Supporting Information

Electrocatalytic Reduction of Low Concentration CO2

Hiromu Kumagai, Tetsuya Nishikawa, Hiroki Koizumi, Taiki Yatsu, Go Sahara, Yasuomi Yamazaki, Yusuke Tamaki, and Osamu Ishitani*

Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama 2-12-1-NE-1, Meguro-ku, Tokyo 152-8550, Japan

*Corresponding author: ishitani@chem.titech.ac.jp

Fig. S1. Curve fitting of the FT-IR spectrum of the Re(I) complexes (5.0 mM) in a DMF-TEOA (5:1 v/v) solution containing 0.1 M Et₄NBF₄ after purging with 1% CO₂. Black asterisk (*), blue triangle (\blacktriangle) and red circle (•) display the peaks attributed to **Re-DMF**⁺, **Re-TEOA**, and **Re-CO₂TEOA**, respectively.

Fig. S2. CVs of the Re(I) complex (0.5 mM) in DMF (a) and in a DMF-TEOA mixed solution (5:1 v/v) (b) containing Et_4NBF_4 (0.1 M) as supporting electrolyte under an Ar atmosphere at a sweep rate of 200 mV s⁻¹. A glassy carbon electrode (diameter: 3 mm), a Ag/AgNO₃ (10 mM) electrode and a Pt wire were used as working, reference, and counter electrode, respectively.

Fig. S3. Picture of the setup for the bulk electrolysis. The right side is the cathodic chamber for CO_2 reduction reaction.

Fig. S4. Time courses of current during bulk electrolysis using the Re(I) catalyst (0.5 mM) at -1.82 V in a DMF-TEOA solution containing Et₄NBF₄ (0.1 M) under (a) 100%, (b) 10%, and (c) 1% CO₂ atmospheres (10 mL min⁻¹).

Fig. S5. Time courses of current during bulk electrolysis using **Re-DMF**⁺ (0.5 mM) at -1.82 V in a DMF solution containing Et₄NBF₄ (0.1 M) under (a) 100% and (b) 1% CO₂ atmospheres (10 mL min⁻¹).

Fig. S6. (a) FT-IR spectra, (b) CVs, and (c), UHPLCs of the Re(I) complexes before and after the bulk electrolysis at -1.82 V under a 1% CO₂ atmosphere in DMF containing Et₄NBF₄ (0.1 M) as supporting electrolyte; black lines: before electrolysis, and red lines: after electrolysis. The blue line in (c) is UHPLC of **Re-OCHO**. The FT-IR spectra and CVs were measured by using the reaction solutions without any treatment. UHPLC: an ODS column: $\lambda_{det} = 400$ nm, a MeOH-H₂O mixed solution containing KH₂PO₄ buffer of pH5.9 (1:1 v/v) was used as the eluent. The blue line shows the analysis result of the isolated **Re-OCHO** as reference.

Fig. S7. FT-IR spectra (black) before and (red) after adding TPAHBF₄ (25 mM) into a DMF solution containing **Re-DMF**⁺ (5.0 mM) and Et₄NBF₄ (0.1 M) under an Ar atmosphere.

Fig. S8. Time courses of current during bulk electrolysis using **Re-DMF**⁺ (0.5 mM) at -1.82 V in the DMF solution containing Et₄NBF₄ (0.1 M) and TPAHBF₄ (25 mM) under (a) 100% and (b) 1% CO₂ atmospheres (10 mL min⁻¹).

Fig. S9. (a) FT-IR spectra, (b) CVs, and (c), UHPLCs of the Re(I) complexes before and after the bulk electrolysis at -1.82 V under a 10% CO₂ atmosphere a DMF-TEOA mixed solution (5:1 v/v) containing Et₄NBF₄ (0.1 M) as supporting electrolyte; black lines: before electrolysis, and red lines: after electrolysis. The blue line in (c) is UHPLC of **Re-OCHO**. The FT-IR spectra and CVs were measured by using the reaction solutions without any treatment. UHPLC: an ODS column: $\lambda_{det} = 400$ nm, a MeOH-H₂O mixed solution containing KH₂PO₄ buffer of pH5.9 (1:1 v/v) was used as the eluent. The blue line shows the analysis result of the isolated **Re-OCHO** as reference.