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2

-150 -100 -50 0 50 100 150
0

10

20

30

40

50

K
er

r r
ot

at
io

n 
(a

rb
itr

ar
y 

un
its

)

B
F
 (mT)

Supplementary Figure 1: Polarization recovery curve (PRC) measured at lowest modulation rate of

1 MHz together with fit after simplified Eq. (14) (blue dashed line) and results of calculation after the

full model of Ref. 20 (red line), see text for parameters. Source data are provided as a Source Data file.
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Supplementary Figure 2: Photoluminescence dynamics for the spectral regions shaded in the inset and

corresponding to the excitons (red line) and bound excitons (blue line). The excitation photon energy is

3.263 eV, T = 10 K. Source data are provided as a Source Data file.
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Isotope Spin µI/µN Abundance Ae Ah

β (µeV) (µeV)

133
55 Cs 7/2 2.58 100% −a −a

206
82 Pb 0 0 24.1% −b −b

207
82 Pb 1/2 0.58 22.1% −a 100 (20)

208
82 Pb 0 0 52.4% −b −b

79
35Br 3/2 2.1 50.7% 7 (3.5) −a

81
35Br 3/2 2.27 49.3% 7 (3.5) −a

aThe contribution of its orbitals to the Bloch function in negligible.
bThis isotope has spin 0 and the hyperfine interaction is absent.

Supplementary Table 1: Parameters of the hyperfine interaction in CsPbBr3. The values of Ae and Ah

are given following the estimates in the text, the values in parenthesis are normalized to the abundance.

Only isotopes with significant abundance are included.
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Supplementary Note 1. BAND STRUCTURE AND ORBITAL COMPOSITION OF BLOCH

FUNCTIONS

Bulk halide perovskite semiconductors are described by the chemical formula ABX3. Here

A is the organic or inorganic cation (center of the unit cell), B is the metal atom (e.g., Pb) and X

is the halogen atom (e.g., Br). To be specific, we consider CsPbBr3 and, for simplicity, its cubic

modification described by the point group Oh. Note that the crystal becomes orthorhombic at

low temperatures, but here we ignore the minor modifications of the selection rules and of the

hyperfine interaction for different phases of the crystal. The direct band gap is formed at the R

point of the Brillouin zone (the corner of the cube), the symmetry of the R valley is the same as

that of the Γ point, i.e., Oh.

The orbital Bloch functions of the valence band top are invariant (R+
1 representation) and of

the conduction band bottom are three functions transforming according to the R−
4 representation

(as vector components)1,2. With account for the spin and spin-orbit coupling (R+
6 is the spinor

representation for spin-1/2 states) one obtains

valence band : R+
1 ×R+

6 = R+
6 , (1)

conduction band : R−
4 ×R+

6 = R−
6 +R−

8 . (2)

The bottom of the conduction band has R−
6 symmetry, see Refs.1,3.

According to Ref.1, the valence band is mainly composed by the s-orbitals of the metal, |S0⟩,

with admixture of the halogen p-orbitals (a combination ∝ |X1⟩+ |Y2⟩+ |Z3⟩ with appropriate

phase choice). For the conduction band the main contribution comes from the p-orbitals of the

metal, |X0⟩, |Y0⟩, |Z0⟩ with a slight (<∼ 1%) admixture of the s-orbitals of the halogen |S1⟩.

Supplementary Note 2. SPIN POLARIZATION OF RESIDENT CHARGE CARRIERS BY

CIRCULARLY POLARIZED LIGHT

The resonant absorption of circularly polarized light induces transitions from the R+
6 valence

band to the R−
6 conduction band. Both bands are two-fold degenerate in the spin and electron-
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hole pairs with spin orientations (+1/2e,+1/2h) or (−1/2e,−1/2h) are generated, respectively,

by the σ+ and σ− polarized photons. The subscripts e and h denote electrons and holes and we

use the hole representation here (the spin of the unoccupied valence band state is opposite to

the hole spin).

The photocreated electron-hole pairs or excitons can transfer their spin polarization to the

resident charge carriers. The polarization mechanisms were studied in detail for III-V and II-VI

semiconductors, see Refs. 4,5 for review. The mechanisms are related to either the formation of

bound three particle complexes (positively or negatively charged excitons, also termed as trions)

or to the exchange scattering of the excitons by the resident carriers. Particularly, in the latter

case the scattering of the spin-polarized exciton with an unpolarized electron and hole results in

the exchange of the identical carriers and in the transfer of the spin polarization to the resident

electrons or holes. After exciton recombination the spin polarization remains in the system of

resident carriers.

Supplementary Note 3. HYPERFINE INTERACTION IN PEROVSKITES

For localized carriers the spin-orbit coupling effects are suppressed due to the quenching

of the orbital motion. Indeed, the odd in electron wavevectors contributions to the spin-orbit

Hamiltonian vanish as a result of averaging over the localized electron wavefunctions5,6. Thus,

the hyperfine coupling of electron or hole spins with host lattice nuclei are the prime candidates

for driving the spin dynamics6. The nuclear spins experience the Knight field from the spin po-

larized charge carriers and, in turn, the charge carriers experience the Overhauser field induced

by the nuclei.

The hyperfine interaction between the charge carriers and nuclei provides a transfer of spin

angular momentum from the electrons or holes to the nuclei and thereby results in a dynamical

nuclear polarization. Generally, the hyperfine coupling Hamiltonian can be written in the phe-

nomenological form of a scalar product of the nuclear and charge carrier spins (see below for

details):

Hhf = Ae(h)v0|φe(h)(R)|2(I · Se(h)), (3)
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where I is the nuclear spin, Se (Sh) is the electron (hole) spin, Ae (Ah) is the corresponding

interaction constant. The factors v0, the unit cell volume, and |φe(h)(R)|2, the absolute square of

the envelope function of the charge carrier at the nucleus position, are introduced in Eq. (3) to

make Ae(h) dimensionless. The anisotropic terms allowed in cubic semiconductors for I > 1/2

are usually small and disregarded hereafter.

In the presence of an external magnetic field, B, the hyperfine interaction [Eq. (3)] provides

the spin transfer between electron (hole) and nuclear spins. In the experimental configuration

shown in Fig. 3(b) in the main text there is a non-zero component of the charge carrier spin Se(h)

onto the magnetic field B. Flip-flop hyperfine processes give rise to the dynamical nuclear spin

polarization ⟨I⟩ in the form6

⟨I⟩ = ℓe(h)
4I(I + 1)

3

B(B · Se(h))

B2
, (4)

where ℓe(h) ≤ 1 is the leakage factor characterizing the losses of nuclear spin polarization due

to relaxation processes other than the hyperfine coupling.

Via the hyperfine interaction, the polarized nuclear spins produce the Overhauser field

BN,e(h) = (ge(h)µB)
−1

∑
j

Aj
e(h)v0|φe(h)(Rj)|2⟨Ij⟩, (5)

where the summation is carried out over all nuclei, so that the index j includes all chemical

elements, all isotopes of the element abundant in the sample, as well as all positions Rj of the

nuclei. Under the standard assumption of a uniform nuclear spin polarization ⟨I⟩ Eq. (5) can be

written in a simple form as

BN,e(h) = (ge(h)µB)
−1

∑
i

Ai
e(h)⟨Ii⟩, (6)

where the sum is carried out over the different elements and isotopes denoted by the subscript

i. Indeed, the summation over unit cells assuming homogeneous nuclear polarization, can be

transformed to an integral as∑
j

v0|φe(h)(Rj)|2 = Niso

∫
dRj|φe(h)(Rj)|2 = 1, (7)
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where Niso is the number of corresponding isotopes in the unit cell. In line with the smooth

envelope method, we assume that φe(h)(Rj) does not vary much on the scale of the lattice

constant.

The Overhauser field BN adds up to the external field changing the frequency of the carrier

spin precession. The direction of BN,e(h) is determined by the sign of the hyperfine coupling

constant Ae(h) and the direction of I which, in turn, is governed by Se(h), i.e., it can be adjusted by

varying the light helicity. We performed measurements for both σ+ and σ− circularly polarized

pumping, inducing the opposite directions of BN,e(h). Measuring the change of the electron and

hole spin precession frequencies we detected the nuclear field.

Figure 3b in the main text shows that the spin precessions for opposite pump polarizations

acquire a small, but still reliably detectable phase shift which increases with time delay (inset

to Fig. 3b in the main text). This means that the precession frequencies for σ+ and σ− pumping

are different. An accurate fit to the experimental data shows that the nuclear field acting on the

electron spins is |BN,e| = 1.0± 0.8 mT and that on the hole spins is |BN,h| = 3.1± 0.5 mT. We

conclude that the hyperfine interaction mostly affects the valence band hole spins.

This experimental result may seem surprising compared with the widely studied III-V and

II-VI semiconductors where the hyperfine coupling is dominated by the conduction band elec-

trons7–10. Our theoretical analysis, however, confirms that in perovskite like CsPbBr3 the hyper-

fine coupling for the valence band holes is stronger compared to the conduction band electrons.

To that end we consider in more detail the atomic orbital composition of the Bloch states for

electrons and holes. The valence band states in the vicinity of the R-point of the Brillouin zone,

where the direct band gap is formed, is mainly composed by s-type atomic orbitals of the metal

(lead in our case) with an admixture of p-type atomic orbitals of the halogen (i.e., bromine),

see, e.g., Ref.1 and Supplementary Note Supplementary Note 1 for details. The leading con-

tribution to the hyperfine coupling is provided by the Fermi contact interaction for the s-type

orbitals, which does not vanish at the positions of the nuclei. By contrast, the conduction band

is mainly formed from the p-type metal orbitals with a slight admixture of the s-type orbitals

of the halogen. The magnetic dipole-dipole interaction for p-type orbitals is about an order of
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magnitude weaker8,10.

The hyperfine interaction constants for CsPbBr3 can be estimated as follows. In the valence

band the hyperfine coupling is dominated by the contact interaction with the the lead atoms.

The constant A(0)
h calculated per isotope, i.e., disregarding the abundance, can be written as9:

A
(0)
h =

16πµBµI

3I
v−1
0 |S0(0)|2, (8)

where S0(r) is the Bloch function at the nucleus position normalized per volume of the unit

cell,
∫
v0
|S0(r)|2dr = v0, µB is the Bohr magneton, µI is the nuclear magnetic moment, I is the

spin of the nucleus. It is important to note that the transformation from the electron to the hole

representation results in the inversion of both the direction of spin and the energy axis, leaving

the hyperfine constant sign the same. That is why we can use the electron representation for

evaluation of the hyperfine coupling for holes.

For holes the relevant isotope is 207Pb with an abundance of about 22%, the nuclear spin

I = 1/2 and µI = 0.58µN, where µN ≈ 7.62 MHz/T is the nuclear magneton. The hyperfine in-

teraction can be estimated from the atomic constants11,12. From Ref.11 (which uses an approach

that typically overestimates the value, as known from the comparison for III-V semiconductors)

we have (per nucleus):

A
(0)
h = 107 µeV. (9)

Note that inclusion of the so-called Mackey-Wood correction gives a ∼ 3.15-fold enhancement

up to 336 µeV. From Ref.12 (which approach typically underestimates the hyperfine coupling),

disregarding the anisotropy factor we have :

A
(0)
h = 78 µeV. (10)

Thus, we take A
(0)
h ≈ 100 µeV as a conservative estimate which is also in agreement with

estimates and measurements of the Fermi contact interaction in Pb1−xSnxTe13. Taking into

account that the natural abundance of 207Pb is β ≈ 22%14, we finally have Ah ≈ 20 µeV.

Note that the dipole-dipole interaction with 79Br and 81Br (both I = 3/2) can be estimated

as A1
h ∼ |Cp|2 × 7 µeV, where Cp (|Cp| ≪ 1) is the admixture of the p-shell of Br to the s-shell

of Pb in the valence band Bloch function, therefore, it can be disregarded.
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For the conduction band states it is sufficient to account for the dipole-dipole interaction

with the bromine nuclei only. Estimates based on Refs.11,12 give Ae ≈ 7 µeV. We use this con-

stant for both the 79
35Br and 81

35Br isotopes whose spin is the identical and whose total abundance

is 100%. The parameters of the hyperfine interaction are summarized in Supplementary Table 1.

For complete nuclear polarization, where |⟨I⟩| = I according to our estimates after Eq. (6)

the maximum Overhauser fields read

|Bmax
N,h | ≈ 230 mT, |Bmax

N,e | ≈ 280 mT (11)

for the holes and electrons, respectively. Interestingly, the maximal Overhauser field is slightly

larger for the conduction band despite the smaller hyperfine coupling constants. This is because

there are three Br nuclei in the unit cell with I = 3/2 and because of the smaller abundance

of Pb. However, the dynamical nuclear polarization process is controlled by individual spin-

flips, where the hyperfine interaction with holes prevails. The flip-flop of Br nuclei with the

electron spin is controlled by the much smaller individual interaction constant. Thus, we expect

the dynamical nuclear polarization of Br to be weaker, in agreement with the smaller leakage

factors obtained in the experiment: ℓh ∼ 0.08 for the valence band and ℓe ∼ 0.02 for the

conduction band. We took the leakage factors from the measured Overhauser field using the

estimates in Eqs. (4) and (11) and considering the angle of ∼ 75◦ between the magnetic field

and the light propagation axis.

Supplementary Note 4. ZEEMAN HAMILTONIAN AND g-FACTOR OF CARRIERS AND

EXCITONS

We define the effective exciton Zeeman Hamiltonian in the form15–18

ĤZ = µBge (SeB) + µBgh

(
S̃hB

)
. (12)

Here µB is the Bohr magneton, ge and gh are the electron and hole g-factors, respectively, Se =

S̃h = ±1/2 are the electron and hole spins. Note that we use the standard representation for

the exciton Hamiltonian where the electron part is taken in the electron and the hole part is



11

taken in the hole presentation, that is, why the Hamiltonian is the sum of the electron and the

hole contributions. In this definition the g-factors are positive both for electrons and holes if

the ground state is the state with spin projection sz = −1/2 onto the direction of the magnetic

field. Note that just like for the hyperfine coupling, the value and the sign of the hole g-factor is

the same, both for the electron and hole representations. The exciton g-factor is defined as

gX =
Eσ+ − Eσ−

µBB
. (13)

In case of the perovskites the exciton g-factor is the sum of the electron and hole g-factors:

gX = ge + gh. The slight discrepancy between the values of the gX inferred directly from

optical spectroscopy, on the one hand, and from the sum of ge and gh, on the other hand, may

be attributed to the effects of the electron-hole exchange interaction and band non-parabolicity

which gives rise to a renormalization of the g-factors of the charge carriers in the exciton19.

Supplementary Note 5. ANALYSIS OF THE SPIN INERTIA DATA AND POLARIZATION

RECOVERY CURVES

In order to analyze the magnetic field dependence of the polarization recovery curves we

employ the model developed in Ref. 20. It accounts for both the spin precession in the field

of the nuclear fluctuations and the finite correlation time of the hole at a localization site, τc.

We consider the case of small modulation frequencies where the spin inertia is not important.

Introducing ωN as the characteristic fluctuation of the Overhauser field we obtain

PRC ∝
(
1

τs
+

ω2
Nτc

1 + (ωL,hτc)2

)−1

. (14)

We recall that ωL,h is the hole spin precession frequency in the external magnetic field and τs

is the spin relaxation time unrelated to the hyperfine coupling. Equation (14) holds provided

ωNτc ≪ 1 or ωL,h ≫ ωN. The fit after Eq. (14) with τc and ωN being free parameters and

τs = 50 ns (inferred from the spin inertia measurements) gives the correlation time τc ≈ 2.1 ns

and the nuclear field fluctuation δBN = h̄ωN/(ghµB) ≈ 6.6 mT. In this case ωNτc ≈ 0.9 and

Eq. (14) is not applicable at B <∼ δBN. Thus, to confirm the results, we have performed the full
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calculation after the model of Ref. 20 shown by the red curve in Supplementary Figure 1 for the

same parameter values. Very good agreement between the calculations and experimental data

is observed.

The value of the nuclear spin fluctuation δBN ≈ 6.6 mT allows us to make a crude estimate

of the hole localization length. To that end we evaluate ωN, assuming independent contributions

of the Pb isotopes as

ωN =

√
2

3h̄2 I(I + 1)
A

(0)
h

√
NPb

Ncells
, (15)

where Ncells is the number of cells within the hole localization volume, NPb = βNcells is the

number of lead isotopes with non-zero spin within the hole localization volume. It follows

from Eq. (15) that for the experimental value of ωN = ghµBδBN/h̄ ≈ 0.44 ns−1 the localization

volume contains Ncells ≈ 8×103 unit cells, which gives the localization length Lloc = a0N
1/3
cells ≈

11.5 nm.

Supplementary Note 6. PHOTOLUMINESCENCE DYNAMICS OF FREE AND BOUND

EXCITONS

We also measure the photoluminescence (PL) dynamics of the low-energy shoulder in the

PL spectrum corresponding to the bound exciton. It is shown by the blue line in Supplementary

Figure 2 in comparison to the PL dynamics of the exciton (the red line). Bound exciton PL

shows increase with ∼ 0.4 ns time which can be attributed to capture of the excitons by impu-

rities. The decay time of the bound exciton PL (∼ 0.9 ns) is the same as the exciton lifetime

(∼ 0.9 ns) and is much shorter than maximal spin dephasing time T ∗
2 of electrons (∼ 5.2 ns)

and longitudinal spin relaxation time T1 (∼ 50 ns) indicating that the observed spin dynamics

is relater neither to excitons nor to bound excitons.
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