6 Gnk(θnk + δ1) 6 Gnk(θ − δ1)

Taking limits as k → ∞ we find α 6 F (θ − δ1) < α as F is strictly increasing, which is a

contradiction. In the second case, a similar argument shows that

α > Gnk(θnk − δ2) > Gnk(θ + δ2).

Taking limits as k →∞ yields α > F (θ+δ2) > α, which is again a contradiction. This concludes

the proof. �

Proof of Theorem 3.2: Let θ̂n = sup{t : F̂n(t) 6 α} and let θ be the unique number such that

F (θ) = α. We claim that θ̂n → θ in probability. To show this, assume to the contrary that there

exists δ > 0 and a subsequence nk such that

P
(
|θ̂nk − θ| > δ

)
> δ for each k > 1. (3.6)

Let T be any countable, dense subset of [0, 1]. Our assumptions imply that F̂n(t) → F (t) in

probability for each t ∈ T . By a standard diagonalization argument, there exists a subsequence

mk of nk such that F̂mk(t) → F (t) with probability one for each t ∈ T . It then follows from

Lemma 3.5 that θ̂mk → θ with probability one, which contradicts (3.6).
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In order to establish the theorem, it will be convenient to work with version of Mn and Nn

in which the data-dependent threshold θ̂n is replaced by the limiting value θ. Define

M̃n =
∑
λ∈Λn

I(Γλ = 0) I(η(Zλ) 6 θ) and Ñn =
∑
λ∈Λn

I(η(Zλ) 6 θ)

Note that EÑn = |Λn| · P(η(Z) 6 θ). By an elementary conditioning argument,

EM̃n =
∑
λ∈Λn

E
{
P(Γλ = 0 |Zλ) I(η(Zλ) 6 tn(α))

}
=
∑
λ∈Λn

E
{
η(Zλ) I(η(Zλ) 6 tn(α))

}
= |Λn| · E[η(Z) I(η(Z) 6 t)].

For each δ > 0,

E|Ñn −Nn| 6
∑
λ∈Λn

P(η(Zλ) ∈ [θ̂n, θ] ∪ [θ, θ̂n])

6 |Λn|
[
P
(
η(Z) ∈ (θ − δ, θ + δ)

)
+ P

(
|θ̂n − θ| > δ

)]
.

As θ̂n → θ in probability and the distribution of η(Z) has no point masses, the last inequality

implies that E|Ñn −Nn| = |Λn| · o(1). A similar argument shows that E|M̃n −Mn| = |Λn| · o(1).

Thus as n tends to infinity,

EMn

ENn
=

EM̃n + |Λn| · o(1)

EÑn + |Λn| · o(1)

=
E[η(Z) I(η(Z) 6 θ)] + o(1)

P(η(Z) 6 θ) + o(1)

→ E[η(Z) I(η(Z) 6 θ)]
P(η(Z) 6 θ)

= F (θ) = α.

This completes the proof of the theorem.

4. Simulation Study

In this section, we examine the performance of MT-eQTL through a simulation study with K = 4

tissues. As the basis of the model and subsequent inferences is the collection of z-statistic vectors
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derived from the observed genotype and transcript data, we directly simulate the z-statistics.

4.1 Simulation Setting

We simulate 10 million vectors zλ independently from the MT-eQTL model using parameters

θ = (∆,Σ,p,µ0) obtained from eQTL analysis of data from the GTEx initiative (we consider

the tissues blood, lung, muscle, and thyroid, which we denote by a, b, c, and d, respectively).

Sample sizes, sample overlap, and degrees of freedom after covariate correction are given in Table

S1. The true model parameters are given in Table S2. Note that the average effect size parameter

µ0 is set to be zero in data generation and model fitting for simplicity.We remark that allowing

µ0 to be free has little effect on the numerical results.

We simulated each vector zλ in a two-step fashion: first drawing γ ∈ {0, 1}4 from p, and then

drawing zλ from fγ(z) given γ. Access to the true configurations γ enables us to assess false

discovery rates associated with inferences from the fitted model.

4.2 Model Fit

The approximate EM procedure was used to fit the full 4-dimensional model, as well as all possible

1-, 2-, and 3-dimensional models. We terminated EM updates when the difference between log

likelihoods in two consecutive iterations was less than 0.01. The average number of iterations until

convergence of the EM procedure was 80. The running time of the EM procedure depended on the

number of tissues in the model, ranging from about 1 second per iteration for the 1-dimensional

models to about 40 seconds per iteration for full 4-dimensional model on a standard desktop PC.

Fitting of the 4-dimensional model based on the simulated data took slightly more than one hour.

As expected, the parameters estimated from the simulated data are very close to those used

to generate the data. For the 4-dimensional model, the relative error of each entry of Σ is less

than 0.3%, while the relative error for each entry of ∆ is less than 0.7%. For the probability



Multi-Tissue eQTL Analysis 13

mass vector p, thirteen of sixteen entries had relative error less than 1%, with the remaining

relative errors equal to 1.45%, 1.66% and 4.31%. These results confirm that the approximate EM

procedure works well on the simulated data.

4.3 Results

We apply the adaptive thresholding procedure to the local FDRs and detect eQTLs with different

configurations. In particular, we attempt to identify eQTLs in at least one tissue, in a single tissue,

and in all tissues. The corresponding null configurations are shown in the second column of Table

S3. In all studies, we fixed the nominal FDR threshold at α = 0.05. Table S3 contains the

number of true alternative cases, the number of total discoveries, the number of overlaps (i.e.,

true positives), the true positive rate (TPR), and the FDR in each study.

In all studies, the observed FDRs are strictly below the nominal level of 5%; and the TPRs are

around 40%. These TPRs are considered relatively high because many alternative cases may have

modest to small effect sizes in the simulated data, and are not readily distinguishable from the null

cases. This behavior is representative of real data where signals are not always highly identifiable.

The TPR for testing cross-tissue eQTL is the lowest among all cases because it is the most

challenging problem: a cross-tissue eQTL may be easily mistaken as other eQTL configurations

(e.g., 1110, 1101, 1011, 0111, etc). Nonetheless, the TPR for such case is still reasonably high,

which demonstrates the efficacy of the proposed method. In addition, we emphasize that our

method is flexible enough to detect eQTL of different configurations. Numerical results indicate

that the method has great power in identifying significant association between a gene and a SNP

in a single tissue or in any tissue.

In order to assess how the use of auxiliary tissues increases statistical power of detecting

eQTL in a target tissue, we fit a series of nested MT-eQTL models for tissue sets {a}, {a,b},

{a,b,c}, and {a,b,c,d} and only focused on eQTL detection in tissue a. In each study, we fixed the
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target set S = {a}, and applied the adaptive thresholding procedure to the marginal local FDR

defined in Section 3.3 in the main article. We set the nominal FDR at the level of 0.05 for all

studies. As a result, the discoveries from different studies are comparable, as they are all detected

gene-SNP pairs with eQTL in tissue a at the FDR of 0.05. Table S4 shows the TPRs and FDRs in

different studies. The number of true alternative cases is 1,596,410. The TPRs increase steadily

with the number of auxiliary tissues considered in the analysis, while the FDRs are all controlled

at the nominal level. The result indicates that by borrowing information from auxiliary tissues,

the model gains power of detecting eQTL in a target tissue without inflating the FDR. Similar

results hold for more sophisticated hypothesis testings.

5. GTEx Estimations

The sample information of the GTEx pilot data is provided in Figure S1. The estimated model

parameters ∆ and Σ for the GTEx data are given below. The tissues are ordered alphabetically.

The parameter µ0 was set to zero. The estimated mass function p (prior probabilities for 512

configurations) is provided in a separate text file (SuppC-p.txt) due to space limitations.

∆ =



1.0000 0.1704 0.0923 0.1010 0.1390 0.1409 0.1687 0.1415 0.1441
0.1704 1.0000 0.0960 0.1179 0.1518 0.1460 0.1942 0.1336 0.1491
0.0923 0.0960 1.0000 0.0779 0.1312 0.0780 0.1007 0.0890 0.1032
0.1010 0.1179 0.0779 1.0000 0.1268 0.1192 0.1093 0.0893 0.1247
0.1390 0.1518 0.1312 0.1268 1.0000 0.1188 0.1543 0.1220 0.1767
0.1409 0.1460 0.0780 0.1192 0.1188 1.0000 0.1366 0.1095 0.1258
0.1687 0.1942 0.1007 0.1093 0.1543 0.1366 1.0000 0.1372 0.1477
0.1415 0.1336 0.0890 0.0893 0.1220 0.1095 0.1372 1.0000 0.1097
0.1441 0.1491 0.1032 0.1247 0.1767 0.1258 0.1477 0.1097 1.0000


,

Σ =



4.2692 4.5320 4.1062 3.2993 4.6078 4.0864 4.2076 3.9694 4.4595
4.5320 5.4178 4.4545 3.6526 5.0411 4.5731 4.6975 4.3167 5.0072
4.1062 4.4545 6.1588 3.3196 5.0385 4.2452 4.0646 4.0090 4.5213
3.2993 3.6526 3.3196 3.2123 3.7223 3.6852 3.3418 3.1225 3.7332
4.6078 5.0411 5.0385 3.7223 5.5488 4.5088 4.6816 4.5263 5.2369
4.0864 4.5731 4.2452 3.6852 4.5088 5.1569 4.0399 3.9304 4.3674
4.2076 4.6975 4.0646 3.3418 4.6816 4.0399 4.5993 4.0265 4.6699
3.9694 4.3167 4.0090 3.1225 4.5263 3.9304 4.0265 4.3420 4.4163
4.4595 5.0072 4.5213 3.7332 5.2369 4.3674 4.6699 4.4163 5.6492


.

The fitting times of MT-eQTL and the Meta-Tissue method (Sul and others, 2013) on a se-
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quence of sub-models of different dimensions based on alphabetically ordered tissues are presented

in Table S5. (We note that fitting sub-models of MT-eQTL is unnecessary in practice, as one

can obtain them through marginalization of the full model.) The use of configuration vectors in

MT-eQTL makes analysis results more interpretable, but it also makes the runtime of MT-eQTL

sensitive to the number of tissues. Nevertheless, our method is computationally efficient when

the number of tissues is moderate. On the other hand, the Meta-Tissue method is less restricted

by the number of tissues, but it is more sensitive to the total number of gene-SNP pairs. The

runtime for Meta-Tissue may quickly become impractical when there are too many gene-SNP

pairs.
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Fig. S1: Sample information of the GTEx data. Each column represents a genotyped individual
with expression measurements in at least one tissue; each row corresponds to a tissue. Red means
the individual is a donor of the corresponding tissue.

Table S1: Sample sizes (diagonal), sample overlap (off-diagonal), and degrees of freedom for
different tissues in the simulation.

a b c d Degree of Freedom

a 156 104 122 90 137

b 119 100 84 100

c 138 88 119

d 105 86
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Table S2: The true generating model parameters (∆,Σ,p) for the simulation study. The prior
probabilities are provided for all possible eQTL configurations represented by 4-digit 0/1 se-
quences: 0 means no eQTL and 1 indicates the presence of eQTL in a tissue.

(a) ∆

a b c d

a 1.0000 0.1347 0.0805 0.1089

b 0.1347 1.0000 0.1204 0.1794

c 0.0805 0.1204 1.0000 0.1288

d 0.1089 0.1794 0.1288 1.0000

(b) Σ

a b c d

a 6.5699 5.3098 4.4683 4.7126

b 5.3098 5.9752 4.7906 5.5778

c 4.4683 4.7906 5.5263 4.6493

d 4.7126 5.5778 4.6493 6.0178

(c) p

Config (abcd) 0000 0001 0010 0011 0100 0101 0110 0111

Prior 0.7721 0.0202 0.0190 0.0037 0.0104 0.0033 0.0010 0.0107

Config (abcd) 1000 1001 1010 1011 1100 1101 1110 1111

Prior 0.0196 0.0010 0.0008 0.0009 0.0029 0.0085 0.0019 0.1240

Table S3: A variety of eQTL detection inferences with the MT-eQTL model in the 4-tissue
simulation study. From top to bottom, we aim to identify eQTLs: 1) in at least one tissue; 2) in
tissue a (the null consists of all configurations with 0 in the first position); 3) in tissue b; 4) in
tissue c; 5) in tissue d; 6) in all 4 tissues.

Index Null Config # Alternative Cases # Discoveries # Overlaps TPR FDR

1) 0000 2,279,307 1,038,456 987,083 .4331 .0495

2) 0*** 1,596,410 679,207 645,700 .4045 .0493

3) *0** 1,626,961 746,265 709,258 .4359 .0496

4) **0* 1,618,655 663,367 630,502 .3895 .0495

5) ***0 1,722,789 770,722 732,600 .4252 .0495

6) all but 1111 1,239,630 417,867 397,341 .3205 .0491
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Table S4: The TPRs and FDRs of detecting eQTL in tissue a using the MT-eQTL model on
tissue sets {a}, {a,b}, {a,b,c}, and {a,b,c,d}.

{a} {a,b} {a,b,c} {a,b,c,d}
TPR .2753 .3475 .3806 .4045
FDR .0500 .0499 .0496 .0493

Table S5: Approximate fitting times for k-dimensional MT-eQTL models and Meta-Tissue meth-
ods using the GTEx data.

Time k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
MT-eQTL < 1 min 15 min 30 min 1 hr 2.5hr 6hr 11hr 16 hr 24 hr

Meta-Tissue 130 min 165 min 165 min 3 hr 3 hr 3.25 hr 3.5 hr 4 hr 5 hr
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