

2 Supplementary Figure 1. PBS sequences of LTR retrotransposons in Arabidopsis, rice and

- 3 tomato
- 4 The frequency of tRNAs used for targeting PBS. LTR retrotransposons were annotated by
- 5 *LTRpred* (http://github.com/HajkD/ALE) and selected for young elements by filtering LTR
- 6 similarities higher than 95%. The total numbers of retrotransposons analysed in each
- 7 species are shown below the plots.

10 Supplementary Figure 2. SIRT results from leaves and calli of rice

a and **b**, Genome-wide plots for SIRT performed in leaves (**a**) and in calli (**b**) of rice.

13 Supplementary Figure 3. ALE-seq detection of eclDNAs of Arabidopsis retrotransposons

- 14 Genome-wide plots (**a**, **b**, **d** and **f**) and read coverage plots (**c**, **e** and **g**) for ALE-seq profiles of
- 15 Arabidopsis Col-0 wt (a), heat-stressed Col-0 (b and c), met1-1 (d and e), and epi12 (f and g).

18 Supplementary Figure 4. Conservation of end sequences of LTR

- 19 The conserved sequences of 5' and 3' ends of LTR. The first and last five nucleotides of LTRs
- 20 are displayed. The images were generated by the WebLogo tool
- 21 (http://weblogo.berkeley.edu/logo.cgi).
- 22

24 Supplementary Figure 5. ALE-seq detection of eclDNAs of rice retrotransposons using

25 multiplexed PBS primers

26 Genome-wide plot for ALE-seq profiles of rice callus using pooled PBS primers of Met-iCAT

27 and Arg-CCT.

30 Supplementary Figure 6. Go-on retrotransposon family

31 a, Schematic structure of *Go-on* retrotransposons. The genomic coordinates and LTR similarities of each copy are shown at the left and right, respectively. Red boxes, ORFs; 32 green boxes, regions encoding protein domains; blue boxes, PBS; white arrowheads, LTRs. 33 Note that the sequences of the upstream LTRs through the PBS are identical in all three 34 copies. The sequence variation specific for each element is indicated. Protein domains were 35 predicted by NCBI BLASTP tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Nucleotide 36 positions indicating the start and end of ORF and protein domains are provided. Primers 37 38 used for sequencing and qPCR analyses are shown as arrows. b, Multiple sequence alignment of the genomic sequences of three *Go-on* copies and the sequenced ALE clones. 39 ALE-seq was performed using the RT primer specific to Go-on3 indicated as "a" in a. The 40

- 41 resulting single-stranded first strand cDNA was PCR-amplified, cloned to the pGEM T-easy
- 42 vector, and sequenced. Multiple sequence alignment was performed by ClustalW
- 43 (http://www.genome.jp/tools-bin/clustalw) and visualized by boxshade tools
- 44 (https://www.ch.embnet.org/software/BOX_form.html). **c**, Sequencing of the ALE-seq
- 45 product of *Go-on3* showing the junction region of the adapter and LTR. Sequences in red
- 46 and black are the adapter and *Go-on* LTR, respectively.

49 Supplementary Figure 7. Heat stress-triggered transcriptional activation of Go-on

50 **a** and **b**, The relative levels of DNA (**a**) and RNA (**b**) of *Go-on3* determined by qPCR. Heat treatment (44°C) was applied to 1-week-old rice seedlings for the periods indicated; +3r 51 52 means 3 days of recovery in normal growth conditions after heat stress. The levels are means ± sd of three biological replicates. For DNA analysis, Day 0 levels are set to 3, 53 reflecting three genomic copies of Go-on in japonica rice. Normalization was done against 54 $eEF1\alpha$. P-values were calculated by a two-tailed Student's t-test; n.s., not significant. **c**, The 55 56 sequence of the left LTR and PBS of Go-on3. The sequence in red is the heat-related HSFC1binding sequence motif predicted by PlantPan 2.0 tool 57 (http://plantpan2.itps.ncku.edu.tw/index.html) with statistically significant enrichment of 58 P= 4.28e⁻¹⁰ as determined by Fisher's exact test. The enrichment of the sequence motif was 59

- 60 calculated by comparing the ten most similar sequences of *Go-on* found in rice genome with
- 61 1,000 random genomic loci of 150bp. The PBS is shown in blue.

a and b, The qPCR analyses for DNA (a) and RNA (b) levels of *Go-on* in *indica* rice. The levels
are means ± sd of three biological replications. The levels of control sample are set to 2 (a)
reflecting 2 genomic copies of *Go-on* in *indica* rice. P-values are determined by two-sided
Student's t-test.

b

70

71 Supplementary Figure 9. Comparison of mRNA and eclDNA levels

a, Scatter plot for log2-fold changes (FCs) in RNA-seq and ALE-seq profiles in the control and
 heat-stressed rice plants used in Figure 3. FCs were calculated by dividing heat samples

- values by control samples values of CPM (counts per million reads) and FPKM (fragments
- per kb per million reads) for ALE-seq and RNA-seq data, respectively. Each dot represents an

- 76 individual retroelement and the dashed lines mark log2-FC one. Th retrotransposon in red
- has log2-FC higher than one in both ALE-seq and RNA-seq. **b**, Read coverage plot for a
- 78 selected retrotransposon showing evidence of transcriptional activation upon heat stress
- 79 not followed by synthesis of eclDNAs.

82 Supplementary Figure 10. Retrotransposon insertions in *japonica* and *indica* rice

- **a-c**, Density plots for number of non-reference insertions in randomly selected 200
- 84 accessions out of 388 iterated by 1,000 times.

87 Supplementary Figure 11. ALE-seq profile of tomato leaves and fruits

a and b, Genome-wide plots for ALE-seq profiles performed in tomato leaves (a) and fruits
52 DPA (b). Each dot represents an individual retrotransposon.

Supplementary Table 1. Sequences of oligonucleotides used in this study

92 T7 promoter sequence is underlined and in bold is partial Illumina adapter sequence.

ALE adapter top strand ALE adapter bottom strand	AGAGAG <u>TAATACGACTCACTATAGGG</u> ACACGACGCTCTTCCGATCT AGATCGGAAGAGCGTCGTGT <u>CCCTATAGTGAGTCGTATTA</u> CTCTCT
ALE adapter bottom strand	AGATCGGAAGAGCGTCGTGT <u>CCCTATAGTGAGTCGTATTA</u> CTCTCT
ALE RT Met-iCAT-R	AGACGTGTGCTCTTCCGATCTGCTCTGATACCA
ALE RT Arg-CCT-R	AGACGTGTGCTCTTCCGATCTCCTGGCGCGCCA
ONSEN full length-F	TGTTGAAAGTTAAACTTGATTTTG
ONSEN full length-R	TGTTAGAGTAAAATTCTTTTAG
Go-on-F (b of Figure S5)	GGCAGAATACAGGGCAATGTC
Go-on-R (c of Figure S5)	GCCGACTTATTGTCACACCAC
Go-on RT-R (a of Figure S5)	TCTCTGCACGCCTCGACAAG
eEF1α-F	GCACGCTCTTCTTGCTTTCACTCT
eEF1α-R	AAAGGTCACCACCATACCAGGCTT
FIRE RT-F	GAGTTGGCTACGTATCGTTTGC
FIRE RT-R	AGCCTCCACAAATTCATCCCAT
FIRE copy number-F	GGTGTTCTCGTTGTGGTAAGT
FIRE copy number-R	TAAGGTGACACTCCCTCATAGT
SICAC-F	CCTCCGTTGTGATGTAACTGG
SICAC-R	ATTGGTGGAAAGTAACATCATCG
SIGAPDH-F	ATGCTCCCATGTTTGTTGTGGGTG
SIGAPDH-R	TTAGCCAAAGGTGCAAGGCAGTTC

94 **Supplementary Table 2.** Summary of ALE-seq libraries

95 Numbers of reads sequenced and mapped are summarised. Both unique-mappers and

96 multi-mappers are considered. "% mapped to LTRs" refers to all reads mapped throughout

97 retrotransposon.

Samples	Reads	% mapped to	% mapped to	% not mapped	Accession
	sequenced	genome	LINS	LU LINS	
Arabidopsis Col-0	56,057	93.20	17.77	75.43	SAMN09748167
Arabidopsis heat-stressed	45,554	90.33	15.85	74.48	SAMN09748168
Arabidopsis met1-1	58,029	94.79	16.03	78.76	SAMN09748169
Arabidopsis epi12	45,545	96.19	31.18	65.01	SAMN09748170
Rice leaf	27,063	97.54	12.33	85.21	SAMN09748171
Rice callus	25,183	95.67	13.58	82.09	SAMN09748172
Rice callus -Lig	37,610	83.48	11.75	71.73	SAMN09748173
Rice callus -T7	870	2.82	0.12	2.70	SAMN09748174
Rice callus -RT	516	1.26	0	1.26	SAMN09748175
Rice callus pooled PBS	22,939	90.06	14.16	75.90	SAMN09748176
Rice non-stressed	31,819	90.39	12.29	78.10	SAMN09748177
Rice heat-stressed	31,525	97.63	13.54	84.09	SAMN09748178
Tomato leaf	46,421	96.65	13.24	83.41	SAMN09748179
Tomato fruit 52 DPA	73,067	96.97	28.53	68.44	SAMN09748180

99 **Supplementary Table 3.** Non-reference insertions of *Go-on*.

100 Neo-insertions of *Go-on* detected by TIF. The positions are provided as coordinates of target

101 site duplication.

Chromosome	Start	End	Accession	Category
Chr4	31968290	31968294	ERS467756	Indica
Chr4	31968290	31968294	ERS467757	Indica
Chr1	43029985	43029989	ERS467791	Indica
Chr4	31968290	31968294	ERS467794	Indica
Chr4	31968290	31968294	ERS467830	indica
Chr1	43029985	43029989	ERS467831	indica
Chr4	31968290	31968294	ERS467831	indica
Chr7	29937784	29937788	ERS467843	indica
Chr1	43029985	43029989	ERS467872	indica
Chr4	31968290	31968294	ERS467876	indica
Chr1	43029985	43029989	ERS467877	indica
Chr1	43029985	43029989	ERS467878	indica
Chr8	5518300	5518306	ERS467878	indica
Chr7	29937784	29937788	ERS467880	indica
Chr4	31968290	31968294	ERS467883	indica
Chr11	1485949	1485953	ERS467910	indica
Chr1	43029985	43029989	ERS467915	indica
Chr4	31968290	31968294	ERS467924	indica
Chr7	29937784	29937788	ERS467925	indica
Chr4	31968290	31968294	ERS467926	indica
Chr1	20049396	20049400	ERS467927	indica
Chr8	5518300	5518306	ERS467934	indica
Chr1	43029985	43029989	ERS467938	indica
Chr1	20049396	20049400	ERS467943	indica
Chr8	3790507	3790511	ERS467943	indica
Chr1	20049396	20049400	ERS467944	indica
Chr4	31960603	31960607	ERS467952	indica
Chr8	5518300	5518306	ERS467952	indica
Chr8	5518300	5518306	ERS467959	indica
Chr1	20049396	20049400	ERS467960	indica
Chr1	43029985	43029989	ERS467961	indica
Chr1	20049396	20049400	ERS467962	indica
Chr4	13737528	13737532	ERS467962	indica
Chr7	29937784	29937788	ERS467962	indica
Chr1	43029985	43029989	ERS467966	indica
Chr1	43029985	43029989	ERS467969	indica
Chr4	31968290	31968294	ERS467969	indica
Chr1	43029985	43029989	ERS467979	indica
Chr8	5518300	5518306	ERS467980	indica
Chr1	43029985	43029989	ERS467986	indica
Chr4	31968290	31968294	ERS467995	indica
Chr7	29937784	29937788	ERS467995	indica
Chr12	16846383	16846387	ERS467996	indica
Chr4	31968290	31968294	ERS467996	indica
Chr8	5518300	5518306	ERS467996	indica
Chr5	287377	287381	ERS467998	indica
Chr1	43029985	43029989	ERS467999	indica
Chr8	3790507	3790511	ERS468001	indica
Chr1	20049396	20049400	ERS468004	indica
Chr8	5518300	5518306	ERS468004	indica
Chr1	20049396	20049400	ERS468006	indica
Chr8	5518300	5518306	ERS468006	indica
Chr4	31960603	31960607	ERS468008	indica
Chr7	29937784	29937788	ERS468011	indica

Chr8	5518300	5518306	ERS468011	indica
Chr1	43029985	43029989	ERS468014	indica
Chr12	16846383	16846387	ERS468016	indica
Chr4	31960603	31960607	ERS468018	indica
Chr1	43029985	43029989	ERS468023	indica
Chr1	43029985	43029989	ERS468025	indica
Chr8	5518299	5518306	ERS468028	indica
Chr1	43029985	43029989	ERS468029	indica
Chr4	31968290	31968294	ERS468042	indica
Chr7	29937784	29937788	FRS468048	indica
Chr1	43029985	43029989	FRS468049	indica
Chr8	5518300	5518306	ERS468050	indica
Chr1	13029985	13029989	ERS468052	indica
Chr8	5518300	5518306	ERS/68052	indica
Chr4	12727528	12727522	ERS468055	indica
Chr9	I3737320 EE19300	13737332 EE19206		indica
Chr7	20027794	20022200		indica
Chr7	29937784	29937788	ERS468059	inaica
Chr7	29937784	29937788	ERS468060	inaica
Chr6	31319589	31319593	ERS468065	indica
Chr1	43029985	43029989	ERS468066	indica
Chr4	13737528	13737532	ERS468068	indica
Chr8	5518300	5518306	ERS468071	indica
Chr1	20049396	20049400	ERS468072	indica
Chr7	29937784	29937788	ERS468073	indica
Chr4	31968290	31968294	ERS468074	indica
Chr4	31960603	31960607	ERS468075	indica
Chr12	16846383	16846387	ERS468077	indica
Chr1	20049396	20049400	ERS468078	indica
Chr8	5518300	5518306	ERS468084	indica
Chr11	29783248	29783252	ERS468086	indica
Chr1	20049396	20049400	ERS468087	indica
Chr1	20049396	20049400	ERS468088	indica
Chr8	5518300	5518306	ERS468088	indica
Chr8	5518300	5518306	FRS468089	indica
Chr12	22672020	22672024	FRS468095	indica
Chr4	31960603	31960607	ERS468101	indica
Chr1	43029985	43029989	ERS468102	indica
Chr1	43029985	43029989	ERS468104	indica
Chr4	31068200	31068201	ERS/68106	indica
Chr12	16046200	16016207	EDC/60111	indica
Chr1	10040303	10040307	EDC/60111	indica
Chr1	43029985	43029989	ER3408112	indica
Chris	43029985	43029989	ER3408115	indiaa
Chr8	5518300	5518306	ER5468121	inaica
Chr4	31968290	31968294	ERS468126	inaica
Chr8	5518300	5518306	ERS468131	inaica
Chr8	5518300	5518306	ERS468133	indica
Chr1	20049396	20049400	ERS468134	indica
Chr4	31968290	31968294	ERS468136	indica
Chr1	43029985	43029989	ERS468138	indica
Chr4	31968290	31968294	ERS468139	indica
Chr8	5518300	5518306	ERS468142	indica
Chr4	31968290	31968294	ERS468154	indica
Chr4	31968290	31968294	ERS468157	indica
Chr1	43029985	43029989	ERS468160	indica
Chr1	43029985	43029989	ERS468161	indica
Chr4	31968290	31968294	ERS468163	indica
Chr1	20049396	20049400	ERS468166	indica
Chr4	31968290	31968294	ERS468169	indica
Chr5	19524953	19524957	ERS468170	indica
Chr4	31968290	31968294	ERS468174	indica
Chr8	5518300	5518306	ERS468184	indica
-				

Chr8	5518300	5518306	ERS468186	indica
Chr4	31968290	31968294	ERS468187	indica
Chr8	5518300	5518306	ERS468187	indica
Chr4	31968290	31968294	ERS468191	indica
Chr4	31968290	31968294	ERS468192	indica
Chr4	31968290	31968294	ERS468193	indica
Chr8	5518300	5518306	ERS468195	indica
Chr4	31968290	31968294	ERS468202	indica
Chr7	29937784	29937788	ERS468202	indica
Chr4	31968290	31968294	ERS468204	indica
Chr4	31968290	31968294	ERS468205	indica
Chr8	5518300	5518306	FRS468207	indica
Chr8	5518300	5518306	FRS468209	indica
Chr7	29937784	29937788	FRS468210	indica
Chr11	30168035	30168039	FRS468212	indica
Chr5	287377	287281	ERS/68212	indica
Chr1	12020085	12020080	ERS400212	indica
Chr4	21062200	21069204	ERS400213	indica
Chir4	31908290	31908294		indica
Chr4	31968290	31968294	ER3408230	indian
Chr4	31968290	31968294	ER3408232	indian
Chr4	31968290	31968294	ER5468234	inaica
Chr1	43029985	43029989	ERS468237	inaica
Chr4	13/3/528	13/3/532	ERS468240	indica
Chr/	29937784	29937788	ERS468249	indica
Chr1	43029985	43029989	ERS468250	indica
Chr3	431859	431863	ERS468252	indica
Chr7	29937784	29937788	ERS468252	indica
Chr11	29783248	29783252	ERS468255	indica
Chr1	19257271	19257275	ERS467801	japonica
Chr5	23638163	23638167	ERS467889	japonica
Chr11	1514174	1514178	ERS467893	japonica
Chr8	5635769	5635774	ERS467904	japonica
Chr11	1514174	1514178	ERS468026	japonica
Chr5	258622	258626	ERS468308	japonica
Chr8	5635768	5635774	ERS468310	japonica
Chr1	41968356	41968360	ERS468380	japonica
Chr8	5635768	5635774	ERS468383	japonica
Chr8	5635768	5635774	ERS468384	japonica
Chr8	5635768	5635774	ERS468387	japonica
Chr8	5635768	5635774	ERS468402	japonica
Chr6	24954457	24954461	ERS468442	japonica
Chr6	22413483	22413487	ERS468446	japonica
Chr7	29379081	29379085	ERS468449	japonica
Chr8	5635769	5635774	ERS468449	japonica
Chr8	5635768	5635774	ERS468456	japonica
Chr8	5635768	5635774	ERS468458	japonica
Chr8	5635769	5635774	ERS468595	japonica
Chr8	5635768	5635774	ERS468596	japonica
Chr8	5635768	5635774	ERS468604	japonica
Chr8	5635768	5635774	ERS468613	japonica
Chr8	5635768	5635775	ERS468617	iaponica
Chr8	5635768	5635774	ERS468620	iaponica
Chr6	22413483	22413487	ERS468649	iaponica
Chr5	258622	258626	ERS468684	iaponica
Chr7	29379081	29379085	FRS468704	ianonica
Chr8	5635768	5635774	FRS468705	ianonica
Chr5	258622	258626	FRS468721	ianonica
Chr5	236322	23622167	ERS46873/	ianonica
Chr1	11068326	11060360	ERS/62002	ianonica
Chr1	110603266	11060300	ERS/62017	ianonica
ChrQ	41300330	41300300	EDC/60000	ianonica
CIIIO	2022102	5055774	LI13400333	japonica

Chr2	1659944	1659948	ERS469049	japonica
Chr8	5635768	5635774	ERS469069	japonica
Chr8	5635768	5635774	ERS469132	japonica
Chr8	5635768	5635774	ERS469177	japonica
Chr8	5635768	5635774	ERS469199	japonica
Chr8	5635768	5635774	ERS469215	japonica
Chr8	5635768	5635774	ERS469302	japonica
Chr8	5635768	5635774	ERS469307	japonica
Chr8	5635768	5635774	ERS469556	japonica
Chr8	5635768	5635774	ERS469602	japonica
Chr8	5635768	5635774	ERS469604	japonica
Chr8	5635768	5635774	ERS469605	japonica
Chr8	5635768	5635775	ERS469637	japonica
Chr8	5635768	5635774	ERS469650	japonica
Chr8	5635768	5635774	ERS469668	japonica
Chr8	5635768	5635774	ERS469669	japonica
Chr8	5635768	5635774	ERS469689	japonica
Chr8	5635768	5635774	ERS469694	japonica
Chr8	5635768	5635774	ERS469696	japonica
Chr8	5635768	5635774	ERS469699	japonica
Chr8	5635768	5635774	ERS469746	japonica
Chr8	5635768	5635774	ERS469758	japonica
Chr8	5635768	5635774	ERS469845	japonica
Chr8	5635768	5635774	ERS469880	japonica
Chr8	5635768	5635774	ERS469978	japonica
Chr8	5635768	5635774	ERS469985	japonica
Chr8	5635768	5635774	ERS470129	japonica
Chr8	5635768	5635774	ERS470132	japonica
Chr8	5635768	5635774	ERS470188	japonica
Chr8	5635768	5635774	ERS470344	japonica
Chr8	5635768	5635774	ERS470439	japonica
Chr8	5635768	5635774	ERS470516	japonica