

Supplementary Figure 1. Growth of the RNAP 1⁻²⁻ strain and its expression of RelA'.

(a) Schematic of enzymatic activities governing (p)ppGpp levels in *E. coli*. RelA and SpoT can each synthesize pppGpp in response to various signals. SpoT also has an active hydrolase domain; the hydrolase domain in RelA is non-functional.
(b) Growth of the WT control and the RNAP 1^{-2⁻} strains in M9GAV medium. One representative growth curve from three experiments is shown.

(c) Western blot for RelA'-His6 expressed in the WT control and RNAP 1⁻2⁻ strains for the times indicated with RelA'-His₆ induced with the concentration of IPTG indicated. The corresponding Coomassie stained gel indicating loading is shown below.

Supplementary Figure 2. Synthesis of crosslinkable ppGpp derivatives.

(a) Coomassie stained gel indicating the purity of YjbM enzyme used to synthesize ppGpp, ppGpp($3'\gamma S$), and ppGpp($5'\gamma S$). (b) Anion-exchange chromatography traces for reactions producing ppGpp, ppGpp($3'\gamma S$), and ppGpp($5'\gamma S$). The top trace was from a mixture of starting materials.

(c) Anion-exchange chromatography traces for conjugation reactions producing **1a-d** (left) and **2a-d** (right). Red arrows indicate desired compounds listed on the far right and shown in Fig. 2a.

(d) High-resolution mass spectra for the 8 crosslinkable ppGpp compounds **1a-d** and **2a-d**. The calculated and observed m/z in Da are listed above each spectrum.

(e) Streptavidin blot (top) and Coomassie brilliant blue staining (bottom) for post-crosslinking lysates (left two lanes) and fractions from streptavidin pulldown (right three lanes).

GTP

Supplementary Figure 3. Regulation of Upp by ppGpp and summary of de novo purine nucleotide synthesis pathway.

(a) Upp produces UMP from pRpp and uracil, and is activated by GTP (top). Upp activity in the presence of ppGpp and GTP at the concentrations indicated (bottom). Data points represent mean of two kinetic experiments.

(b) Metabolic pathway for *de novo* synthesis of IMP, the precursor to ATP and GTP, from pRpp. Metabolites listed in orange were reliably detected by metabolomics (see Fig. 4c, 5e). Glycine, which was used for isotopic labeling of purines, is highlighted in purple.

Supplementary Figure 4. Structural changes induced by ppGpp binding to PurF.

(a) Lineweaver-Burk analysis showing that ppGpp is a competitive PurF inhibitor with respect to pRpp. Points represent mean of two independent experiments with bars indicating range.

(b) Fo–Fc omit electron density of ppGpp (blue mesh) contoured at 2σ (left) and 1σ (right), each overlaid with stick model of ppGpp-Mg in two orientations, one colored by element and the other in yellow. Also see Online Methods for details of modeling.

(c) Configuration of ppGpp coordinating a Mg²⁺ ion in the PurF-ppGpp structure. All O-Mg-O bond angles displayed should be 90° in an ideal octahedral coordination.

(d) Zoom-in views of key contacts involving the C-terminal helix of PurF in the ppGpp-bound conformation (left) and the cpRpp-bound conformation (right).

Supplementary Figure 5. Additional characterizations of PurF(R45A).

(a) Activity of WT PurF or PurF(R45A) in the presence of indicated concentrations of AMP or GMP. Initial velocities of each reaction were normalized to that of WT PurF without ligand. Error bars indicate S.D., n=3.

(b-c) Time courses of net abundance changes of all adenosine and guanosine nucleotides (b) and fold changes of adenosine nucleotides (c) in WT and purF(R45A) strains grown in M9GAV after inducing pReIA' with 40 μ M IPTG. Error bars indicate S.D, n=3. Arrowheads in (b) indicate not detectable.

(d) Scheme showing the PurF-independent effects of ppGpp on the *de novo* synthesis of IMP. Metabolites increased (green) or decreased (red) early following RelA' induction are highlighted.

Supplementary Dataset. SILAC mass spectrometry results For each protein, the H / L ratio, number of total peptides, and number of unique peptides is shown for each of three capture-ID experiments. Entries shaded grey are proteins predicted to be secreted. Entries shaded orange were purified and studied with ITC (see Supplementary Table 2)

protein	function / annotation	ID'd here?	characterization	reference
SpeC	ornithine decarboxylase	Y	inhibition and binding (ITC) in vitro	1
Gpt	xanthine-guanine phosphoribosyltransferase	Y	inhibition in vitro	2
GdhA	glutamate dehydrogenase	Y	binding (microdialysis) in vitro	3
Upp	uracil phosphoribosyltransferase	Y	inhibition in vitro	4
			activation in vitro with low GTP	5
Hpt	hypoxanthine phosphoribosyltransferase	Y	inhibition in vitro	2
PurA	adenylosuccinate synthetase	Y	inhibition of partially purified protein in vitro	6
EF-G	elongation factor G	Y	binding (ITC) in vitro	7
			inhibition of translation in vitro	8
Der	ribosome-associated GTPase	Y	binding in vitro	9
IF-2	translation initiation factor 2, GTPase	Y	binding (ITC) in vitro	7
		N N		10
EF-IU	translation elongation factor 1 u	Y	binding (ITC) in vitro	17
BinA	ribosome biogenesis GTPase	v	hinding (ITC) in vitro + structure	17
DipA		v v	inhibition in vitro, polyP accumulation in vivo	17
Γ μλ GuoR	inosino 5' monophosphato dobudrogonoso	I V	inhibition in vitro	6
ObaE		I V		12
Ubg⊑	ATD phoophoriboouttrepoterooo	T NI		13
HISG	ATP phosphoridosyltransierase	N N		14
	lysine decarboxylase 2	N		1
	lysine decarboxylase 1	N	Inhibition <i>in vitro</i> + structure	15
DksA	RNA polymerase-binding transcription factor	Y	INhibition <i>in vitro</i>	16
BnoC		N	RNAP 12 strain delective in nutritional shifts	17
RpoC BroZ	RNA polymerase subunit p	IN N	BNAD 1 ^{-2⁻} strain defective in putritional shifts	10
Rpoz Spot	kifunctional process suburil @		RNAF 12 Strain delective in Indinional Sinits	17
Spor		T	in hit is a line with	19
DnaG	DNA primase	N		20
YgaH	nucleotide 5-monophosphate nucleosidase	N	DRaCALA	21
RF-3	peptide chain release factor 3, GTPase	Ŷ	DRaCALA	21
Era	ribosome biogenesis GTPase	Y	DRaCALA	21
EF-4	translation elongation factor 4	Y	DRaCALA	21
RsgA	ribosome biogenesis GTPase	Y	DRaCALA	21
HypB	hydrogenase isozymes nickel incorp. protein	N	DRaCALA	21

Supplementary Table 1. Previously characterized ppGpp-binding proteins in *E. coli*

PDBID	resolution (Å)	(p)ppGpp	species	protein	solvent-exposed terminal P _i	reference
2J4R	2.7	ppGpp	A. aeolicus	GppA	5'	22
1LNZ	2.6	ppGpp	B. subtilis	Obg	3' and 5'	23
3VR1	2.8	ppGpp	D. vulgaris	RF3	3'	24
4ZCM	3.3	ppGpp	E. coli	BipA	3'	11
5A9Y	4.0	ppGpp	E. coli	BipA	3'	25
3N75	2.0	ppGpp	E. coli	Ldcl	3' and 5'	15
4JK1	3.9	ppGpp	E. coli	RNAP	5'	26
4JKR	4.2	ppGpp	E. coli	RNAP	3' and 5'	18
5VSW	4.3	ррGрр	E. coli	RNAP-DksA	3' and 5' (chain E) 3' and 5' (chain J) 3' (chain M)	26
5U51	3.0	ppGpp	F. tularensis	MgIA-SspA	3' and 5'	27
5VOG	1.5	ppGpp	N. gonorrhoeae	Hpt	3'	N/A
4EDT	2.0	ppGpp	S. aureus	DnaG	3' and 5'	28
5DED	2.9	pppGpp	B. subtilis	YjbM	3' and 5'	29
4JK2	4.2	pppGpp	E. coli	RNAP	5'	18
4EDV	2.0	pppGpp	S. aureus	DnaG	3' and 5'	28
4QRH	1.6	pppGpp	S. aureus	Gmk	5'	30

Supplementary Table 2. Summary of exposed (p)ppGpp termini in crystal structures

Supplementary Table 3. Binding of ppGpp to purified metabolic enzymes

				% activity
Function / Annotation	#subunits	# binding sites	K _D (μΜ)	+ 1 mM ppGpp
inosine-guanosine kinase	2	2^	0.4 ± 0.07	9 ± 1
			14 ± 2	
ornithine decarboxylase	2	1.14 ± 0.004	1.6 ± 0.05	1.6 ± 0.2
glutamine amidophosphoribosyltransferase	4	2.13 ± 0.005	1.6	8 ± 2
glutamate dehydrogenase	6	2^	2.8 ± 0.4	119
			29 ± 2	
xanthine-guanine phosphoribosyltransferase	2	1.02 ± 0.002	3.2 ± 0.05	13 ± 5
hypoxanthine phosphoribosyltransferase	2	0.97 ± 0.03	32 ± 4	4 ± 1
uracil phosphoribosyltransferase	2	2.98 ± 0.04	47 ± 3	76 ± 1
adenylosuccinate synthetase	2	2.02 ± 0.03	61 ± 4	75 ± 2
phosphoglycerate mutase	2	2^	52 ± 3	147
cytidylate kinase	1	1^	79 ± 1	111
dihydrofolate synthase	1	1^	130 ± 3	N.T.
isocitrate dehydrogenase	2	1^	132 ± 5	96 ± 1
6-phosphogluconate dehydrogenase	2	1^	175 ± 3	114 ± 1
phosphoglycerate kinase	1	1^	493 ± 30	85
UDP-MurNAcL-Ala-γ-D-Glu-meso-DAP ligase	1	1	752 ± 46	N.T.
SAICAR synthase	3	N.D.	N.D.	N.T.
adenylosuccinate lyase	4	N.D.	N.D.	N.T.
inosine 5'-monophosphate dehydrogenase	4	N.D.	N.D.	106 ± 5
	Function / Annotationinosine-guanosine kinaseornithine decarboxylase glutamine amidophosphoribosyltransferase glutamate dehydrogenasexanthine-guanine phosphoribosyltransferase uracil phosphoribosyltransferase adenylosuccinate synthetase phosphoglycerate mutase cytidylate kinasedihydrofolate synthase isocitrate dehydrogenase6-phosphogluconate dehydrogenase bosphoglycerate kinase UDP-MurNAc-L-Ala-γ-D-Glu-meso-DAP ligase SAICAR synthase inosine 5'-monophosphate dehydrogenase	Function / Annotation#subunitsinosine-guanosine kinase2ornithine decarboxylase2glutamine amidophosphoribosyltransferase4glutamate dehydrogenase6xanthine-guanine phosphoribosyltransferase2hypoxanthine phosphoribosyltransferase2uracil phosphoribosyltransferase2adenylosuccinate synthetase2cytidylate kinase1dihydrofolate synthase26-phosphoglycerate mutase26-phosphoglycerate kinase1UDP-MurNAc-L-Ala-γ-D-Glu-meso-DAP ligase1SAICAR synthase3adenylosuccinate lyase4inosine 5'-monophosphate dehydrogenase4	Function / Annotation#subunits# binding sitesinosine-guanosine kinase2 2^{\uparrow} ornithine decarboxylase2 1.14 ± 0.004 glutamine amidophosphoribosyltransferase4 2.13 ± 0.005 glutamate dehydrogenase6 2^{\uparrow} xanthine-guanine phosphoribosyltransferase2 1.02 ± 0.002 hypoxanthine phosphoribosyltransferase2 0.97 ± 0.03 uracil phosphoribosyltransferase2 2.08 ± 0.04 adenylosuccinate synthetase2 2.02 ± 0.03 phosphoglycerate mutase2 2^{\uparrow} cytidylate kinase1 1^{\uparrow} dihydrofolate synthase2 1^{\uparrow} fo-phosphogluconate dehydrogenase2 1^{\uparrow} phosphoglycerate kinase1 1^{\uparrow} UDP-MurNAc-L-Ala- γ -D-Glu-meso-DAP ligase1 1^{\uparrow} SAICAR synthase3N.D.adenylosuccinate lyase4N.D.inosine 5'-monophosphate dehydrogenase4N.D.	Function / Annotation#subunits# binding sitesK _b (μM)inosine-guanosine kinase220.4 ± 0.07inosine-guanosine kinase21.14 ± 0.0041.6 ± 0.05glutamine decarboxylase21.14 ± 0.0051.6glutamine amidophosphoribosyltransferase42.13 ± 0.0051.6glutamate dehydrogenase62^2.8 ± 0.429 ± 222.0.0023.2 ± 0.02xanthine-guanine phosphoribosyltransferase20.97 ± 0.0332 ± 4uracil phosphoribosyltransferase22.08 ± 0.0447 ± 3adenylosuccinate synthetase22.02 ± 0.0361 ± 4phosphoglycerate mutase22^52 ± 3cytidylate kinase11^79 ± 1dihydrofolate synthase11^130 ± 3isocitrate dehydrogenase21^175 ± 3phosphoglycerate kinase11^752 ± 46SAICAR synthase3N.D.N.D.inosine 5'-monophosphate dehydrogenase4N.D.N.D.

red = new hits

ⁿnumber of sites was fixed rather than inferred from fitted ITC data ITC errors are fitting errors from one binding isotherm. Activity errors are range of two replicates. N.D. = no detectable heat release by ITC N.T. = not tried

	PDB: 6CZF
Data collection	
Space group	P2 ₁ 2 ₁ 2 ₁
Cell dimensions	
a, b, c (Å)	107.29, 115.34, 156.07
α, β, γ (°)	90, 90, 90
Resolution (Å)	48.6-1.95 (1.98-1.95)
R _{svm}	0.087 (1.49)
$I / \sigma(I)$	10.9 (0.70)
Completeness (%)	99.9 (99.0)
Redundancy	6.4 (5.8)
Refinement	
Resolution (Å)	1.95
No. reflections	140,744
R _{work} / R _{free}	0.2163 (0.371) / 0.2409 (0.431)
No. atoms	
Protein	15577
Ligand/ion	148*
Water	380
<i>B</i> -factors	
Protein	47.68
Ligand/ion	36.01*
Water	44.27
R.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	0.993
	i (i

Supplementary Table 4. Data collection and refinement statistics for the PurF-ppGpp structure

Highest-resolution shell is shown in parentheses. * half occupancy atoms: B-factor weighed by occupancy

Supplementary Table 5. DNA oligos

Primer name	Sequence
G23-1 K46:Kan FP	GCC GGC ATC ATC ACC ATA GAT GCC AAT AAC TGC TTC CGT TTG CGT AAA GAA CTT CAA GAT CCC CTC ACG CTG
G23-1 K46:Kan RP	CGC TGC ATA TGG CGA GCT TCA AAT ACA TCG CTC ACC AGC CCG TTC GCT TCA GAG CGC TTT TGA AGC TGG GG
G23-1 R45A Rec	GAT GCC AAT AAC TGC TTC CGT TTG GCT AAA GCG AAC GGG CTG GTG AGC GAT GTA TTT G
RelA D275G FP	GAT GAG CTG TTT GGT GTG CGT GCG
RelA D275G RP	CGC ACG CAC ACC AAA CAG CTC ATC
pTac EcoRI RP	CTG TTT CCT GTG TGA AAT TGT TAT CC
pTac HindIII FP	AAG CTT GGC TGT TTT GGC GGA TG
pET30 Sumo RP	ACC ACC AAT CTG TTC TCT GTG AGC
pET30 EcoRI FP	GAA TTC GAG CTC CGT CGA CAA G
pCfa Ndel RP	CAC GAA GAT CTG CAT ATG TAT ATC TCC TTC
pCfa Cys FP	TGC CTG TCT TAC GAC ACA GAG
G1-2 5 Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GGA TGA CAA ACA ATG GGA GCG
G1-2 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG CTA TTG TTG CTC GCT TCC TTT TTT CTT TC
G9-1 5' Ndel	CCT GGT GCC GCG CGG CAG TCA TAT GTC CAA GCA ACA GAT CGG C
G9-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA ATC CAG CCA TTC GGT ATG GAA C
G10-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GGA TCA GAC ATA TTC TCT GGA GTC
G10-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA AAT CAC ACC CTG CGC CAG
G13-1 5' Ndel	CCT GGT GCC GCG TGG TAG CCA TAT GGG GCA GGG TTT TCC AC
G13-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA CTT CAA CAC ATA ACC GTA CAA CC
G15-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAT TAT CAA ACG CAC TCC TCA AG
G15-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG CCG ATT CTG AAA CTT ACT TGC CAC
G19-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAG CGA AAA ATA CAT CGT CAC C
G19-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA GCG ACC GGA GAT TGG C
G20-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAA ACA TAC TGT AGA AGT AAT GAT CCC C
G20-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA CTC GTC CAG CAG AAT CAC TTT G
G21-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAA GAT CGT GGA AGT CAA ACA CC
G21-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA TTT CGT ACC AAA GAT TTT GTC ACC G
G23-1 5' Ncol	GTT TAA CTT TAA GAA GGA GAT ATA CCA TGT GCG GTA TTG TCG GTA TCG
G23-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAA AAG GCA TCA TCC TTC GTT ATG C
G23-1 5' Ndel Cfa	CTT TAA GAA GGA GAT ATA CAT ATG TGC GGT ATT GTC GGT ATC G
G23-1 3' Cfa	CTC TGT GTC GTA AGA CAG GCA TCC TTC GTT ATG CAT TTC GAG ATT TTC
G24-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAA ATT TCC CGG TAA ACG TAA ATC C
G24-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA ACG ATC CCA GTA AGA CTC TTC CAG
G25-1 5' Sumo	CAC AGA GAA CAG ATC GGT GGT GCT ACC AAT GCA AAA CCC GTC
G25-1 3' EcoRI	CTT GTC GAC GGA GCT CGA ATT CGA ATT ATT CCG TGA TTA AAG TCC CTT CTT
G26-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GAC TGC AAT TGC CCC GGT TAT TAC
G26-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TAC TGC AAA TTC GGT CGC TTA TGC
G27-1 5' Ncol	GTT TAA CTT TAA GAA GGA GAT ATA CCA TG GGT AAC AAC GTC GTC GTA CTG G
G27-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TAC CAG AAT TAC GCG TCG AAC G
G28-1 5' Ndel	CCT GGT GCC GCG TGG TAG CCA TAT GGA ATT ATC CTC ACT GAC CGC
G28-1 3' Xhol	GIG GIG GIG GIG GIG GIG CIC GAG III AII ICA GCI CAI CAA CCA ICG IG
G29-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GCA AAA GCA AGC TGA GTT GTA TCG
G29-1 3' Xhol	CAC
G30-1 5' Sumo	CAC AGA GAA CAG ATT GGT GGT ATG CTA AGA ATC GCT AAA GAA GCT CTG
G30-1 3' EcoRI	CII GIC GAC GGA GCT CGA ATT CTC AGG AGC CCA GAC GGT AG
G43-1 5' Ndel	CCT GGT GCC GCG CGG CAG TCA TAT GGA AAG TAA AGT AGT TGT TCC GGC
C45-1 5 X001	
G40-1 3 ANO	

G46-1 5' Ndel	CCT GGT GCC GCG CGG CAG TCA TAT GGC TGT AAC TAA GCT GGT TCT G
G46-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG AAT GAC GTT TAC TTC GCT TTA CCC
G53-1 5' Ndel	CCT GGT GCC GCG CGG CAG CCA TAT GCG CAT TCA TAT TTT AGG AAT TTG TG
G53-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG AAT TAC TGC GCG GCT TCC G
G55-1 5' Ndel	CCT GGT GCC GCG TGG CAG TCA TAT GAA AGT ATT AGT GAT TGG TAA CGG C
G55-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTA GTT CTG CTC GCG TTC G
G61-1 5' Ndel	CCT GGT GCC GCG CGG CAG TCA TAT GGC TAT TGA ACG TAC TTT TTC CAT C
G61-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG AAA TTA TTA ACG GGT GCG CGG G
G62-15' Ndel	CCT GGT TCC GCG CGG CAG TCA TAT GGC TCA AGG CAC GCT TTA TAT TG
G62-1 3' Xhol	GTG GTG GTG GTG GTG GTG CTC GAG TTC AGT CTG CCA ACA ATT TGC TG
G23-1 R45A FP	CGT TTG GCT AAA GCG AAC GGG CTG GTG
G23-1 R45A RP	CCG TTC GCT TTA GCC AAA CGG AAG CAG TTA TTG G
G23-1 N48A FP	CGT TTG CGT AAA GCG GCC GGG CTG GTG AG
G23-1 N48A RP	CTC ACC AGC CCG GCC GCT TTA CGC AAA CG
G23-1 R58A FP	GCG ATG TAT TTG AAG CCG CCC ATA TGC AGC GTT TG
G23-1 R58A RP	CAA ACG CTG CAT ATG GGC TGC TTC AAA TAC ATC GC
G23-1 H59A FP	GTA TTT GAA GCT CGC GCT ATG CAG CGT TTG CAG
G23-1 H59A RP	CTG CAA ACG CTG CAT AGC ACG AGC TTC AAA TAC
G23-1 R62A FP	CCA TAT GCA GGC TTT GCA GGG CAA TAT GGG C
G23-1 R62A RP	CCC TGC AAA GCC TGC ATA TGG CGA GCT TCA AAT AC

Supplementary Table 6. Protein expression vectors

Vector backbone	Selection marker	Relevant features	Preparation
pET-nt	kan ^R	No affinity tag	Ncol/Xhol double digestion of pET28b (Novagen)
pET28b	kan ^R	N-His₀ tag, thrombin cleavage site	Ndel/Xhol double digestion of pET28b (Novagen)
pSumo	kan ^R	N-His ₆ -Sumo tag	Amplify pET30-His₀-Sumo-CfaN with primers "pET30 Sumo RP" and "pET30 EcoRI FP"
pCfa	Carb ^R	C-Cfa-His ₆ tag	Amplify pTXB1-Ub-Cfa with primers "pCfa Ndel RP" and "pCfa Cys FP"

Discussidar and	Vector	Insert information				
Plasmid name	backbone	Protein	Protein Species Primers for insert amplificati			
pG1-2	pET28b	YjbM	B. subtilis	G1-2 5 Ndel	G1-2 3' Xhol	
pG9-1	pET28b	Gnd	E. coli	G9-1 5' Ndel	G9-1 3' Xhol	
pG10-1	pET28b	GdhA	E. coli	G10-1 5' Ndel	G10-1 3' Xhol	
pG13-1	pET28b	SpeC	E. coli	G13-1 5' Ndel	G13-1 3' Xhol	
pG15-1	pET28b	FolC	E. coli	G15-1 5' Ndel	G15-1 3' Xhol	
pG19-1	pET28b	Gpt	E. coli	G19-1 5' Ndel	G19-1 3' Xhol	
pG20-1	pET28b	Hpt	E. coli	G20-1 5' Ndel	G20-1 3' Xhol	
pG21-1	pET28b	Upp	E. coli	G21-1 5' Ndel	G21-1 3' Xhol	
pG23-1Cfa	pCfa	PurF	E. coli	G23-1 5' Ncol	G23-1 3' Xhol	
pG23-1nt	pET-nt	PurF	E. coli	G23-1 5' Ndel Cfa	G23-1 3' Cfa	
pG24-1	pET28b	Gsk	E. coli	G24-1 5' Ndel	G24-1 3' Xhol	
pG25-1Sumo	pSumo	PyrH	E. coli	G25-1 5' Sumo	G25-1 3' EcoRI	
pG26-1	pET28b	Cmk	E. coli	G26-1 5' Ndel	G26-1 3' Xhol	
pG27-1nt	pET-nt	PurA	E. coli	G27-1 5' Ncol	G27-1 3' Xhol	
pG28-1	pET28b	PurB	E. coli	G28-1 5' Ndel	G28-1 3' Xhol	
pG29-1	pET28b	PurC	E. coli	G29-1 5' Ndel	G29-1 3' Xhol	
pG30-1Sumo	pSumo	GuaB	E. coli	G30-1 5' Sumo	G30-1 3' EcoRI	
pG43-1	pET28b	ldh	E. coli	G43-1 5' Ndel	G43-1 3' Xhol	
pG45-1	pET28b	Pgk	E. coli	G45-1 5' Ndel	G45-1 3' Xhol	
pG46-1	pET28b	GpmA	E. coli	G46-1 5' Ndel	G46-1 3' Xhol	
pG53-1	pET28b	Mpl	E. coli	G53-1 5' Ndel	G53-1 3' Xhol	
pG55-1	pET28b	PurD	E. coli	G55-1 5' Ndel	G55-1 3' Xhol	
pG61-1	pET28b	Ndk	E. coli	G61-15' Ndel	G61-1 3' Xhol	
pG62-1	pET28b	Gmk	E. coli	G62-15' Ndel	G62-1 3' Xhol	

Supplementary Table 7. Construction of protein expression plamids

Supplementary Table 8. Plasmids

Plasmid name	Relevant Genotype	Source
pKD46	P _{araB} -gam-bet-exo, repA101(ts)	31
pKD4	FRT:kan ^R :FRT	31
pALS13	<i>P_{Tac}</i> -RelA(1-455)	32
R1-1His	P_{Tac} -ReIA(1-455)-His ₈	This study
pET28b		Novagen
pET30-His ₆ -Sumo-CfaN	P _{T7} -His ₆ -Sumo-CfaN	33
pTXB1-Ub-Cfa	P ₇₇ -Ubiquitin-Cfa-His ₆	33
G1-2	P _{T7} -His ₆ -YjbM ^{Bst}	This study
G9-1	P _{T7} -His ₆ -Gnd ^{Eco}	This study
G10-1	P _{T7} -His ₆ -GdhA ^{Eco}	This study
G13-1	P _{T7} -His ₆ -SpeC ^{Eco}	This study
G15-1	P _{T7} -His ₆ -FolC ^{Eco}	This study
G19-1	P _{T7} -His ₆ -Gpt ^{Eco}	This study
G20-1	P _{T7} -His ₆ -Hpt ^{Eco}	This study
G21-1	P _{T7} -His ₆ -Upp ^{Eco}	This study
G23-1Cfa	P ₇₇ -PurF ^{Eco} -Cfa-His ₆	This study
G23-1nt	P _{T7} -PurF ^{Eco}	This study
G24-1	P _{T7} -His ₆ -Gsk ^{Eco}	This study
G25-1Sumo	P _{T7} -His ₆ -Sumo-PyrH ^{Eco}	This study
G26-1	P _{T7} -His ₆ -Cmk ^{Eco}	This study
G27-1nt	P _{T7} -PurA ^{Eco}	This study
G28-1	P _{T7} -His ₆ -PurB ^{Eco}	This study
G29-1	P _{T7} -His ₆ -PurC ^{Eco}	This study
G30-1Sumo	P _{T7} -His ₆ -Sumo-GuaB ^{Eco}	This study
G43-1	P _{T7} -His ₆ -Idh ^{Eco}	This study
G45-1	P _{T7} -His ₆ -Pgk ^{Eco}	This study
G46-1	P _{T7} -His ₆ -GpmA ^{Eco}	This study
G53-1	P _{T7} -His ₆ -Mpl ^{Eco}	This study
G55-1	P _{T7} -His ₆ -PurD ^{Eco}	This study
G61-1	P _{T7} -His ₆ -Ndk ^{Eco}	This study
G62-1	P _{TT} -His ₆ -Gmk ^{Eco}	This study

Supplementary Table 9: Strains

Strain #	Background	plasmid	Source
ML006	MG1655		
ML2907	MG1655 rpoZ (WT)-kanR , rpoC (WT)-tetAR		17
	MG1655 rpoZΔ2-5-kanR, rpoC R362A R417A K615A		17
ML2908	N680A K681A-tetAR		
	F-, $glnX_{44}^{4}(AS)$, λ , $cysJ43$, $argA21$, $lysA22$, $rpsL104$,		34
ML2909	malT1(λ^{κ}), xyl-7, mtlA2, thiE1		
ML2912	MG1655 purF R46A		This study
ML2914	ML2907	pR1-1His	This study
ML2915	ML2907	pR1-1His(D275G)	This study
ML2916	ML2908	pR1-1His	This study
ML2917	ML2908	pR1-1His(D275G)	This study
ML2920	ML006	pR1-1His	This study
ML2921	ML006	pR1-1His(D275G)	This study
ML2924	ML2912	pR1-1His	This study
ML2926	BL21(DE3)	pG1-2	This study
ML2927	BL21(DE3)	pG9-1	This study
ML2928	BL21(DE3)	pG10-1	This study
ML2929	BL21(DE3)	pG13-1	This study
ML2930	BL21(DE3)	pG15-1	This study
ML2931	BL21(DE3)	pG19-1	This study
ML2932	BL21(DE3)	pG20-1	This study
ML2933	BL21(DE3)	pG21-1	This study
ML2934	BL21(DE3)	pG23-1Cfa	This study
ML2935	BL21(DE3)	pG23-1nt	This study
ML2940	BL21(DE3)	pG24-1	This study
ML2941	BL21(DE3)	pG25-1Sumo	This study
ML2942	BL21(DE3)	pG26-1	This study
ML2943	BL21(DE3)	pG27-1nt	This study
ML2944	BL21(DE3)	pG28-1	This study
ML2945	BL21(DE3)	pG29-1	This study
ML2946	BL21(DE3)	pG30-1Sumo	This study
ML2947	BL21(DE3)	pG43-1	This study
ML2948	BL21(DE3)	pG45-1	This study
ML2949	BL21(DE3)	pG46-1	This study
ML2950	BL21(DE3)	pG53-1	This study
ML2951	BL21(DE3)	pG55-1	This study
ML2952	BL21(DE3)	pG61-1	This study
ML2953	BL21(DE3)	pG62-1	This study

Supplementary References

- 1 Kanjee, U., Gutsche, I., Ramachandran, S. & Houry, W. A. The enzymatic activities of the *Escherichia coli* basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. *Biochemistry* **50**, 9388-9398, doi:10.1021/bi201161k (2011).
- 2 Hochstadt-Ozer, J. & Cashel, M. The regulation of purine utilization in bacteria. V. Inhibition of purine phosphoribosyltransferase activities and purine uptake in isolated membrane vesicles by guanosine tetraphosphate. *J Biol Chem.* **247**, 7067-7072 (1972).
- 3 Maurizi, M. R. & Rasulova, F. Degradation of L-glutamate dehydrogenase from *Escherichia coli*: allosteric regulation of enzyme stability. *Arch Biochem Biophys.* **397**, 206-216, doi:10.1006/abbi.2001.2703 (2002).
- 4 Fast, R. & Skold, O. Biochemical mechanism of uracil uptake regulation in *Escherichia coli* B. Allosteric effects on uracil phosphoribosyltransferase under stringent conditions. J *Biol Chem.* **252**, 7620-7624 (1977).
- 5 Jensen, K. F. & Mygind, B. Different oligomeric states are involved in the allosteric behavior of uracil phosphoribosyltransferase from *Escherichia coli*. *Eur J Biochem*. **240**, 637-645 (1996).
- 6 Gallant, J., Irr, J. & Cashel, M. The mechanism of amino acid control of guanylate and adenylate biosynthesis. *J Biol Chem.* **246**, 5812-5816 (1971).
- 7 Mitkevich, V. A. *et al.* Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. *J Mol Biol.* **402**, 838-846, doi:10.1016/j.jmb.2010.08.016 (2010).
- 8 Rojas, A. M., Ehrenberg, M., Andersson, S. G. E. & Kurland, C. G. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. *Mol Gen Genet.* **197**, 36-45 (1984).
- Bharat, A. & Brown, E. D. Phenotypic investigations of the depletion of EngA in *Escherichia coli* are consistent with a role in ribosome biogenesis. *FEMS Microbiol Lett.* 353, 26-32 (2014).
- 10 Milon, P. *et al.* The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. *Proc Natl Acad Sci USA* **103**, 13962-13967, doi:10.1073/pnas.0606384103 (2006).
- Fan, H., Hahm, J., Diggs, S., Perry, J. J. & Blaha, G. Structural and functional analysis of BipA, a regulator of virulence in enteropathogenic *Escherichia coli*. *J Biol Chem.* 290, 20856-20864, doi:10.1074/jbc.M115.659136 (2015).
- 12 Kuroda, A., Murphy, H., Cashel, M. & Kornberg, A. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in *Escherichia coli*. J *Biol Chem.* **272**, 21240-21243 (1997).
- 13 Persky, N. S., Ferullo, D. J., Cooper, D. L., Moore, H. R. & Lovett, S. T. The ObgE/CgtA GTPase influences the stringent response to amino acid starvation in *Escherichia coli*. *Mol Microbiol.* **73**, 253-266, doi:10.1111/j.1365-2958.2009.06767.x (2009).
- 14 Morton, D. P. & Parsons, S. M. Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine. *Arch Biochem Biophys.* **181**, 643-648 (1977).
- 15 Kanjee, U. *et al.* Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. *EMBO J.* **30**, 931-944, doi:10.1038/emboj.2011.5 (2011).

- 16 Paul, B. J. *et al.* DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. *Cell* **118**, 311-322, doi:10.1016/j.cell.2004.07.009 (2004).
- 17 Ross, W. *et al.* ppGpp Binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response. *Mol Cell.* **62**, 811-823, doi:10.1016/j.molcel.2016.04.029 (2016).
- 18 Zuo, Y., Wang, Y. & Steitz, T. A. The mechanism of *E. coli* RNA polymerase regulation by ppGpp is suggested by the structure of their complex. *Mol Cell.* **50**, 430-436, doi:10.1016/j.molcel.2013.03.020 (2013).
- 19 Sarubbi, E. *et al.* Characterization of the *spoT* gene of *Escherichia coli*. *J Biol Chem.* **264**, 15074-15082 (1989).
- 20 Wang, J. D., Sanders, G. M. & Grossman, A. D. Nutritional control of elongation of DNA replication by (p)ppGpp. *Cell* **128**, 865-875, doi:10.1016/j.cell.2006.12.043 (2007).
- 21 Zhang, Y., Zbornikova, E., Rejman, D. & Gerdes, K. Novel (p)ppGpp binding and metabolizing proteins of *Escherichia coli*. *MBio* **9**, doi:ARTN e02188-17 10.1128/mBio.02188-17 (2018).
- 22 Kristensen, O., Ross, B. & Gajhede, M. Structure of the PPX/GPPA phosphatase from *Aquifex aeolicus* in complex with the alarmone ppGpp. *J Mol Biol.* **375**, 1469-1476, doi:10.1016/j.jmb.2007.11.073 (2008).
- 23 Buglino, J., Shen, V., Hakimian, P. & Lima, C. D. Structural and biochemical analysis of the Obg GTP binding protein. *Structure* **10**, 1581-1592 (2002).
- 24 Kihira, K. *et al.* Crystal structure analysis of the translation factor RF3 (release factor 3). *FEBS Lett.* **586**, 3705-3709, doi:10.1016/j.febslet.2012.08.029 (2012).
- 25 Kumar, V. *et al.* Structure of BipA in GTP form bound to the ratcheted ribosome. *Proc Natl Acad Sci USA* **112**, 10944-10949, doi:10.1073/pnas.1513216112 (2015).
- 26 Mechold, U., Potrykus, K., Murphy, H., Murakami, K. S. & Cashel, M. Differential regulation by ppGpp versus pppGpp in *Escherichia coli*. *Nucleic Acids Res* **41**, 6175-6189, doi:10.1093/nar/gkt302 (2013).
- 27 Cuthbert, B. J. *et al.* Dissection of the molecular circuitry controlling virulence in *Francisella tularensis. Gene Dev.* **31**, 1549-1560, doi:10.1101/gad.303701.117 (2017).
- 28 Rymer, R. U. *et al.* Binding mechanism of metal NTP substrates and stringent-response alarmones to bacterial DnaG-type primases. *Structure* **20**, 1478-1489, doi:10.1016/j.str.2012.05.017 (2012).
- 29 Steinchen, W. *et al.* Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. *Proc Natl Acad Sci USA* **112**, 13348-13353, doi:10.1073/pnas.1505271112 (2015).
- 30 Liu, K. *et al.* Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. *Mol Cell.* **57**, 735-749, doi:10.1016/j.molcel.2014.12.037 (2015).
- 31 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci USA* **97**, 6640-6645, doi:10.1073/pnas.120163297 (2000).
- 32 Ferullo, D. J. & Lovett, S. T. The stringent response and cell cycle arrest in *Escherichia coli*. *PLoS Genet.* **4**, e1000300, doi:10.1371/journal.pgen.1000300 (2008).
- 33 Stevens, A. J. *et al.* Design of a split intein with exceptional protein splicing activity. *J Am Chem Soc.* **138**, 2162-2165, doi:10.1021/jacs.5b13528 (2016).
- 34 Taylor, A. L. Current linkage map of *Escherichia coli*. *Bacteriol Rev.* **34**, 155-175 (1970).