
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
In this manuscript, the authors report that activation of AMPK leads to phosphorylation of Insig-1 
and Insig-2. This phosphorylation of Insig results in reduced affinity of the proteins for the E3 
ubiquitin ligase gp78. In the absence of gp78 association, Insig proteins accumulate and inhibit 
proteolytic processing of SREBPs, thereby explaining reduced lipid accumulation in animal models 
treated with AMPK activators. Overall, the conclusion of the manuscript are somewhat supported 
by immunoblot assays, Insig ubiquitination assays, and co-immunoprecipitations. However, the 
results are correlative and experiments demonstrating AMPK directly phosphorylates Insigs are not 
provided. The authors need to identify the site of AMPK-dependenet phosphorylation in Insig-1 and 
Insig-2. This site should mutated and experiments provided showing their mutations prevent 
AMPK-mediated phosphorylation and down-regulation of SREBP processing. Conversely, authors 
should generate a phosphomimetic mutation as well.  
 
 
Reviewer #2 (Remarks to the Author):  
 
In Han and Hu et al., the authors set out to investigate the regulation of SREBP processing by 
AMPK. They had previously identified a role for direct AMPK phosphorylation of SREBP as a 
mechanism by which AMPK inhibits lipogenesis. In this study, they extend on that work and claim 
that direct phosphorylation of Insig-1 and Insig-2, which are critical regulators of SREBP 
processing and activation, may be another mechanism by which AMPK can regulate lipid 
metabolism. Although regulation of Insig by AMPK agonists is evaluated to a large extent (except 
for a few key points – see below), the work presented here falls short from rigorously 
demonstrating that Insigs are directly phosphorylated by AMPK, especially in the absence of an 
identified site. Nevertheless, the data presented on the regulation of Insig stability by AMPK is 
interesting and, provided the specific point below are addressed, could be considered for 
publication at Nature Communications without claiming direct phosphorylation of Insig.  
 
Major points:  
 
1. Figure 5 is supposed to establish Insig-1 as a direct AMPK substrate. The evidence for this is 
weak and do not meet the standard required to claim that AMPK directly phosphorylates Insig. 
First, the previous 3 figures have clearly and unambiguously demonstrated that AMPK activation 
leads to Insig stabilization. Therefore, the observation that AMPK-Insig binding increases after 
AMPK activation, as well as the increased reactivity of the pSer/Thr antibody merely reflects the 
higher level of Insig protein resulting from AMPK activitation. Similarly, Fig5D shows that 
compound C (a very non-specific inhibitor) decreases both the flag signal as well as the pSer/Thr 
signal on the IP blot. Unless the authors are able to identify a specific site that is phosphorylated 
by AMPK, the data presented here do not support the claim that AMPK directly phosphorylate Insig 
and the text should be edited to reflect the fact that AMPK regulates Insig stability and interaction 
with gp78 by an unidentified mechanism. DUBs, E3 ligases, all kinds of potential direct subsrates 
of AMPK could be controlling Insig turnover without invoking direct phosphorylation of Insig 
without compelling data.  
 
2. Figure 1 clearly demonstrates that the levels of Insig1 and 2 are increased in response to 
metformin, although not necessarily through AMPK. Figure 2 attempts to demonstrate that this 
happens via AMPK by using CA-AMPK (and A769662 in other figures). However, this is done only 
in HEK293 cells that overexpress Insig-1 and 2. The authors should demonstrate that specific 
AMPK activators lead to increases in Insigs in either the liver (A769662 should activate AMPK in 
vivo) or at least in more physiologically relevant cells (hepatocytes, preferably, or HepG2) and 
include those data on Figure 2. Appropriate controls, such as AMPK KO cells or siRNA against AMPK 
should be used.  



Related to this, on page 6, first paragraph, the authors claim that “these data indicate that AMPK 
is sufficient to stimulate both Insig-1 and Insig-2 activity in vivo…” Again, without a demonstration 
that specific AMPK activation in the liver (for example A769662 treatment in mice) increases Insig, 
the authors should not make this “in vivo” claim.  
 
 
3. In Figure 4, Metformin is shown to decrease Insig-gp78 interaction. However, the treatment 
time is rather long (8h) for a direct effect of AMPK on this interaction. Is this treatment time 
required for the effect? Metformin is likely to activate AMPK within 1-2h of treatment.  
 
4. Figure 6 evaluates how SREBP processing is affected by AMPK activity. The authors do this by 
looking at precursor and nuclear SREBP1 that is overexpressed in HepG2 cells. This figure would 
benefit greatly if the authors instead performed cellular fractionation to look at this. This is 
especially true in blots where both the precursor and the nuclear SREBP1 go down (in figure 6D, 
for example), where it is harder to be confident that processing was inhibited (rather than simply 
the total levels going down). In addition, nuclear fractionation would allow detection of 
endogenous nuclear SREBP. The authors should do an experiment, such as the one on figure 6A, 
with cellular fractionation and preferably looking at endogenous SREBP1 and Insig. Additionally, 
the quantification shown in Fig 6C should analyze the ratio of nSREBP/pSREBP to normalize for 
variation in expression level.  
 
5. In figure 6F, the authors claim that the very last picture has less Oil Red O than the previous 
picture (metformin-treated SREBP-1c-S372A cells have less lipids than vehicle control). This is not 
obvious at all from the picture. Please quantify the Oil Red O staining, so the result can be 
visualized better.  
 
6. In Figure 7, the authors show that Insig-1 overexpression in AMPKa2 LKO rescues some 
features of steatosis. However, this experiment is somewhat misleading, as increasing Insig 
expression is likely to correct liver steatosis in WT as well (which is not shown here). Therefore, 
the connection to the specific phenotype of AMPKa2 LKO is hard to understand. More should be 
done to show that Insig1 is necessary for the effect of Metformin and direct AMPK activators on 
SREBP processing. For instance, CRISPR KO cell lines for AMPK and Insig could be generated in 
HepG2 and their contribution to the effect of Metformin on SREBP processing as well as on 
lipogenic gene expression should be evaluated (similarly to Figure 7G). Alternatively, if the authors 
have access to AMPK-null liver (AMPKa2 LKO likely still have AMPKa1 and residual AMPK activity) 
they could evaluate the effect of Metformin on Insig stabilization in the absence of AMPK, which 
would really establish AMPK as required for this phenomenon in vivo.  
 
Minor points:  
1. On page 4, line 1: the authors say “We have previously identified that AMPK is a direct 
upstream kinase of SREBP. AMPK phosphorylation of SREBP-1c at ser372 site is sufficient and 
required for the inhibition of proteolytic cleavage and nuclear translocation of SREBP-1c15. 
However, SREBP-1c S372A mutation remains responsive to AMPK-mediated proteolytic cleavage 
and maturation of SREBP-1c, albeit the extent is less than wild-type (WT) SREBP-1c.”  
 
This sounds contradictory. First sentence says that AMPK inhibits cleavage, but the second 
sentence says “AMPK-mediated proteolytic cleavage”. Is it not the model that AMPK inhibits 
cleavage? What do the authors mean by “AMPK-mediated cleavage”? Similar comment for page 4, 
second paragraph: “AMPK-induced proteolytic cleavage in hepatocytes”. Please clarify.  
 
2. Page 4, last paragraph. The authors should not refer to their metformin treatment as “acute”. 8 
weeks of metformin on diet is best described as “sustained”.  
 
3. Page 7, last paragraph: “kinase assay”. The authors did not perform a kinase assay, but simply 
a western blot. Please correct.  



 
4. page 8, line 1. The authors say “… leads to an augmentation of Insig-1 activity and reduction of 
fatty acid synthesis”. The authors have not evaluated Insig-1 activity or fatty acid synthesis at this 
point in the paper. They do later, so a claim like that should appear in the text only after the data 
on Figures 6 and 7 are discussed.  
 
5. Typo: page 4, second paragraph: change “has” to “have”.  
 
6. Typo: page 5, line 1: change “straining” to “staining”.  
 
7. Typo: page 5, paragraph 3: change “metformin were” to “metformin was”.  
 
8. Typo: page 7, end of page: “were evidence”. Change. Do they mean “evident”? Evidence of 
what?  
 
9. Typo: page 9: change “attenuate” to “attenuates”  
 
10. Typo: page 11, first paragraph: The sentence “To test the hypothesis that activation of 
AMPK…” is either incomplete (it doesn’t say what will be done to test the hypothesis) or just 
wrong. Please change. 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
Han and colleagues have investigated a possible new mode of SREBP cleavage regulation via 
AMPK-mediated phosphorylation of Insig. They first show in a DIO model that chronic 
administration of metformin results in increased Insig-1 and -2 protein levels. This was associated 
with reduced liver TG, cholesterol and FAS expression. They then turn to in vitro studies using 
transfection to show AMPK activation leads to increased Insig-1 and -2 protein levels. Further 
studies show that ubiquitination of Insig is reduced by AMPK activation as is protein degradation. 
Overexpression studies also suggested that AMPK activation partially attenuates the known role of 
gp78 in Insig degradation. Co-IP studies again with overexpressed protein suggest that AMPK and 
Insig directly interact and an activator of AMPK increased Insig phosphorylation. TO assess 
functional Insig, cells stably transfected with full length SREBP-1c were treated with metformin, 
which reduced nuclear SREBP-1 protein levels. Finally, Insig overexpression in AMPKa2 KO mice 
reduced liver TGs.  
 
Major Points:  
1. Fig. 1 needs nuclear SREBP-1 and SREBP-2 measurements.  
2. Fig. S1- Although not entirely clear, it appears the 293 cells were transfected with a plasmid 
encoding Insig and then treated with metformin. The mRNA for Insig did not change with 
treatment so the conclusion is that metformin does not change the mRNA levels despite the 
increase in protein levels. This is true in the transfected state but one would predict that 
endogenous mRNA levels of Insig1 would decrease since nuclear SREBP-1 should be reduced.  
3. The final in vivo study is not proof that lack of Insig is responsible for the phenotype. It is likely 
that Insig overexpression in WT mice fed the HFHS diet would also reduce liver TGs.  
4. The studies would be more convincing if the phosphorylation site(s) were identified and mutants 
studied.  
 
Minor Points:  
1. In general the abstract is not very clear for the average reader and the first and second 
sentences in particular are too confusing.  
2. It is repeatedly stated there are clinical studies that indicate metformin may be beneficial for 
humans with NASH- actually all of the studies suggest there is no significant benefit for NASH and 



no further trials are ongoing.  
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Reviewer #1:In this manuscript, the authors report that activation of AMPK leads to phosphorylation of Insig-1 and 
Insig-2. This phosphorylation of Insig results in reduced affinity of the proteins for the E3 ubiquitin ligase gp78. In 
the absence of gp78 association, Insig proteins accumulate and inhibit proteolytic processing of SREBPs, 
thereby explaining reduced lipid accumulation in animal models treated with AMPK activators. Overall, the 
conclusion of the manuscript are somewhat supported by immunoblot assays, Insig ubiquitination assays, and co-
immunoprecipitations. However, the results are correlative and experiments demonstrating AMPK directly 
phosphorylates Insigs are not provided. The authors need to identify the site of AMPK-dependenet phosphorylation 
in Insig-1 and Insig-2. This site should mutated and experiments provided showing their mutations prevent 
AMPK-mediated phosphorylation and down-regulation of SREBP processing. Conversely, authors should generate a 
phosphomimetic mutation as well. 

Answer: We would like to thank Reviewer#1 for thoughtful and constructive comments. First, to 
identify AMPK-dependent phosphorylation sites in Insig-1, a mass spectrometry proteomic analysis 
was performed. Six putative AMPK sites, including Ser43, Ser46, Ser74, Thr216, Thr222 and 
Ser276, were identified within the protein sequence of Insig-1 (Fig. S3A). The mutation of T222A, 
not the others, eliminated metformin-caused induction of Insig-1 (Fig. 5E and S3B), suggesting 
that T222 site is essential for AMPK’s stimulating effects on Insig-1. The phosphorylation of 
Insig-1 by AMPK was ablated by the nonphosphorylatable T222A mutant (Fig. 5F), indicating 
that T222 is specialized phosphorylated by AMPK. Second, as shown in Fig. S3C and Fig. 5G, 
compared with cells treated with vehicle, the proteasome-mediated degradation of WT Insig-1 and 
S74A mutant in the presence of A769662 were significantly reduced, whereas T222A mutant 
was resistant to A769662-caused protein stabilization. These data suggest that AMPK 
phosphorylation at T222 site is essential for the stabilization of Insig-1. Third, as shown in Fig. 6E, 
the amount of nuclear form of SREBP-1c derived from HepG2 cells stably expressing FLAG-
tagged SREBP-1c S372A was largely reduced by WT Insig-1 when treated with A769662, 
accompanied by an reduction of the lipogenic enzyme FAS. Conversely, the T222A mutant 
diminished the inhibitory effects of A769662 on SREBP-1c cleavage and expression of FAS. 
Together, these data suggest that AMPK, via T222 phosphorylation, inhibits proteasome-mediated 
degradation of Insig-1, which results in a reduction of SREBP-1c cleavage processing and 
lipogenic gene expression.  

Reviewer #2: 

In Han and Hu et al., the authors set out to investigate the regulation of SREBP processing by AMPK. They had 

previously identified a role for direct AMPK phosphorylation of SREBP as a mechanism by which AMPK 

inhibits lipogenesis. In this study, they extend on that work and claim that direct phosphorylation of Insig-1 and 

Insig-2, which are critical regulators of SREBP processing and activation, may be another mechanism by which 

AMPK can regulate 
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lipid metabolism. Although regulation of Insig by AMPK agonists is evaluated to a large extent (except for a few key 

points – see below), the work presented here falls short from rigorously demonstrating that Insigs are directly 

phosphorylated by AMPK, especially in the absence of an identified site. Nevertheless, the data presented on the 

regulation of Insig stability by AMPK is interesting and, provided the specific point below are addressed, could be 

considered for publication at Nature Communications without claiming direct 

phosphorylation of Insig.  

Answer: We would like to thank Reviewer#2 for thoughtful and positive comments. We have now 
revised our manuscript according to the comments as detailed below. 
 
Major points:  

1. Figure 5 is supposed to establish Insig-1 as a direct AMPK substrate. The evidence for this is weak and do not meet 

the standard required to claim that AMPK directly phosphorylates Insig. First, the previous 3 figures have clearly and 

unambiguously demonstrated that AMPK activation leads to Insig stabilization. Therefore, the observation that 

AMPK-Insig binding increases after AMPK activation, as well as the increased reactivity of the pSer/Thr antibody 

merely reflects the higher level of Insig protein resulting from AMPK activitation. Similarly, Fig5D shows that 

compound C (a very non-specific inhibitor) decreases both the flag signal as well as the pSer/Thr signal on the IP blot. 

Unless the authors are able to identify a specific site that is phosphorylated by AMPK, the data presented here do not 

support the claim that AMPK directly phosphorylate Insig and the text should be edited to reflect the fact that AMPK 

regulates Insig stability and interaction with gp78 by an 

unidentified mechanism. DUBs, E3 ligases, all kinds of potential direct subsrates of AMPK could be controlling Insig 

turnover without invoking direct phosphorylation of Insig without compelling data.  

Answer: We would like thank Reviewer#2 for thoughtful and constructive comments. Through 
integrative mass spectrometry proteomic and genetic analysis, we identified that Thr222 
phosphorylation of Insig-1 by AMPK is necessary for augmentation of Insig-1 activity and its 
inhibitory effects on SREBP-1c cleavage and lipogenic gene expression. Please see the same 
answers to the question also raised by Reviewer#1.   
 
2. Figure 1 clearly demonstrates that the levels of Insig1 and 2 are increased in response to metformin, although not 

necessarily through AMPK. Figure 2 attempts to demonstrate that this happens via AMPK by using CA-AMPK (and 

A769662 in other figures). However, this is done only in HEK293 cells that overexpress Insig-1 and 2. The authors 

should demonstrate that specific AMPK activators lead to increases in Insigs in either the liver (A769662 should 

activate AMPK in vivo) or at least in more physiologically relevant cells (hepatocytes, preferably, or HepG2) and 

include those data on Figure 2. Appropriate controls, such as AMPK KO cells or siRNA against AMPK should be 

used. 

Related to this, on page 6, first paragraph, the authors claim that “these data indicate that AMPK is sufficient to 

stimulate both Insig-1 and Insig-2 activity in vivo…” Again, without a demonstration that specific AMPK activation in 

the liver (for example A769662 treatment in mice) increases Insig, the authors should not make this “in vivo” claim.  

Answer: Thanks for the insightful comments. As shown in revised Fig. 2C and 2F, HepG2 cells, 
instead of HEK293 cells, were infected with adenoviruses encoding constitutive active AMPK 
(CA-AMPK) or GFP, and then followed by immunoblotting analysis. These data suggest that 
constitutive activation of AMPK is sufficient to enhance the protein levels of Insig-1 and -2 in 
hepatocytes. We have revised the manuscript accordingly. To further characterize that AMPK is 
required for the stabilization and activation of Insig-1 protein, we found that protein levels of Insig-1 
was increased by treatment with AMPK activators including metformin, A769662 and AICAR in 
AMPK wildtype (WT) primary hepatocytes, but not in AMPK-/- primary hepatocytes isolated from 
liver-specific AMPKα1 and α2 double knockout (AMPK DKO) mice (revised Fig. 7A), which was 
generated by crossing the floxed AMPKα1 and α2 mice1 with albumin-Cre recombinase transgenic 
mice. Taken together, these data demonstrate that AMPK activation is sufficient and required for 
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Fig. 1. The measurement of both nuclear and full length SREBP-1 
fragment in HepG2 hepatocytes stably expressing SREBP-1c. The 
cell lysates were individually immunoblotted with an antibody against 
FLAG and three different antibodies against SREBP-1 as indicated. 

induction of Insig in hepatocytes. Moreover, we have removed the description that AMPK increases 
Insig activity in vivo in the revised manuscript.  
 
3. In Figure 4, Metformin is shown to decrease Insig-gp78 interaction. However, the treatment time is rather long (8h) 

for a direct effect of AMPK on this interaction. Is this treatment time required for the effect? Metformin is likely to 

activate AMPK within 1-2h of treatment. 

Answer: Thanks for the reviewer’s comments. As shown in Fig. 3C, the half-life for Insig-1 protein 
is around 30 min, which is consistent with the previous observation in SRD-13A cells2, whereas 
proteasomal degradation of Insig-1 is at least 15 times more rapidly than Insig-22. In Fig. 4C and 4D, 
HEK293 cells were treated with AMPK agonist A769662 for as long as 8 hours to maximize the 
efficacy of drug treatment on the interaction between Insig and gp78. We agree with the reviewer 
that the inhibitory effects of A769662 or metformin on the interaction between Insig-1 and gp78 
would happen rapidly.  
 
4. Figure 6 evaluates how SREBP processing is affected by AMPK activity. The authors do this by looking at 

precursor and nuclear SREBP1 that is overexpressed in HepG2 cells. This figure would benefit greatly if the authors 

instead performed cellular fractionation to look at this. This is especially true in blots where both the precursor and 

the nuclear SREBP1 go down (in figure 6D, for example), where it is harder to be confident that processing was 

inhibited (rather than simply the total levels going down). In addition, nuclear fractionation would allow detection of 

endogenous nuclear SREBP. The authors should do an experiment, such as the one on figure 6A, with cellular 

fractionation and preferably looking at endogenous SREBP1 and Insig. Additionally, the quantification shown in Fig 

6C should analyze the ratio of nSREBP/pSREBP to normalize for variation in expression level. 

Answer: We would like thank 
Reviewer#2 for thoughtful and 
constructive comments. First, 
given that the positive feedback 
regulation of SREBP through 
the SRE element in its own 
promoter3. It is technically 
difficult to determine whether 
the change of nuclear SREBP 
fragment is due to the regulation 
of proteolytic cleavage or 
transcription. We therefore 
sought to generate exogenous FLAG-tagged SREBP expression system, in which FLAG-tagged 
SREBP-1c is driven by a CMV promoter. The specificity of both nuclear and precursor SREBP-1c is 
confirmed by FLAG antibody and all three different SREBP-1 antibodies (Fig. 1). Notably, the FLAG 
antibody appears to have the highest sensitivity. Second, the cellular fractionation was performed 
using the SREBP-1c stable hepatocytes. As shown in revised Fig. 6B, consistent with the 
measurement using whole lysates, the proteolytic processing and nuclear fragment of exogenous 
SREBP-1c were strikingly decreased by treatment with metformin (2 mM), whereas the expression 
of precursor SREBP-1c was not obviously changed. In addition, these results also suggest that the 
use of HepG2 cells stably expressing FLAG-tagged SREBP-1c is a unique and valuable tool for the 
study of SREBP-1 proteolytic cleavage and hepatic lipogenesis in vivo.  

The mild reduction of precursor SREBP-1c in the submitted manuscript Fig. 6D are likely due 
to the condition of the cells, or the treatment with adenoviruses expressing GFP or Insig-1. 
Moreover, due to the limited space, we have moved these data in the supplemental section 
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(revised Fig. S4). Moreover, the ratio of nuclear to precursor SREBP levels has been quantified and 
presented as nSREBP-1c/pSREBP-1c in revised Fig. 6D.  
 
5. In figure 6F, the authors claim that the very last picture has less Oil Red O than the previous picture 

(metformin-treated SREBP-1c-S372A cells have less lipids than vehicle control). This is not obvious at all from the 

picture. Please quantify the Oil Red O staining, so the result can be visualized better.  

Answer: Thanks for the comments. The quantification of Oil Red O staining of HepG2 cells stabling 
expressing empty vector, SREBP-1c or SREBP-1c S372A was performed as described previously4, 5 and 

presented in revised Fig. 6I. Consistent with the cleavage assay in revised Fig. 6C and 6D, SREBP-1c 

S372A mutant stably expressed in human HepG2 cells remains responsive to metformin-inhibited 

proteolytic cleavage, further supporting the notion that AMPK phosphorylates Insig and inhibits SREBP 

activity to attenuate hepatic steatosis.  

 

6. In Figure 7, the authors show that Insig-1 overexpression in AMPKa2 LKO rescues some features of steatosis. 

However, this experiment is somewhat misleading, as increasing Insig expression is likely to correct liver steatosis in 

WT as well (which is not shown here). Therefore, the connection to the specific phenotype of AMPKa2 LKO is hard to 

understand. More should be done to show that Insig1 is necessary for the effect of Metformin and direct AMPK 

activators on SREBP processing. For instance, CRISPR KO cell lines for AMPK and Insig could be generated in 

HepG2 and their contribution to the effect of Metformin on SREBP processing as well as on lipogenic gene expression 

should be evaluated (similarly to Figure 7G). Alternatively, if the authors have access to AMPK-null liver (AMPKa2 

LKO likely still have AMPKa1 and residual AMPK activity) they could evaluate the effect of Metformin on Insig 

stabilization in the absence of AMPK, which would really establish AMPK as required for 

this phenomenon in vivo. 

Answer: We would like to thank Reviewer#2 for the insightful and constructive comments. First, as 
shown in revised Fig. 7E, hepatic steatosis in AMPKα2 LKO mice fed with HFHS diet was 
significantly reduced by adenovirus-mediated expression of Insig-1, suggesting that Insig reduction 
may mediate the steatotic phenotypes in AMPKα2 LKO mice. Due to the technical limitation, we 
hope that the reviewer would agree with us that these data provide additional in vivo evidence to 
support the notion that AMPK inhibits hepatic lipogenesis via activation of Insig. Second, as shown 
in revised Fig. 6E, treatment with Insig-1 is sufficient to inhibit FLAG-tagged SREBP-1c cleavage in 
HepG2 cells and leads to a reduction of its target lipogenic enzyme FAS expression, whereas the 
T222A mutant does not. These data suggest that AMPK phosphorylation site at T222 is necessary 
for Insig to inhibit SREBP-1c cleavage and lipogenic gene expression. Third, we have previously 
demonstrated the relative contribution of AMPK to metformin’s inhibitory effects on SREBP 
cleavage and lipogenesis6. Fourth, the half-life of Insig-1 is increased to 1.4 hours by treatment with 
AMPK agonist A769662 (revised Fig. 3C). Moreover, the induction was ablated by the 
nonphosphorylatable T222A mutant, and the mutant is also resistant to A769662-induced 
stabilization of Insig-1 (revised Fig. 5G). Most importantly, activation of AMPK by metformin, 
A769662 and AICAR enhances protein levels of Insig-1 in WT hepatocytes, whereas these effects 
are abrogated in AMPKα1α2 double knockout mouse primary hepatocytes (revised Fig. 7A). These 
data characterize AMPK as an upstream kinase of Insig-1, and demonstrate that AMPK is sufficient 
and necessary for metformin on the stabilization and activation of Insig. Taken together, these 
results suggest that Insig may partially mediate AMPK’s effects on the regulation of lipogenesis.  
 
Minor points: 

1. On page 4, line 1: the authors say “We have previously identified that AMPK is a direct upstream kinase of SREBP. 

AMPK phosphorylation of SREBP-1c at ser372 site is sufficient and required for the inhibition of proteolytic cleavage 

and nuclear translocation of SREBP-1c15. However, SREBP-1c S372A mutation remains responsive to 
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AMPK-mediated proteolytic cleavage and maturation of SREBP-1c, albeit the extent is less than wild-type (WT) 

SREBP-1c.”  

This sounds contradictory. First sentence says that AMPK inhibits cleavage, but the second sentence says 

“AMPK-mediated proteolytic cleavage”. Is it not the model that AMPK inhibits cleavage? What do the authors mean 

by “AMPK-mediated cleavage”? Similar comment for page 4, second paragraph: “AMPK-induced proteolytic 

cleavage in hepatocytes”. Please clarify.  

Answer: Thanks for the comments. We have carefully checked the manuscript and revised the 
errors accordingly.  
 
2. Page 4, last paragraph. The authors should not refer to their metformin treatment as “acute”. 8 weeks of metformin 

on diet is best described as “sustained”.  

Answer: Thanks for the comments. We have removed “acute” in the revised manuscript. 
 
3. Page 7, last paragraph: “kinase assay”. The authors did not perform a kinase assay, but simply a western blot. 

Please correct.  

Answer: Thanks for the comments. We have revised the manuscript accordingly. 
 
4. page 8, line 1. The authors say “… leads to an augmentation of Insig-1 activity and reduction of fatty acid 

synthesis”. The authors have not evaluated Insig-1 activity or fatty acid synthesis at this point in the paper. They do 

later, so a claim like that should appear in the text only after the data on Figures 6 and 7 are discussed.  

Answer: Thanks for the comments. The description has been replaced as “These results 
demonstrate that Insig-1 is regulated by AMPK through phosphorylation.” in the manuscript.  
 
5. Typo: page 4, second paragraph: change “has” to “have”. 

Answer: Thanks for the comments. We have corrected the error. 
 
6. Typo: page 5, line 1: change “straining” to “staining”.  

Answer: Thanks for the comments. We have corrected the error. 
 
7. Typo: page 5, paragraph 3: change “metformin were” to “metformin was”. 

Answer: Thanks for the comments. We have corrected the error. 
 
8. Typo: page 7, end of page: “were evidence”. Change. Do they mean “evident”? Evidence of what?  

Answer: Thanks for the comments. The description has been replaced as “were evidenced” in the 
manuscript.  
 
9. Typo: page 9: change “attenuate” to “attenuates”  

Answer: Thanks for the comments. We have corrected the error. 
 
10. Typo: page 11, first paragraph: The sentence “To test the hypothesis that activation of AMPK…” is either 

incomplete (it doesn’t say what will be done to test the hypothesis) or just wrong. Please change. 

Answer: Thanks for the comments. The description has been replaced as “the findings that the 
association between AMPKα subunit and Insig-1 is enhanced by AMPK agonist A769662, suggest 
that activation of AMPK may enable its substrates to be more accessible to the kinase domain of 
AMPKα.” in the manuscript. 
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Fig. 2. Effects of metformin on 
the mRNA levels of 
SREBP-1c. HEK293 cells were 
treated with various doses of 
metformin for 24h, followed by 
real-time PCR analysis.

Reviewer #3:Han and colleagues have investigated a possible new mode of SREBP cleavage regulation via 

AMPK-mediated phosphorylation of Insig. They first show in a DIO model that chronic administration of metformin 

results in increased Insig-1 and -2 protein levels. This was associated with reduced liver TG, cholesterol and FAS 

expression. They then turn to in vitro studies using transfection to show AMPK activation leads to increased Insig-1 

and -2 protein levels. Further studies show that ubiquitination of Insig is reduced by AMPK activation as is protein 

degradation. Overexpression studies also suggested that AMPK activation partially attenuates the known role of gp78 

in Insig degradation. Co-IP studies again with overexpressed protein suggest that AMPK and Insig directly interact 

and an activator of AMPK increased Insig phosphorylation. TO assess functional Insig, cells stably transfected with 

full length SREBP-1c were treated with metformin, which reduced nuclear SREBP-1 protein levels. 

Finally, Insig overexpression in AMPKa2 KO mice reduced liver TGs.  

Answer: We would like thank Reviewer#3 for the comments. 
 
Major Points:  

1. Fig. 1 needs nuclear SREBP-1 and SREBP-2 measurements.  

Answer: Thanks for the comments. As requested, immunoblotting analysis was performed to measure 
expression levels of nuclear SREBP-1. As shown in revised Fig. 1E and Fig. S1C, AMPK agonist metformin 

treatment caused a reduction of nuclear SREBP protein levels in the liver of mice fed with HFHS diet, which 

is consistent with an induction of Insig. These data support the notion that AMPK increases Insig activity and 

inhibits SREBP to attenuate hepatic lipogenesis.  
 
2. Fig. S1- Although not entirely clear, it appears the 293 cells were transfected with a plasmid encoding Insig and 

then treated with metformin. The mRNA for Insig did not change with treatment so the conclusion is that metformin 

does not change the mRNA levels despite the increase in protein levels. This is true in the transfected state but one 

would predict that endogenous mRNA levels of Insig1 would decrease since nuclear SREBP-1 should be reduced.  

Answer: We would like to thank Reviewer#3 for the insightful 
comments. As shown in revised Fig. S1A, mRNA levels of Insig-1 
were not obviously changed by metformin in HEK293 cells, 
suggesting that AMPK activator metformin may not regulate 
transcription of Insig-1. In response to reviewer’s question 
regarding the regulation of SREBP on Insig-1, real-time PCR was 
performed to measure SREBP expression in these cells. New 
experiments show that SREBP-1c mRNA levels were not 
significantly affected by metformin although a mild reduction was 
observed (Fig. 2). Although the data appears to contradictory to 
the previous findings showing that Insig-1 is positively regulated by 
SREBP7, 8, it is likely due to the low levels of SREBP expression in 
HEK293 cells at basal condition. Also it is likely due to the cell-type 
specific regulation of SREBP on Insig-1.  
 
3. The final in vivo study is not proof that lack of Insig is responsible for the phenotype. It is likely that Insig 

overexpression in WT mice fed the HFHS diet would also reduce liver TGs.  

Answer: We would like to thank Reviewer#3 for the insightful questions. Please see the same 
answer for question #6 raised by Reviewer#2.  
 
4. The studies would be more convincing if the phosphorylation site(s) were identified and mutants studied.  

Answer: We would like thank Reviewer#3 for thoughtful and constructive comments. Through 
integrative mass spectrometry proteomic and genetic analysis, we identified that Thr222 
phosphorylation of Insig-1 by AMPK is necessary for augmentation of Insig-1 activity and its 
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inhibitory effects on SREBP-1c cleavage and lipogenic gene expression. Please see the same 
answer to the question also raised by Reviewer#1.   
 
Minor Points: 

1. In general the abstract is not very clear for the average reader and the first and second sentences in particular are 

too confusing.  

Answer: Thanks for the comments. We have revised the manuscript accordingly. 
 
2. It is repeatedly stated there are clinical studies that indicate metformin may be beneficial for humans with NASH- 

actually all of the studies suggest there is no significant benefit for NASH and no further trials are ongoing. 

Answer: Thanks for the comments. We have removed the description of metformin’s effects on 
NASH from the manuscript. 
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REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
In this revised manuscript by Li and colleagues, the authors have added considerable new data to 
address the reviewers concerns, including the mapping of a putative dominant AMPK-dependent 
phosphorylation site as data in Figure 5 and S3 show.  
 
There is one minor odd aspect of the site identified T222. Prediction software indicates this residue 
should lie in a transmembrane domain so it is odd this site was detected as phhosphorylated. 
Additionally, the T222 site does not conform well at all the established substrate motif shared in 
common by all known AMPK substrates (including Srebp1). The S43 and S46 site do conform quite 
well to the optimal substrate sequence, and by the authors data in Figure 5E, it appears that S46A 
also blocks metformin-induced increase in Insig1 levels.  
 
It is possible that another AMPK-dependent kinase with a different optimal substrate motif (like 
ULK1 for example), may be the real kinase for T222. The authors should note these possibilities in 
the discussion of the paper.  
 
With this text addition to the discussion, the manuscript should be acceptable for publication in 
Naure Communications.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have performed additional experiments that significantly strengthen the conclusions of 
the paper.  
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REVIEWERS' COMMENTS: 
Reviewer #2 (Remarks to the Author): 
In this revised manuscript by Li and colleagues, the authors have added considerable new data to address the 
reviewers concerns, including the mapping of a putative dominant AMPK-dependent phosphorylation site as data in 
Figure 5 and S3 show.  
There is one minor odd aspect of the site identified T222. Prediction software indicates this residue should lie in a 
transmembrane domain so it is odd this site was detected as phhosphorylated. Additionally, the T222 site does not 
conform well at all the established substrate motif shared in common by all known AMPK substrates (including 
Srebp1). The S43 and S46 site do conform quite well to the optimal substrate sequence, and by the authors data in 
Figure 5E, it appears that S46A also blocks metformin-induced increase in Insig1 levels.  
It is possible that another AMPK-dependent kinase with a different optimal substrate motif (like ULK1 for example), 
may be the real kinase for T222. The authors should note these possibilities in the discussion of the paper.  
With this text addition to the discussion, the manuscript should be acceptable for publication in Naure 
Communications. 
Answer: We would like to thank Reviewer#2 for the positive and insightful comments. We have 
included “Interestingly, the mutation of S46A blocks metformin-induced Insig-1 levels in Fig. 5E. It 
is possible that AMPK regulates Insig-1 at other phosphorylation sites. Moreover, we cannot 
exclude the possibility that Insig-1 is regulated by AMPK dependent kinase indirectly.” in the 
discussion section of the revised manuscript.  
 
Reviewer #3 (Remarks to the Author): 
The authors have performed additional experiments that significantly strengthen the conclusions of the paper. 
Answer: We would like to thank Reviewer#3 for the positive comments.  
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