IPSE, a urogenital parasite-derived immunomodulatory protein, ameliorates ifosfamideinduced hemorrhagic cystitis through downregulation of pro-inflammatory pathways

Evaristus C. Mbanefo^{1,2}, Loc Le¹, Rebecca Zee^{1,2}, Nirad Banskota¹, Kenji Ishida¹, Luke F. Pennington³, Justin I. Odegaard⁴, Theodore S. Jardetzky³, Abdulaziz Alouffi⁵, Franco H. Falcone⁶, Michael H. Hsieh^{1,2,7*}

Affiliations

¹Bladder Immunology Group, Biomedical Research Institute, Rockville, MD, USA
²Division of Urology, Children's National Medical Center, Washington, DC, USA
³Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
⁴Guardant Health, Redwood City, CA, USA
⁵Life Science & Environment Sector, King Abdulaziz City for Science & Technology (KACST), Saudi Arabia
⁶Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, UK.
⁷Department of Urology, The George Washington University, Washington, D.C., USA

INGENUITY[°] PATHWAY ANALYSIS

Analysis Name: Ifos_vs_Sal p0.05- 2018-05-10 06:13 PM Analysis Creation Date: 2018-06-01 Build version: 470319M Content version: 43605602 (Release Date: 2018-03-28) Supplementary Fig. S1. Summary of the Pathways, Functional and Network analysis using Ingenuity Pathway Analysis (see ref. 57). This file shows top 5 each of canonical pathways, upstream regulators, diseases and disorders, molecular and cellular functions, physiological system development and functions, tox functions (hepatotoxicity, nephrotoxicity and cardiotoxicity), regulator effect networks, mechanistic networks, top 10 upregulated and downregulated genes.

Analysis Settings

Reference set: Ingenuity Knowledge Base (Genes Only) Relationship to include: Direct and Indirect Includes Endogenous Chemicals Optional Analyses: My Pathways My List

Filter Summary: Consider only relationships where confidence = Experimentally Observed

Summary of Analysis - Ifos_vs_Sal p0.05- 2018-05-10 06:13 PM

Top Canonical Pathways			
Name	p-value	Overlap	
Molecular Mechanisms of Cancer	6.54E-11	45.4 % 179/394	
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	1.87E-10	47.0 % 147/313	
Osteoarthritis Pathway	1.98E-09	49.5 % 105/212	
IL-6 Signaling	5.41E-09	54.7 % 70/128	
Death Receptor Signaling	5.60E-09	59.1 % 55/93	

Top Upstream Regulators			
Upstream Regulator	p-value of overlap	Predicted Activation	
TNF	5.90E-29	Activated	
beta-estradiol	4.64E-24	Activated	
TGFB1	8.46E-23	Activated	
PDGF BB	2.89E-21	Activated	
NFKBIA	1.14E-19	Activated	

Top Diseases and Bio Functions

Diseases and Disorders			
Name	p-value	#Molecules	
Cancer	9.96E-09 - 3.77E-157	6084	
Organismal Injury and Abnormalities	9.96E-09 - 3.77E-157	6207	
Gastrointestinal Disease	5.18E-09 - 2.21E-134	5630	
Hepatic System Disease	4.36E-09 - 5.09E-44	3964	
Reproductive System Disease	9.38E-09 - 2.35E-31	3788	

Molecular and Cellular Functions

Summary of Analysis - Ifos_vs_Sal p0.05- 2018-05-10 06:13 PM

Name	p-value	#Molecules
Cell Death and Survival	7.49E-09 - 5.07E-46	2138
Cellular Movement	8.05E-09 - 2.03E-34	1415
Gene Expression	4.12E-12 - 2.97E-26	1469
Cell Cycle	1.06E-08 - 5.19E-24	937
Cellular Development	1.04E-08 - 1.75E-23	1982

Physiological System Development and Function

Name	p-value	#Molecules
Organismal Survival	7.31E-11 - 3.36E-58	1638
Organismal Development	5.68E-09 - 1.52E-42	2357
Tissue Morphology	9.09E-09 - 4.09E-37	1581
Hematological System Development and Function	9.09E-09 - 2.20E-28	1267
Cardiovascular System Development and Function	7.49E-09 - 2.20E-25	921

Top Tox Functions

Assays: Clinical Chemistry and Hematology

Name	p-value	#Molecules
Increased Levels of Alkaline Phosphatase	3.01E-01 - 5.09E-07	46
Increased Levels of ALT	2.57E-01 - 1.97E-03	20
Increased Levels of AST	3.01E-01 - 2.13E-03	14
Increased Levels of Creatinine	2.21E-01 - 2.82E-03	26
Increased Levels of Red Blood Cells	1.32E-02 - 1.32E-02	42

Cardiotoxicity

3

Name	p-value	#Molecules
Cardiac Infarction	5.11E-01 - 4.35E-06	117
Cardiac Necrosis/Cell Death	6.58E-01 - 6.01E-06	120
Cardiac Arrythmia	1.00E00 - 7.57E-06	119
Cardiac Enlargement	6.58E-01 - 9.71E-06	183
Cardiac Arteriopathy	5.81E-01 - 1.62E-04	149

Hepatotoxicity

Name	p-value	#Molecules
Liver Hyperplasia/Hyperproliferation	1.00E00 - 6.99E-38	3855
Liver Necrosis/Cell Death	5.11E-01 - 3.88E-11	147
Liver Proliferation	5.11E-01 - 4.65E-10	114
Hepatocellular Carcinoma	6.58E-01 - 7.21E-08	439
Liver Cirrhosis	5.11E-01 - 1.00E-04	115

Nephrotoxicity

Name	p-value	#Molecules
Renal Proliferation	6.58E-01 - 8.00E-10	136
Renal Necrosis/Cell Death	6.58E-01 - 2.88E-08	239
Renal Damage	6.58E-01 - 1.50E-06	124
Glomerular Injury	1.00E00 - 1.41E-04	131
Renal Hypoplasia	5.11E-01 - 2.13E-04	36

Top Regulator Effect Networks			
ID Regulators	Diseases & Functions	Consistency Score	
1 C3	Interaction of leukocytes	4.364	
2 trinitrobenzenesulfonic acid	Chemotaxis of myeloid cells	4.041	
(c) 2000-2018 QIAGEN. All rights reserved.	4		

3	TAC1	Recruitment of blood cells	3.9
4	MIF	Migration of granulocytes	3.881
5	C5AR1	Homing of cells	3.873

То	Top Networks		
ID	Associated Network Functions	Score	
1	Vitamin and Mineral Metabolism, Cell Cycle, Cellular Assembly and Organization	23	
2	Hereditary Disorder, Ophthalmic Disease, Organismal Injury and Abnormalities	23	
3	Connective Tissue Disorders, Developmental Disorder, Hereditary Disorder	23	
4	Gene Expression, Auditory and Vestibular System Development and Function, Cancer	23	
5	Cell-To-Cell Signaling and Interaction, Cellular Movement, Hematological System Development and Function	23	

Top Tox Lists			
Name	p-value	Overlap	
Renal Necrosis/Cell Death	1.25E-11	43.5 % 239/550	
Liver Necrosis/Cell Death	5.88E-11	47.6 % 147/309	
Liver Proliferation	3.63E-10	49.2 % 118/240	
Increases Liver Hyperplasia/Hyperproliferation	7.65E-09	54.8 % 68/124	
Increases Renal Proliferation	1.16E-07	50.7 % 75/148	

Top Analysis-Ready Molecules				
Expr Log Ratio up-regulated				
Molecules		Expr. Value	Expr. Chart	
EID3		† 6.792		
PTX3		† 6.737		
IL6		† 6.583		
HMOX1		† 6.122		
SLC7A11		† 6.111		
(c) 2000-2018 QIAGEN. All rights reserved.	5		INGENUITY PATHWAY ANALYSIS	

CXCL3	† 6.011
TMEM236	† 5.660
ADAMTS4	† 5.632
LSMEM1	† 5.482
Mt2	† 5.407

Expr Log Ratio down-regulated

Molecules	Expr. Value	Expr. Chart
CX3CR1	+ -3.487	
Tir12	+ -3.468	
TMEM229A	+ -2.901	
NDP	+ -2.891	
CYP1A1	+ -2.633	
FZD10	+ -2.549	
2010016l18Rik	+ -2.544	
C130021I20Rik	+ -2.508	
WSCD1	+ -2.494	
CLEC12A	+ -2.450	

translocate (line with open arrow), inhibition (line with perpendicular line at edge).

Role of IL-17F in Allergic Inflammatory Airway Diseases : Galaxy346-[Ifos_vs_Sal_DESeq2_result_file_on_data_21,_data_22,_and_others] : Expr Log Ratio

Supplementary Fig. S3. Pg 1. Role of IL-17F in Allergic Airway Diseases

p38 MAPK Signaling : Galaxy346-[lfos_vs_Sal_DESeq2_result_file_on_data_21,_data_22,_and_others] : Expr Log Ratio

© 2000-2018 QIAGEN. All rights reserved.

© 2000-2018 QIAGEN. All rights reserved.

Supplementary Fig. S3. Other upregulated pro-inflammatory pathways during ifosfamide induced hemorrhagic cystitis. Other major upregulated proinflammatory pathways associated with ifosfamide induced hemorrhagic cystitis were Role of IL-17F in Allergic Airway Diseases, p38 MAPK signaling, Leucocyte Extravasation signaling, **HMGB1 signaling,** TREM1 signaling. Pathways, Functional and Network analyses were generated using IPA⁵⁷. For the key to the annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S3. Pg 5: TREM1 signaling.

REM1 Signaling : Galaxy346-[Ifos_vs_Sal_DESeq2_result_file_on_data_21,_data_22,_and_others] : Expr Log Ra

Supplementary Fig. S4. Mechanistic network analysis. Pathways, Functional and Network analyses were generated using IPA⁵⁷. Mechanistic network analysis of transcriptome of IPSE pretreated mice compared to ifosfamide only mice showed downregulation of interactions between several proinflammatory genes. In addition to the network interaction between chemokines and interferon induced proteins, we also recorded more downregulatory mechanistic network interaction between

genes encoding interferons induced proteins. Orange color signifies directional gene expression that is part of dataset, passed the cut off values and upregulated. Green color signifies directional gene expression that is part of dataset, passed the cut off values and downregulated. Gray color signifies gene expression that is part of dataset but unchanged. White color signifies genes that is not part of dataset. For other keys to the shape annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S4. Mechanistic network analysis. Pathways, Functional and Network analyses were generated using IPA⁵⁷. Mechanistic network analysis of transcriptome of IPSE pretreated mice compared to ifosfamide only mice showed downregulation of interactions between several proinflammatory genes. In addition to the network interaction between chemokines and interferon induced proteins, we also recorded more downregulatory mechanistic network interaction between genes encoding interferons induced proteins. Orange color signifies directional gene expression that is part of dataset, passed the cut off values and upregulated. Green color signifies directional gene expression that is part of dataset, passed the cut off values and downregulated. Gray color signifies gene expression that is part of dataset. For other keys to the shape annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S4. Mechanistic network analysis. Pathways, Functional and Network analyses were generated using IPA⁵⁷. Mechanistic network analysis of transcriptome of IPSE pretreated mice compared to ifosfamide only mice showed downregulation of interactions between several proinflammatory genes. In addition to the network interaction between chemokines and interferon induced proteins, we also recorded more downregulatory mechanistic network interaction between genes encoding interferons induced proteins. Orange color signifies directional gene expression that is part of dataset, passed the cut off values and upregulated. Green color signifies directional gene expression that is part of dataset, passed the cut off values and downregulated. Gray color signifies gene expression that is part of dataset. For other keys to the shape annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S5. Differentially altered pathways in bladders of mice challenged with ifosfamide with pretreatment with IPSE variants. Mice were pretreated with saline, IPSE or IPSE NLS mutant, 24 hours before challenge with 400mg/kg of ifosfamide. The bladders were subjected to transcriptional profiling (RNA-Seq) and functional analysis using IPA⁵⁷. (A) Differentially altered genes by pretreatment with IPSE NLS mutant compared to the ifosfamide only group. (B) Differentially altered genes by pretreatment with IPSE NLS mutant compared to pretreatment with wild type IPSE, both before ifosfamide challenge. Bars are colored according to z-score (predicts activation or inhibition based on the degree of overlap between directional expressions from observed data and the QIAGEN-curated public knowledge base), with red showing activation and blue denoting inhibition. The size of each bar is proportional to its –log(p-value).

Supplementary Fig. S6. NRF2 mediated oxidative stress responses pathway. NRF2 is the major pathway regulating response to oxidative stress. It induces the expression of heme oxygenase pathway, the first enzyme of the heme homoeostasis pathway, and the expression of several antioxidant enzymes and proteins. An abridged version of this figure is shown in Fig. 7. Pathways, Functional and Network analyses were generated using IPA⁵⁷. For the key to the annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S7. PPAR signaling pathway. PPAR cascade is the major pathway regulating lipid homoeostasis. PPAR has been shown to play an anti-inflammatory role ⁴⁴, thus, here downregulated in response to ifosfamide induced cystitis. Pathways, Functional and Network analyses were generated using IPA⁵⁷. For the key to the annotations, see description in Supplementary Fig. S2 legend.

Supplementary Fig. S8. Diseases and Function Tree map. This is a graphical representation of changes in the diseases and disorders, molecular and cellular functions, physiological system development and functions altered due to ifosfamide induced cystitis. We saw high upregulation of functions related to organismal injury and abnormalities, inflammatory diseases, cancer, cell proliferation, cellular movement and hematological systems development and function, and downregulation of cell death in response to ifosfamide induced cystitis. Pathways, Functional and Network analyses were generated using IPA⁵⁷.

Neuroinflammation involves numerous cell types, acts to clear neuronal damage, and plays a key role in maintaining the homeostasis of CNS. sis can be lost through various regulatory failures, or when humoral immune components cross the blood-brain barrier, causing chronic inflamm excessive cell and tissue damage, which is associated with neurodegenerative diseases. ation with

Functional and Network analyses were generated using IPA⁵⁷. For the key to the annotations, see description in Supplementary Fig. S2 legend.