Supplementary Information

Contents	
Supplementary Figures	2-3
Table 1: Summary Table of Important Characters	4-17
Complete Phylogenetic Results	18-19
Modifications to Phylogenetic Character Matrix	20-23
Table 2: List of Specimens with Soft Tissues	24-28
Supplementary References	29-30

Supplementary Figure 1 | Additional photos of *Peronopsis* specimens figured in main figures. A,B,C, *Pe. cf. columbiensis*, ROMIP 64990 from MC, dry; A, counterpart, boxed area corresponds to B; B, closeup showing cephalic and trunk appendages; C, part, showing whole specimen; D,E,F, *Pe. cf. columbiensis* ROMIP 64982 from MC; D, whole specimen, underwater, boxed area corresponds to F; E, whole specimen carbon map, showing probable midgut/hindgut and faintly carbonaceous cephalic diverticulae; F, Closeup of cephalic diverticulae, underwater. Bars = 1mm. See Figs. 1 and 2 for abbreviations.

Supplementary Figure 2 | Additional specimens of *Ptychagnostus* and *Peronopsis.* A-C, *Pe. cf. columbiensis*, ROMIP 64986; A, part, dry; B, counterpart, dry, boxed area corresponds to C; C, closeup showing appendages, underwater; D, *Pe. cf. columbiensis*, ROMIP 62941 from MC, underwater, arrows indicating cephalic appendages (unknown number); E,F, *Pt. cf. praecurrens*, ROMIP 65010 from MC, dry; E, cephalon, boxed area corresponds to F; F, closeup of cephalic appendages 2 and 3 showing setae; G, *Pt. praecurrens*, ROMIP 65027 from WQ, underwater, showing d1; H, *Pe. cf. columbiensis*, ROMIP 64996 from MC, underwater, with well preserved d1p. Bars: A-E,G,H = 1mm; F = 0.5mm. See Figs. 1 and 2 for abbreviations.

Supplementary Table 1: Summary table of characters important to the agnostid problem. Proposed homologies are listed with their references, as well as any counterarguments that have been raised. The far right column lists the treatment of these homologies in this study.

Section	Character	Potential homologues	Reference	Counterargument	Reference	In this study
		<u>found in</u>				
Appendages	short "feeding"	Crustacean larvae +	Müller &			Peronopsis and
	antennule, rather	Orsten "stem-	Walossek,			Ptychagnostus have
	than antenniform	crustaceans"	1987;			long, antenniform
		(Oelandocaris;	Walossek &			antennules in contrast
		Martinssonia,	Müller, 1990;			to those reconstructed
		Cambropachycope,	Stein et al.			for Agnostus. This
		Goticaris,	2005;			variation may be
		Henningsmoenicaris)	Bergström &			taphonomic, as the
			Hou, 2005;			antennules of
			Stein et al.			Agnostus are broken in
			2013			known specimens, or it
			(excluded			may represent a real
			Agnostus			biological difference.
			from			We have recoded
			lamellipedia			Agnostus as ? for ch.
			because of			79.
			few			
			antennule			
			podomeres)			
Appendages	antennule	"stem-crustacea" (e.g.	Stein et al.	small spines also	Bergström &	Considered in ch. 225.
	podomeres	Henningsmoenicaris,	2005; Stein et	present on antennules	Hou, 2005;	
	armed with	Oelandocaris)	al. 2013	of <i>Marrella,</i> some	Babcock et	
	mediodistal			artiopodans like	al. 2017	
	setae/spines			Kuamaia		

Appendages	pendant limbs	crustacea, megacheirans, but not artiopodans	Müller & Walossek, 1987; Bergström, 1992; Bergström & Hou, 2005	1) the limbs of some artiopodans were also situated in 'pendant' position; 2) some trilobitomorph limbs may have rotated during ontogeny; 3) limb stance is partly a product of taphonomy and is not a reliable character	1) Haug & Haug, 2016; 2) Stein et al. 2013; 3) Edgecombe & Ramsköld, 1999	Given counterargument 3, we refrain from using this character.
Appendages	fusion of the proximal podomeres on the endopod and exopod (behind post-antennular limb pair 3)	Henningsmoenicaris, Oelandocaris	Müller & Walossek, 1987; Walossek & Müller, 1990; Stein et al. 2005	also likely found in <i>Emeraldella</i> and possibly other artiopodans	Stein & Selden, 2012	The proximal limbs of many fossil taxa are poorly known, and the true phylogenetic distribution of this character remains to be established. We do not include it in our analysis.
Appendages	reduction of cephalic endopods	mandibulates, marrellomorphs	Müller & Walossek, 1987; Boxshall, 2004; Stein et al. 2013, Aria & Caron, 2017T ¹	6-segmented endopod also present on first post-antennular limb of <i>Emeraldella</i>	Stein & Selden, 2012	Considered in ch. 85-6.

¹ T = *Tokummia*, ref. 46 in main manuscript

Appendages	slender spines at tip of endopod, as opposed to 'claws' of trilobites	"stem-crustacea" (e.g. Henningsmoenicaris, Oelandocaris, Martinssonia)	Walossek & Müller, 1990; Bergström & Hou, 2005			Considered in ch. 205.
Appendages	proximal endopod podomeres 1-4 (or 5) bearing paired, mediodistal spines/endites	"stem-crustacea" (<i>Henningsmoenicaris,</i> <i>Oelandocaris</i>); some artiopodans	Müller & Walossek, 1987 (5); Stein et al. 2013 (4); Bergström & Hou, 2005	also found in <i>Tokummia, Canadaspis,</i> <i>Sidneyia</i> , leanchoiliids, walking legs of some eurypterids	Aria & Caron, 2017T	Considered in ch. 198, 200-204.
Appendages	first two post- antennular limbs differentiated; multisegmented exopods bearing mediodistal or a pair of lateral setae; few- segmented on more posterior limbs	<i>Oelandocaris,</i> many crustaceans	Müller & Walossek, 1987; Boxshall, 2004; Stein et al. 2005; Bergström & Hou, 2005; Stein, 2008; Haug et al. 2010; Stein & Selden, 2012; Stein et al. 2013; Babcock et al. 2017	multisegmented cephalic exopods also present outside of crustacea, e.g. marrellomorphs, habeliids (though lacking setae), <i>Offacolus, Dibasterium</i>	Sutton et al. 2002; Briggs et al. 2012; Haug et al. 2012; Aria & Caron, 2017H ²	Considered in ch. 104, 106.

² H = *Habelia*, ref. 44 in main manuscript

Appendages	exopods	many artiopodans:	Edgecombe		Considered in ch. 188.
	subdivided into	modified to different	& Ramsköld.		It is not possible to
	proximal and	states in e.g.	1999 (though		assess whether the
	distal lobes	Triarthrus	not		highly reduced
			mentioned		exopods of Agnostus
			for		are subdivided in the
			Agnostus);		same way as those of
			Stein et al.		many artiopodans, so
			2013		we remain ambiguous
					in our coding.
Appendages	exopod paddle	Henningsmoenicaris,	Haug et al.		The trunk exopods of
	shaped	Oelandocaris	2010		Agnostus are highly
					reduced and are rather
					unlike the bona fide
					lobate exopods found
					in taxa like
					Oelandocaris,
					leanchoiliids, habeliids
					and some artiopodans.
					We do not consider
					this a valid homology.
Appendages	exopod setae	non-crustaceans	Bergström &		The orientation of
	directed laterally		Hou, 2005		exopod setae is highly
	(rather than				variable, with a
	medially)				number of taxa (e.g.
					<i>Delandocaris,</i> Stein et
					al. 2008; Skara, Haug
					et al. 2010b;
					Enteralaella, Stelli & Soldon 2012) boaring
					both laterally and
					medially directed cotes
					on different
					annendages As such
					appendages. As such

					we have chosen not to
					treat this character
					here.
Appendages	"soft"	Henningsmoenicaris	Müller &		The similarity of the
	pennaceous		Walossek,		'soft' setae of
	setae on exopods		1987;		Henningsmoenicaris
			Walossek &		(figured in Haug et al.
			Müller, 1990;		2010) with the much
			Bergström &		longer pennaceous
			Hou, 2005		setae seen in Agnostus
					has been overstated.
					Agnostus' setae do
					resemble those of
					some crustaceans
					(branchiopods,
					ostracods, etc.; Martin
					et al. 2014). However,
					the setae of Agnostus
					could alternatively
					represent early
					developmental stage
					lamellae. Lamellae of
					some artiopodans (e.g.
					Emeraldella; Stein &
					Selden, 2012) are
					likewise adorned with
					marginal setules. We
					do not include this
					character in our
					matrix.

Appendages	setae with	non-'lamellipedian'	Müller &			Considered in ch. 184.
	rounded cross	arthropods	Walossek,			Both lamellae and
	section, as		1987;			rounded setae seem to
	opposed to		Walossek &			have a wide yet
	lamellae		Müller, 1990;			discontinuous
			Bergström,			phylogenetic
			1992;			distribution, being
			Bergström &			found among
			Hou, 2005			panchelicerates,
						artiopodans,
						megacheirans,
						mandibulates, etc. In
						addition, some taxa
						seem to possess both
						types of setal
						ornamentation (e.g.
						Emeraldella; Stein &
						Selden, 2012).
Digestive	genal caecae	some trilobites?,	Ópik, 1959;	trilobite genal caecae	Bergström,	Considered in ch. 142,
Tract	(ramifying gut	Burgessia, Naraoia,	Jell, 1978;	anastomose, have	1973; Jell,	143, 220, and
	diverticulae)	Notchia, xiphosurans,	Vannier &	much smaller diameter	1978;	discussion. Agnostinids
		several crustacean	Chen, 2002;	than those of	Bergström &	and naraoiids share
		clades	Cotton &	agnostinids, and may	Hou, 2005	diverticulae originating
			Fortey, 2005;	emerge from several		from the hypostome
			Lerosey-	attachment sites in the		complex.
			Aubril, 2015	cephalon; they are		
				probably non-		
				homologous with the		
				digestive structures of		
				other taxa		

Hypostome	natant	eodiscinids, many	Robison	1) also found in	1) Walossek	Considered in ch. 62.
	hypostome	polymeroid trilobites	1972; Fortey	Henningsmoenicaris; 2)	& Müller,	
			& Theron,	eodiscinid ontogeny	1990; 2)	
			1994;	begins with	Cederstrom	
			Shergold,	conterminant	et al. 2009	
			2008	hypostome		
Hypostome	hypostome	Henningsmoenicaris	Walossek &	1) could be	1) Jell, 1975;	While their functional
	fenestrules		Müller, 1990	homologous with	Müller &	identity (sensory or
	covered by			'sensory pits' (maculae)	Walossek,	otherwise) remains
	membranous			on trilobite hypostome	1987; Zhang	unclear, we consider
	fields			and with similar	et al. 2007;	the homology of
				structures in some	Ortega-	bilobed labral
				artiopodans (e.g.	Hernández,	protrusions across a
				xandarellids; Hou &	2016; 2) Aria	range of euarthropods
				Bergström, 1997), and	& Caron,	to be possible and
				potentially with the	2017T+H	follow the coding of
				ventral eyes of Limulus;		Vannier et al., 2018
				2) could be related to		(ch. 72), with the
				the development of the		exception of recoding
				labrum from paired		hymenocarines as ?
				appendages,		until more definitive
				homologous with		evidence for the
				similar structures in		bilobed nature of the
				artiopodans, habeliids		anteroventral
				and some mandibulates		protrusion can be
						provided. The
						equivalence of trilobite
						maculae to bilobed
						labral protrusions in
						other taxa is less clear,
						and we do not assume
						their homology here.

Hypostome	membrane lateral to mouth	"labrophoran" crustaceans	Walossek et al. 2007	1) hypostome-labrum complex is a	1) Ortega- Hernández,	Considered in ch. 57.
	putatively a			symplesiomorphic for Fuarthropods, as it is	2016; 2) Bergström &	
				also found in putative	Hou, 2005	
				upper stem group		
				lineages; 2)		
				'hypostome' of Orsten		
				taxa, including		
				Agnostus is non-		
				homologous with the		
				lamellipedian		
Ontogony	lack of a	non trilahitas	Fortov 8	1) This character is also		The abconce of
Untogeny	(trilobite-like)	non-thiobites	Theron	1) THIS CHARACLER IS disu	2) Walossek	ontogenetic data for
	nrotasnid stage		1997.	olenelline trilohites	1990.2)	many taxa in our
	protaspia stage		Hughes	and therefore may not	Naimark	matrix precludes the
			2006:	be ancestral for	2007	inclusion of this
			Shergold,	Trilobita; Qian (1982)		character.
			2008	described putative		
				agnostinid protaspids,		
				but this has been		
				questioned - see 2)		
Sensory	simple ventral	Oelandocaris;	Stein et al.	'lateral frontal organs'	Edgecombe	Considered in ch. 19.
	eyes (?)	Henningsmoenicaris,	2005; Stein et	are also widespread	& Ramsköld,	
		Skara, other Orsten	al. 2008	among euarthropods;	1999; Cotton	
		taxa?		their identity as median	& Braddy	
				eyes is controversial	2004;	
					Ortega-	
					Hernandez,	
					2015, Alld &	
					2017T	

Sensory	lack of dorsal eyes embedded in tergal shield	most crustaceans, megacheirans, some artiopodans, habeliids, etc.	Bergström, 1992	1) 'blindness' is an autapomorphy of agnostinids; 2) <i>Oculagnostus</i> has palpebral lobes; but, 3) the palpebral lobes of <i>Oculagnostus</i> have been argued to be muscle insertion scars	1) Fortey & Theron, 1994; Cotton & Fortey, 2005; 2) Ahlberg, 1988; 3) Shergold, 2008	Considered in ch. 26.
Tergites	cuticle mineralization	trilobites, aglaspidids, <i>Phyotphilaspis</i> ?, but also widespread amongst other euarthropod groups	Fortey & Theron, 1994; Edgecombe & Ramsköld, 1999; Cotton & Fortey, 2005; Stein et al. 2013			Considered in ch. 4. Given a lack of clarity over whether many extinct taxa mineralized their cuticles primarily with calcium carbonate or phosphate, we eliminated ch. 5 from the Vannier et al. (2018) matrix in our analysis.
Tergites	trilobite-like articulation of tergites (as opposed to simple tergite overlap)	trilobites	Fortey & Theron, 1994; Cotton & Fortey, 2005	"edge to edge" articulation with articulating half rings and flanges also present in <i>Kwanyinaspis,</i> <i>Siriocaris,</i> trilobitomorphs, basally branching euchelicerates	Edgecombe & Ramsköld, 1999; Stein et al. 2013; Lamsdell, 2013	Considered in ch. 40, 162, 163.

Tergites	trilobation	trilobites, some other artiopodans (e.g. <i>Phytophilaspis</i> , emucarids)	Fortey & Theron, 1994; Cotton & Fortey, 2005; Stein et al. 2013	also found in a range of other arthropods (e.g. some chelicerates, fuxianhuiids, malacostracan crustaceans)	Stein et al. 2005; Scholtz & Edgecombe, 2005; Aria & Caron, 2017T	Considered in ch. 159.
Tergites	pleural furrows	trilobites	Müller & Walossek, 1987		20171	Considered in ch. 163.
Tergites	tips of anterior pleurae angled backwards; anteriormost thoracic tergite narrower but longer than more posterior tergites	eodiscinids	Cotton & Fortey, 2005; Dai & Zhang, 2013	narrowing of anterior of trunk relative to head shield also present in naraoiids, some panchelicerates	Edgecombe & Ramsköld, 1999; Lamsdell, 2013; Mayers et al. 2018	Considered in ch. 218.
Tergites	glabella defined dorsally	trilobites	Fortey & Theron, 1994; Cotton & Fortey, 2005			Also shared with <i>Phytophilaspis</i> and some aglaspidids. Considered in ch. 41, 159.
Tergites	cephalic border	trilobites	Fortey & Theron, 1994			We do not consider this character in our analysis. We expect it might further support a trilobite + agnostinid clade, though a cephalic border is also variably expressed among other arachnomorphs (e.g.

						xiphosurans, chasmataspids).
Tergites	dorsal expression of last (occipital) segment of cephalic shield	trilobites, Phytophilaspis, Sinoburius, Arthroaspis, xiphosurans	Cotton & Fortey, 2005; Stein et al. 2013; Lamsdell, 2013			Considered in ch. 42.
Tergites	genal spines	trilobites, Phytophilaspis Sinoburius, some aglaspidids	Fortey & Theron, 1994; Cotton & Fortey, 2005; Stein et al. 2013	has been argued that the 'fulcral spines' of agnostinids are non- homologous with trilobite genal spines	Shergold, 2008	The genal spines of agnostinids may well be homologous with those of many trilobites and other arachnomorphs. Considered in ch. 223.
Tergites	lack of (trilobite- like) facial sutures, submarginal sutures	non-trilobites	Walossek & Müller, 1990; Bergström, 1992; Bergström & Hou, 2005; Cotton & Fortey, 2005; Hughes, 2006; Shergold, 2008			Considered in ch. 219.
Tergites	no palpebro- ocular ridges	non-trilobites	Fortey & Theron, 1994			Considered in ch. 27.

						-
Tergites	pygidium (newly	trilobitomorphs, but	Fortey &			Considered in ch. 215.
	formed segments	also	Theron,			We here consider the
	fused to next	Henningsmoenicaris,	1994;			tergites covering
	anterior segment,	Retifacies	Edgecombe			multiple appendages in
	may separate		& Ramsköld,			xandarellids to be a
	later in ontogeny)		1999; Haug			separate condition,
			et al. 2010;			although it may share
			Stein et al.			a developmental basis
			2013			with the pygidia of
						other artiopodans.
Tergites	posterolateral	many pygidium-	Shergold,	pygidium lacking lateral	Edgecombe	The effacement of
	pygidial spines	bearing artiopodans	2008	spines was a putative	& Ramsköld,	dorsal segmentation in
				synapomorphy of a	1999; Stein	the pygidial shield of
				clade including	et al. 2013	agnostinids and many
				trilobites (with internal		other pygidium-
				reversals) and		bearing taxa makes it a
				Phytophilaspis; but is		challenge to assess this
				also found in a number		proposed homology.
				of other artiopodans		We removed ch. 219
						from the 2018 Vannier
						et al. matrix because
						its vague definition
						was drawing together
						taxa whose pygidial
						ornamentation was
						unlikely to be
						homologous.

Other	loss/fusion of the	"labrophoran"	Walossek et	the degree of cephalic	Aria &	Considered in ch. 65,
	tritocerebral	crustaceans	al. 2007;	sternite fusion is	Caron,	66.
	sternite (could		Stein &	variable among	2017T (Ch.	
	this be the first		Selden, 2012	different crustacean	61)	
	step towards the			groups, questioning the		
	evolution of the			validity of this		
	sternum of more			character as a defining		
	derived crustacea			synapomorphy for		
	or the intercalary			"labrophorans"		
	segment of					
	hexapods and					
	myriapods?)					
Other	mouth situated in	"labrophoran"	Stein et al.			Given that the mouth
	atrium oris	crustacea	2005			is situated behind the
	(depression	(Oelandocaris,				hypostome-labrum
	behind labrum,	Martinssonia,				complex in all
	which bulges	Henningsmoenicaris,				euarthropods (e.g.
	from posterior of	Phosphatocopina,				Ortega-Hernández,
	hypostome)	eucrustacea)				2016) and considering
						the lack of mandibles
						and paragnaths to
						complete the
						enclosure of the pre-
						oral cavity, we
						consider an atrium oris
						to be absent in
						agnostinids.

Other	offset between	artiopodans	Edgecombe	tergal offset not	Müller &	Whether trilobites and	
	tergal and somitic		& Ramsköld,	present in Agnostus	Walossek,	other artiopodans	
	segmentation,		1999; Stein et		1987;	possessed 4 or 4.5	
	4.5 cephalic		al. 2005;		Ortega-	head appendage pairs	
	appendage pairs		Stein et al.		Hernández &	has long been	
			2013		Brena, 2012	controversial. The best	
						case for such a tergal	
						offset has been made	
						using specimens of	
						Triarthrus (Ortega-	
						Hernández & Brena,	
						2012), but its	
						distribution among	
						other artiopodans is	
						less clear. We	
						therefore opt not to	
						include it in our	
						analysis.	

Supplementary Figure 3 (next page) | Complete results of Bayesian time calibrated phylogenetic analysis. Based on a matrix incorporating 225 characters and 124 taxa (see Vannier et al. 2018 and associated nexus file for further methodological details). Numbers next to nodes denote posterior probabilities. Time scale is in millions of years.

	100 <u>100</u> Odd	onoto			[100	Dipter Hyme
45	100 000	Unata				100	Zyger Allacr Anuri
		78	51		100		Arten Triop Ceph
62		74	44	99	57	59	Rem Euph Stom Anas Isopo
45 69 Cinerocaris 62 Lepidocari	lahecaris ris						——— Cope
45 Perspicaris 43 Phospatocopina Bredocaris 33 81 Skara							
68 Yicaris Rehbachiella Tanazios1					100	100	Pau Diplo
	100	Arthropleura		100	100		Sym Chil
92 		/ an opicara					
<u> </u>							
30							
91 Vohoia 91 Haikoucaris Leanchoiliidae							
<u>49</u> Olenoides <u>41</u> Hongshiyanaspis Agnostus Jarva							
61 Emucaris 24 Arthroaspis							
<u>47</u> <u>34</u> <u>60</u> Kodymirus							
42 Retifacies <u>90</u> Tegopelte Naraoia							
9 Xandarella Kwanyinaspis Burgessia							
30 Marrella	heloniellon						——— Opil
94 94 Chasmataspis				100			Arch Arar
100 Megalograptus 91 Dibasterium 98 We	Veinbergina						
98 Sanctacaris Habelia							Limu
95 Anomalocaris	chinderhannes						
94 Isoxys							——— Tarc
96 65 Megadictyon							Ony
<u> </u>							N.I
					100		Nema Priap
	· · · · · · · · · · · · · · · · · · ·	1	, , , , , , , , , , , , , , , , , , , ,		I		

	Archegozetes
	Alaneae
	Limulus
	Tardigrada Onychophora
100	Nematoda Priapulida

Modifications to Phylogenetic Character Matrix

The various modifications made to the matrix published in Vannier et al. 2018 are listed below.

Characters Deleted

* Note: numbering given in this section corresponds to that in Vannier et al. (2018). Numbering in our matrix was adjusted given the deletions (i.e. ch. 6 in Vannier et al. 2018 became ch. 5, etc.). Numbering in sections below (Characters Added, Coding Modifications) corresponds to that in our matrix, following these deletions.

Ch. 5 – Given the contention over the original cuticle mineralogy of several extinct groups, we chose to omit this character.

Ch. 219 – The definition of this character was too vague and was drawing together taxa that were unlikely to share homologous pygidial ornamentation.

Characters Added

- [218] Trunk tergites taper anteriorly relative to cephalic shield
 - 0. Absent
 - 1. Present

Remarks: See Edgecombe & Ramsköld, 1999 ch.19; Cotton & Braddy, 2004 ch. 39; Paterson et al. 2010 ch. 15; Ortega-Hernández et al. 2013 ch. 49; Mayers et al. 2018 ch. 22. This character is present in agnostids (Cotton & Fortey, 2005), among other taxa. Applicable only for taxa with a cephalic shield and horizontal pleurae.

- [219] Visual surface with calcified lenses, bounded by circumocular suture
 - 0. Absent
 - 1. Present

Remarks: See Edgecombe & Ramsköld, 1999 ch. 5; Cotton & Braddy, 2004 ch. 21; Paterson et al. 2010 ch. 4; Ortega-Hernández et al. 2013 ch. 21; Mayers et al. 2018 ch. 9. Applicable for taxa with eyes embedded in the tergal shield.

- [220] Main ramified cephalic diverticulae connect to the alimentary canal through the hypostomelabrum complex
 - a. Absent
 - b. Present

Remarks: (new character) While cephalic diverticulae occur among disparate arthropod groups, attachment to the anteriormost section of the alimentary canal through the hypostome-labrum complex seems to be unique to agnostinids and naraoiids.

- [221] Segmental impressions in pygidial shield
 - 0. Absent/highly effaced
 - 1. Strongly developed

Remarks: Modified from Paterson et al. 2010 ch. 16; Mayers et al. 2018 ch. 5.

- [222] Shape of posteriormost margin of pygidium
 - 0. Convex
 - 1. Sub-straight to concave

Remarks: Ch. 28 Mayers et al. 2018.

- [223] Axial spine on preterminal trunk segment
 - 0. Absent
 - 1. Present

Remarks: Modified from Mayers et al. 2018 ch. 31. This character unites xandarellids in our analysis. We did not assume the homology of medially positioned spines fused into effaced pygidia (e.g. in *Naraoia, Kuamaia*), though some of these may be homologous.

- [224] Genal spines
 - 0. Absent
 - 1. Present

Remarks: There has been some debate as to whether agnostinids have true genal spines (Fortey & Theron, 1994) or 'fulcral' spines (Shergold, 2008); however, Cotton & Fortey (2005) provided a compelling argument for the homology of agnostinid spines with other genal spines based on the morphogenesis of these structures. We therefore opt for coding them as potentially homologous to the genal spines of other artiopodans. See also e.g. Ortega-Hernández et al. 2013 ch. 21; Mayers et al. ch. 17.

- [225] Medial spines or enlarged setae on antennules
 - 0. Absent
 - 1. Present

Remarks: This character is widespread and variously developed among euarthropods.

Taxa Added

Peronopsis, Triarthrus, Hongshiyanaspis, Retifacies, Cindarella, Kodymirus, Arthroaspis, Tegopelte, Kwanyinaspis, Emucaris, Cheloniellon

Taxa Removed

pycnogonida, pycnogonum larva, Cambropycnogon, Aquilonifer

Pycnogonids have been highly problematic in previous analyses and in Vannier et al. (2018) formed an unexpected clade with marrellomorphs and *Aquilonifer*. Given that these taxa likely have little relevance to the agnostid problem, we have removed them from our analysis for now.

Coding Modifications

Ch. 31 (somites in head) – changed to ? for *Agnostus* (coded state 2 for *Peronopsis*), state 3 for *Xandarella* (this assumes that the seventh appendage pair is part of the head tagma, as opposed to lying at the head-trunk boundary), state 1 for *Naraoia*, ? for *Kuamaia*

Ch. 40 (tergal articulation) – changed to state 1 for *Agnostus* and *Peronopsis*, to acknowledge the distinct state from trilobites

Ch. 72 (bipartite ventral protrusion) – recoded as state 1 for *Xandarella*¹, and as ? for *Tokummia*, *Branchiocaris*, and *Waptia*²

- Ch. 79 (type of multisegmented frontalmost appendage) recoded as ? for Agnostus
- Ch. 90 (endopod of 5th appendage pair) recoded as ? for Agnostus
- Ch. 92 (repeated appendage morphology) recoded as ? for Agnostus
- Ch. 99 (ramification of postantennular appendage) recoded as state 0 for Agnostus, ? for Aglaspis³
- Ch. 104 (postantennular exopod type) recoded as ? for Aglaspis³
- Ch. 105 (other cephalic exopods) recoded as ? for Aglaspis³
- Ch. 106 (other cephalic exopod type) recoded as ? for Aglaspis³
- Ch. 107 (multisetose exopod tip) recoded as ? for Aglaspis³
- Ch. 108 (detachment of exopods) recoded as ? for Aglaspis³
- Ch. 124 (5th appendage vestigial) recoded as ? for Agnostus
- Ch. 125 (palp on 5th appendage) recoded as ? for Agnostus
- Ch. 156 (tergo-sternal decoupling) recoded as ? for Naraoia⁴
- Ch. 165 (proximo-distal differentiation of endopod podomeres) recoded as 0 for Marrella⁵
- Ch. 180 (gnathobase) recoded as state 1 for Agnostus
- Ch. 194 (exopod subdivision) recoded as ? for Agnostus
- Ch. 205 (limb tip) recoded as state 5 for Agnostus⁶
- Ch. 207 (telson) recoded as state 0 for Xandarella⁷
- Ch. 208 (telson type) recoded as for Xandarella⁷
- Ch. 209 (anus location) recoded as state 0 for Xandarella⁷

¹Hou & Bergström (1997) illustrated specimens of *Xandarella* that show bulbous protrusions associated with the hypostome complex, similar to that of e.g. naraoiids.

² We have coded these taxa as ? until definitive evidence for the bilobed nature of the frontal protrusion can be provided.

³ We prefer to code the cephalic appendages of *Aglaspis* as questionably biramous/uniramous rather than uniramous given their poor visibility in the single published specimen (Briggs et al. 1979).

⁴The entirely fused and effaced trunk tergal shield makes it impossible to tell if this character is present in naraoiids.

⁵ We argue that the stenopodous endopod podomeres of *Marrella* (Whittington, 1971) show no evidence of significant proximo-distal differentiation.

⁶We have recoded this character to better reflect the differentiation between the limb tip of polymeroid trilobites and *Agnostus* (Müller & Walossek, 1987).

⁷ The axial spine of xandarellids occurs on a pre-terminal segment and is therefore not a telson (Hou & Bergström, 1997; Ramsköld et al. 1997). It is not clear whether the terminal tergal plate can strictly be consider homologous to the pygidia of other arachnomorphs given the offset between tergal segmentation and appendages in these taxa.

Locality	Field No.	ROMIP No.	Part/Counter-Part	Strat. Level	Taxon	Soft Tissues	Quality	Figured in	Max. Cephalon Width (mm)	Total Sagittal Length (mm)
Walcott Quarry BW	94-415	60750	nc	-120	Ptychagnostus praecurrens	cephalic and trunk limbs	**		4.3	9
Marble Canyon MCC1	12-194	62930	ab	-378	Peronopsis cf. columbiensis	antennules	**		2.5	5
Marble Canyon MCC1	12-720	62941	С	-377	Peronopsis cf. columbiensis	antennule, trunk limb traces	*	Fig. 2 I,J; SI		9.9
Marble Canyon MCC1	14-1010	64390	ab	-405	Peronopsis cf. columbiensis	faint cephalic diverticulae; cephalic limbs protruding	**		6.6	12.6
Marble Canyon MCC1	12-168	64976	а	talus	Peronopsis cf. columbiensis	pygidial limbs; gut, including diverticulae	***		6.5	12.5
Marble Canyon MCC1	12-183	64977	ab	-378	Peronopsis cf. columbiensis	gut, including diverticulae	**	SI	6.2	12.5
Marble Canyon MCC1	12-530	64978	nc	-366	Peronopsis cf. columbiensis	cephalic limbs	**		5.6	11.1
Marble Canyon MCC1	12-600	64979	а	-406	Peronopsis cf. columbiensis	cephalic limb with clubs; complete gut with diverticulae	***	Fig. 1 C	5.3	10.4
Marble Canyon MCC1	12-604	64980	b	-406	Peronopsis cf. columbiensis	?				

Marble Canyon	12-668	64981	nc	-403	Peronopsis cf. columbiensis	gut			5.5	9.5
MCC1					conumbrensis					
Marble	12-684	64982	b	-393	Peronopsis cf.	cephalic diverticulae; trunk limbs with	***	Fig. 1 A;	5.6	12
Canyon					columbiensis	clubs		SI		
MCC1										
Marble	12-762	64983	ab	talus	Peronopsis cf.	gut	*			
Canyon					columbiensis					
MCC1										
Marble	14-1026	64984	ab	-384	peronopsid	gut	*			
Canyon										
MCC1									<u> </u>	
Marble	14-1390	64985	ab	-351	Peronopsis cf.	pygidial limbs?; gut?	**			
Canyon					columbiensis					
MCC1							ate ate ate		<u> </u>	10 7
Marble	14-1414	64986	ab	-360	Peronopsis cf.	antennule, cephalic limbs, trunk limbs	* * *	Fig. 2 H;	5.5	12.7
Canyon					columbiensis			SI		
Markla	14 507	C 4007		245	Doronomoio of	2. noonly processed			6.7	12.4
Marble	14-587	64987	nc	-245	Peronopsis cj.	r; poony preserved			6.7	12.4
					columbiensis					
Marble	14-724	6/088	bc	-383	Perononsis cf	gut: caphalic limbs				
Canyon	14-724	04988	bC	-303	columbiensis	gut, cephane infibs				
MCC1					conumbrensis					
Marble	14-727	64989	nc	-385	Perononsis cf	antennules: bases of cenhalic limbs	**	Fig 1 B	63	12 7
Canvon	11,2,	01303		505	columbiensis			1.8.10	0.5	12.7
MCC1										
Marble	14-735	64990	ab	-383	Peronopsis cf.	limbs: diverticulae: triangular organ?	***	Fig. 1	6.4	13.2
Canyon					columbiensis			E,F; 2	-	
MCC1								F,G; SI		
Marble	14-736	64991	ab	-385	Peronopsis cf.	bases of cephalic limbs	**		1	12.1
Canyon					columbiensis					
MCC1										

Marble	14-757	64992	ab	-388	Peronopsis cf.	posterior gut	**	SI		
Canyon					columbiensis					
Marble	14 764	64002	hc	296	Baranansis of	conholic limbe	***		60	
Canyon	14-704	64993	50	-380	peronopsis cj.			гі <u>д</u> . 2 Б-	0.8	
					columbiensis			E		
Marble	11-812	64004	nc	_402	Perononsis of	diverticulae	**	Fig 1 D	5.6	11 5
Canyon	14-042	04994	пс	-403	columbiensis			TIG. I D	5.0	11.5
MCC1					columbiensis					
Marble	14-847	64995	nc	-408	Perononsis cf	limbs?: partial gut	*		3.9	6.6
Canvon	14 047	04555	ne	400	columbiensis				5.5	0.0
MCC1					condimination					
Marble	14-865	64996	b	-374	Peronopsis cf.	cephalic limbs, diverticulae and gut	***	SI	6.6	13.3
Canvon					columbiensis					
MCC1										
Marble	14-882	64997	ab	-363	peronopsid	dark tissue under pygidial axis	*		0.9	1.9
Canyon										
MCC1										
Marble	14-930	64998	b	-376	Peronopsis cf.	cephalic tissue?				
Canyon					columbiensis					
MCC1										
Marble	14-972	64999	ab	-388	Peronopsis cf.	limb	**		5.6	12.3
Canyon					columbiensis					
MCC1										
Marble	14-996	65000	ab	-388	Peronopsis cf.	pygidial limb?; dark tissue under	*			
Canyon					columbiensis	pygidium				
MCC1										
Marble	16-1030	65001	ab	-381	Peronopsis cf.	thoracic, cephalic limbs; gut; extruded	***		6.6	12.7
Canyon					columbiensis	gut stain				
MCC1							L			
Marble	16-777	65002	ab	-242	Peronopsis cf.	gut; cephalic limbs?; cephalic diverticulae	**		7.1	13.4
Canyon					columbiensis					
MCC1										

Marble	16-789	65003	ab	-386	Peronopsis cf.	gut	*		5.3	10
Canyon					columbiensis					
MCC1										
Marble	16-790	65004	ab	-380	Peronopsis cf.	gut?				
Canyon					columbiensis					
MCC1										
Marble	16-832	65005	nc	-417	Peronopsis cf.	cephalic diverticulae?	*		5.7	
Canyon					columbiensis					
MCC1										
Marble	16-841	65006	а	-395	Peronopsis cf.	gut	*			
Canyon					columbiensis					
MCC1										
Marble	16-845	65007	ab	-416	Peronopsis cf.	cephalic tissue?				
Canyon					columbiensis					
MCC1										
Marble	16-873	65008	ab	-496	Ptychagnostus	limb traces	*		4.3	9.3
Canyon					cf. praecurrens					
MCC1										
Marble	16-905	65009	nc	-496	Peronopsis cf.	?			4.7	9.7
Canyon					columbiensis					
MCC1										
Marble	16-926	65010	nc	-515	Ptychagnostus	cephalic and trunk limbs	***	SI		9.6
Canyon					cf. praecurrens					
MCC1										
Marble	16-935	65011	nc	-382	Itagnostus?	cephalic limbs? (poorly preserved)				
Canyon										
MCC1										
Marble	16-938	65012	nc	-485	Peronopsis cf.	cephalic limbs? (poorly preserved)			5.7	12.9
Canyon					columbiensis					
MCC1										
Marble	16-947	65013	ab	-500	Ptychagnostus	limb with clubs sticking out on enrolled	*			
Canyon					cf. praecurrens	specimen				
MCC1										

Marble	16-951	65014	ab	-448	Itagnostus?	cephalic limbs				9.3
Canyon										
MCC1										
Marble	16-951	65014	b	-448	peronopsid	cephalic limbs	**			
Canyon										
MCC1										
Marble	16-959	65015	ab	-480	peronopsid	dark cephalic tissue?				
Canyon										
MCC1										
Walcott	94-1852	65016	ab	-110	Ptychagnostus	cephalic limbs	*		3.8	8.1
Quarry BW					praecurrens					
Walcott	94-2256	65017	ab	-130	Ptychagnostus	cephalic limbs	***	Fig. 2A	3.7	8.1
Quarry BW					praecurrens					
Walcott	98-1910	65018	ab	-235	Ptychagnostus	antennule				
Quarry BW					praecurrens					
Walcott	98-2374	65019	ab	-235	Ptychagnostus	limbs, poorly preserved				
Quarry BW					praecurrens					
Walcott	98-438	65020	ab	-170	Ptychagnostus	?			3.8	7.1
Quarry BW					praecurrens					
Walcott	98-477	65021	ab	-170	Ptychagnostus	limbs?				8.1
Quarry BW					praecurrens					
Walcott	98-706	65022	ab	-210	Ptychagnostus	limbs	*			7.2
Quarry BW					praecurrens					
Walcott	98-821	65023	ab	-210	Ptychagnostus	limbs?			5.1	10.9
Quarry BW					praecurrens					
Walcott	98-881	65024	ab	-150	Ptychagnostus	?			4.5	9.6
Quarry BW					praecurrens					
Walcott	98-895	65025	ab	-210	Ptychagnostus	internal tissue?				
Quarry BW					praecurrens					
Walcott	98-904	65026	ab	-150	Ptychagnostus	?				
Quarry BW					praecurrens					
Walcott	94-1564	65027	ab	10	Ptychagnostus	cephalic and trunk limbs; diverticulae	**	SI		7.7
Quarry WQ					praecurrens					

References (in addition to those in main text)

Ahlberg, P. (1988). Ocular structures in an Ordovician agnostid trilobite. *Lethaia*, 21(2), 115-120.

Babcock, L. E., Peng, S., & Ahlberg, P. (2017). Cambrian trilobite biostratigraphy and its role in developing an integrated history of the Earth system. *Lethaia*, *50*(3), 381-399.

Boxshall, G. A. (2004). The evolution of arthropod limbs. *Biological Reviews*, 79(2), 253-300.

Briggs, D. E., Siveter, D. J., Siveter, D. J., Sutton, M. D., Garwood, R. J., & Legg, D. (2012). Silurian horseshoe crab illuminates the evolution of arthropod limbs. *Proceedings of the National Academy of Sciences*, 109(39), 15702-15705.

Cederström, P., Ahlberg, P., Clarkson, E. N., Nilsson, C. H., & Axheimer, N. (2009). The lower Cambrian eodiscoid trilobite *Calodiscus lobatus* from Sweden: morphology, ontogeny and distribution. *Palaeontology*, *52*(3), 491-539.

Dai, T., & Zhang, X. (2013). Morphology and ontogeny of the eodiscoid trilobite *Sinodiscus changyangensis* from the lower Cambrian of South China. *Palaeontology*, *56*(2), 411-420.

Edgecombe, G. D., & Ramsköld, L. (1999). Relationships of Cambrian Arachnata and the systematic position of Trilobita. *Journal of Paleontology*, *73*(2), 263-287.

Haug, J. T., Waloszek, D., Haug, C., & Maas, A. (2010). High-level phylogenetic analysis using developmental sequences: The Cambrian⁺ *Martinssonia elongata*, ⁺ *Musacaris gerdgeyeri gen. et sp. nov.* and their position in early crustacean evolution. *Arthropod Structure & Development*, *39*(2-3), 154-173.

Hughes, N. C., Minelli, A., & Fusco, G. (2006). The ontogeny of trilobite segmentation: a comparative approach. *Paleobiology*, *32*(4), 602-627.

Jell, P.A. (1975). Australian Middle Cambrian Eodiscoids with a review of the superfamily. *Palaeontographica Abteilung A*. 150, 1-97.

Lamsdell, J. C. (2013). Revised systematics of Palaeozoic 'horseshoe crabs' and the myth of monophyletic Xiphosura. *Zoological Journal of the Linnean Society*, *167*(1), 1-27.

Lamsdell, J. C., Stein, M., & Selden, P. A. (2013). *Kodymirus* and the case for convergence of raptorial appendages in Cambrian arthropods. *Naturwissenschaften*, *100*(9), 811-825.

Minter, N. J., Mángano, M. G., & Caron, J. B. (2012). Skimming the surface with Burgess Shale arthropod locomotion. *Proc. R. Soc. B, 279*(1733), 1613-1620.

Moore, R. A., Briggs, D. E., & Bartels, C. (2008). The arthropod *Bundenbachiellus giganteus* from the Lower Devonian Hunsrück Slate, Germany. *Paläontologische Zeitschrift*, *82*(1), 31-39.

Naimark, E. B. (2007). Comparative ontogeny of different species of agnostina. *Paleontological Journal*, *41*(1), 69-78.

Ortega-Hernández, J. (2015). Homology of head sclerites in Burgess Shale euarthropods. *Current Biology*, 25(12), 1625-1631.

Ortega-Hernández, J. (2016). Making sense of 'lower' and 'upper' stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848. *Biological Reviews*, *91*(1), 255-273.

Ortega-Hernández, J., & Brena, C. (2012). Ancestral patterning of tergite formation in a centipede suggests derived mode of trunk segmentation in trilobites. *PLoS One*, *7*(12), e52623.

Ortega-Hernández, J., Janssen, R., & Budd, G. E. (2017). Origin and evolution of the panarthropod head– A palaeobiological and developmental perspective. *Arthropod structure & development*, *46*(3), 354-379.

Stürmer, W., & Bergström, J. (1978). The arthropod *Cheloniellon* from the Devonian Hunsrück Shale. *Paläontologische Zeitschrift*, 52(1-2), 57-81.

Sutton, M. D., Briggs, D. E., Siveter, D. J., Siveter, D. J., & Orr, P. J. (2002). The arthropod *Offacolus kingi* (Chelicerata) from the Silurian of Herefordshire, England: computer based morphological reconstructions and phylogenetic affinities. *Proceedings of the Royal Society of London B: Biological Sciences*, 269(1497), 1195-1203.

Waloszek, D., Maas, A., Chen, J., & Stein, M. (2007). Evolution of cephalic feeding structures and the phylogeny of Arthropoda. *Palaeogeography, Palaeoclimatology, Palaeoecology, 254*(1-2), 273-287.

Whittington, H. B. (1971). Redescription of *Marrella splendens* (Trilobitoidea) from the Burgess Shale, Middle Cambrian, British Columbia. *Geological Survey of Canada, Bulletin, 209*, 1-24.