Supplementary Information

Intestinal non-canonical NFkB signaling shapes the local and systemic immune response.

Ramakrishnan et al.

Epithelial NIK-IKKα signaling is essential for M-cell maintenance. **a** Expression of NIK assessed by qPCR in the small intestine (SI) and colon of 6-week old $Nik^{F/F}$ and $Nik^{\Delta IE}$ mice. **b** Intestinal villi length (Jejunum, left; ileum, right) assessed in 6-week old $Nik^{F/F}$ and $Nik^{\Delta IE}$ mice. **c** H&E analysis of small intestine and colon of $Nik^{F/F}$ and $Nik^{\Delta IE}$ assessed at the age of 3, 6 or 8 months. Images were taken at 10X magnification. n=3mice/group. **d** Gross image showing colon lymphoid follicles. Colon follicles were dissected using dissection scope and used for further analysis. e Western blot analysis of p52 in the small intestine (SI), Peyer's patches (PP), colon (col) and colon lymphoid follicles (Col LF) of WT mice. f Peyer's patch number and size assessed in 6-week old $Nik^{\Delta IE}$ mice. g H&E analysis of Peyer's patch from $Nik^{F/F}$ and $Nik^{\Delta IE}$ mice. Images were taken at 20X magnification. h Staining for M-cell marker UEA-1 in the Peyer's patches of $Nik^{\Delta IE}$ mice. Images were taken at 20X magnification. **i** Peyer's patch number and size assessed in 7-week old $Ikk\alpha^{AIE}$ mice. j qPCR analysis for M-cell markers in the Peyer's patches of $Ikk\alpha^{AIE}$ mice. **k** Fecal IgA measured in $Ikk\alpha^{AIE}$ mice. **l** mRNA levels of Nik in $Nik^{F/F;VilERT2Cre}$ mice at 2-weeks after tamoxifen treatment. **m** Peyer's patch number and size assessed in *Nik*^{F/F;VilERT2Cre} mice at 2-weeks after tamoxifen treatment. Results are expressed as mean \pm SEM. Significance was determined using t test. *P < 0.05; **P < 0.01, ***P < 0.001.

Loss of epithelial NIK-IKK α signaling increases colitis independent of pro-inflammatory changes. **a-d** Body weight (**a**), colon length (**b**), p52 expression (**c**) and H&E analysis of colon (**d**) in *Ikk* $\alpha^{\text{F/F}}$ and *Ikk* α^{AlE} mice were treated with 2% DSS for 5-days. Images were taken at 10X magnification. n=4-7 mice/group. **e** Western blot analysis for occludin, e-cadherin in the colon of 6-week old *Nik*^{AlE} mice (n=3/group). **f** Intestinal permeability was assessed by FITC-dextran assay in 6-week old mice treated with 2% DSS for 7-days. **g** Inflammation score in *Nik*^{AlE} treated with 2% DSS for 0-7days **h**, **i** qPCR analysis of *Tnf-* α , *IL-*6, *IL-*1 β and *Il10* in the colon epithelial cells of *Nik*^{AlE} treated with 2% DSS for 3-days (**h**) or 7-days (**i**). **j**, **k** Colon length (**j**) and colon inflammation (**k**) assessed by H&E at day-7 in *Nik*^{F/F} and *Nik*^{AlE} mice following *Salmonella*-induced colitis. Images were taken at 10X magnification. **i** *Nik*^{AlE} mice were lethally irradiated with 12Gy x-rays and 3-days post irradiation, the colon was assessed by H&E (for morphological and inflammatory changes), Ki67 (for cell proliferation) and cleaved Caspase3 (for apoptosis). Images were taken at 10X magnification. Results are expressed as mean ± SEM. Significance was determined using *t* test. *P < 0.05; **P < 0.01; ***P < 0.001.

RANK is required for NIK-mediated M-cell maintenance. **a**, **b** qPCR analysis for cytokine expression in enteroids treated with Vehicle, 100ng/ml RANKL, 100ng/ml Tweak, 10ng/ml LT α/β for 72 hours. **c** Western blot analysis of NIK and p52 in lysates from duodenal enteroids that were treated with 100ng/ml RANKL for 72-hours. Experiment was done in triplicate. **d** UAE-1 lectin staining of duodenal enteroids that were treated with 100ng/ml RANKL for 72-hours. e qPCR analysis for epithelial and secretory markers in *Nik*^{ΔIE} enteroids treated with 100ng/ml RANKL for 72-hours. **f** H&E analysis of small intestine and colon of 6-week old *Rank*^{ΔIE} mice. Images were taken at 10X magnification. **g** Peyer's patch size and number assessed in *Rank*^{ΔIE} mice. **h** qPCR analysis of M-cell markers in the Peyer's patch of *Rank*^{ΔIE} mice. Images were taken at 20X magnification. **j** qPCR analysis for RANK in Peyer's patch, size and number of Peyer's patches in *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;ViIERT2Cre} mice at 2-weeks after tamoxifen treatment. **k** qPCR analysis of M-cell markers in the colon of *Rank*^{F/F;VIIERT2Cre} mice at 2-weeks after tamoxifen treatment.

Loss of epithelial NIK decreases IL17 expression in PP T-cells. **a**, **b** Flow analysis for B-cells in Peyer's patches and colon of $Nik^{\Delta IE}$ and $Rank^{\Delta IE}$ mice (**a**) and $Nik^{F/F;VilERT2Cre}$ and $Rank^{F/F; \hat{V}iIERT2Cre}$ mice at 2-weeks after tamoxifen treatment (**b**). **c** Heat map of microarray analysis in the colon of 6-week old $Nik^{F/F}$ and $Nik^{\Delta IE}$ mice. n=3-4/group. **d** qPCR analysis of key genes involved in B-cell class switching assessed in the Peyer's patches of $Nik^{\Delta IE}$ mice; n=9 mice/group. **e** Pathway analysis of differentially expressed transcripts identified by RNA-seq in the Peyer's patches of $Nik^{F/F;ViIERT2Cre}$ and $Rank^{F/F;ViIERT2Cre}$ mice. The analysis was compared to WT controls which is normalized to 1. f qPCR analysis for the marker of M-cells and Rorc in the Peyer's patches of specific pathogen free (SPF), germ free (GF) and GF mice conventionalized for 2-weeks by fecal transplant from SPF donors. g qPCR analysis for *Il17a* expression in the pevers patches of mice with intestinal epithelial specific disruption of NIK, IKKa or RANK. n=6-14 mice/group. **h** IL17 protein levels assessed by ELISA in the colon of $Ikk\alpha^{AIE}$ and $RANK^{\Delta IE}$ mice that were treated with 2% DSS for 6-days. n=4-7 mice/group. i qPCR analysis for Il17 mRNA in the enteroids treated with100ng/ml RANKL, 100ng/ml Tweak, 10ng/ml LT α/β for 72-hours. Experiment was done in triplicate. j Il17a mRNA levels in the flow sortedimmune cells from the peyers patches of 10 wild type mice. Results are expressed as mean \pm SEM.Significance was determined using t test or one-way ANOVA. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

IL17-mediated IgA production is associated with protection against colitis. **a** Peyer's patch number and size assessed in $II17^{-/-}$ mice. n=5-7 mice/group. **b** qPCR analysis for M-cell markers in the PP of *c* mice. **c** Flow analysis for B cells in the Peyer's patch and colon of $II17^{-/-}$ mice. **d** qPCR analysis in the Peyer's patch of $II17^{+/+}$ and $II17^{-/-}$ mice. n=6 mice/group. **e**, **f** Colon length (**e**) and H&E analysis (**f**) in 8-week old $II17^{-/-}$ mice treated with DSS for 7-days. Images were taken at 10X magnification. **g-i** Body weight (**g**), colon length, bleeding score and diarrhea score (**h**) and H&E analysis (**i**) of colon in 7-week old $Jh^{-/-}$ mice that were treated with 2% DSS for 7days. Images were taken at 10X magnification. **j,k** Inflammation score in 6-week old $IgA^{+/+}$ and $IgA^{-/-}$ (**j**) and $PIgR^{+/+}$ and $PIgR^{-/-}$ mice (**k**) that were treated with 2% DSS for 7-days. **l** H&E analysis in 8-week old $Jh^{-/-}$ chimeras that were treated with DSS for 7-days. Images were taken at 10X magnification. Results are expressed as mean ± SEM. Significance was determined using *t* test. *P < 0.05; **P < 0.01; ***P < 0.001.

Epithelial RANK-NIK signaling is essential for IgA coating of colitogenic bacteria. **a** Schematic representation of co-housing of WT mice with $Nik^{F/F}$ or $Nik^{\Delta IE}$ for 30-days followed by DSS treatment. **b** Colon length of WT mice that were co-housed with either $Nik^{F/F}$ or $Nik^{\Delta IE}$ mice. **c** Flow analysis of feces sorted for IgA coated bacteria in $Rank^{F/F;VilERT2Cre}$ mice at 2-weeks after tamoxifen treatment. **d** qPCR analysis for bacterial DNA assessed in flow sorted IgA-coated bacteria in the feces of $Rank^{F/F;VilERT2Cre}$ mice. Results are expressed as mean ± SEM. Significance was determined using *t* test. ***P < 0.001; ****P < 0.0001.

Serum IgA is protective against polymicrobial sepsis. **a** Serum IL17 at 6-hour post cecal ligation and puncture (CLP) in 6-week old $II17^{-/-}$ mice following CLP. **b**, **c** Serum (**b**) and fecal IgA (**c**) assessed in $IgA^{-/-}$ mice. **d** Serum IL17 assessed at 6-hours post CLP in $IgA^{-/-}$ mice. **e**, **f** Serum (**e**) and fecal IgA (**f**) assessed in $PIgR^{-/-}$ mice. **g** Serum IL17 assessed in $PIgR^{-/-}$ mice at 6-hours post CLP. Results are expressed as mean \pm SEM. Significance determined using *t* test or One-way ANOVA. ***P < 0.001; ****P < 0.0001.

Constitutive activation of NIK increases proinflammatory response. **a**, **b** Expression of NIK and p52 assessed by immunostaining (**a**) and Western blot analysis (**b**) in ulcerative colitis (UC) and adjacent normal tissue (NT); n=5-8/group. **c** H&E analysis in untreated colon of *Nik*^{+/+} and *Nik*^{VRosa Δ T³} mice. Images were taken at 10X magnification. **d** qPCR analysis of inflammatory genes in the colon of *Nik*^{+/+} and *Nik*^{VRosa Δ T³</sub> mice treated with 2% DSS. **e**, **f** qPCR analysis for M-cell markers in individual PP (**e**) or small intestine (**f**) from 6-week old *Nik*^{+/+} and *Nik*^{VRosa Δ T³</sub> mice. Images were taken at 20X magnification. **g** GP2 staining in the colon LF of 6-week old *Nik*^{+/+} and *Nik*^{VRosa Δ T³</sub> mice treated with 2% DSS. **j** H&E analysis of colon of *Nik*^{+/+} and *Nik*^{VRosa Δ T³</sub> mice assessed 6-days after gavage with *Salmonella typi*. Images were taken at 10X magnification. Results are expressed as mean ± SEM. Significance was determined using *t* test. *P < 0.05; **P < 0.01; ***P < 0.001.}}}}

Supplementary Table 1. List of primers.

Primer name	Primer sequence
Nik F	TCCACAGAATGAAGGACAAGCA
Nik R	CACCTCGAGTCGTACCTTTTTGA
$Tnf-\alpha F$	AGGGTCTGGGCCATAGAACT
$Tnf-\alpha R$	CCACCACGCTCTTCTGTCTAC
<i>ll-6</i> F	ACCAGAGGAAATTTTCAATAGGC
Tgfβ F	CAACCCAGGTCCTTCCTAAA
$Tgf\beta R$	GGAGAGCCCTGGATACCAAC
<i>ll-6</i> R	TGATGCACTTGCAGAAAACA
<i>ll-1β</i> F	AAGAGCTTCAGGCAGGCAGTATCA
$ll - l\beta R$	TGCAGCTGTCTAGGAACGTCA
IkkαF	GGGTTATGCCAAAGATGTTGAT
$Ikk\alpha$ R	ACAGTGGCTGTGTACGG
<i>Igkv9-120</i> F	CATGAGGGCTCCTGCACAGA
<i>Igkv9-120</i> R	CAATGTCCTGACTTGCCCGA
<i>Igkv1-133</i> F	TGATGAGTCCTGCCCAGTTCC
<i>Igkv1-133</i> R	TGGTTGTCCAATGGTAACCGAC
Ighv1-47 F	GTCCTGCAAGGCTTCTGGCT
Ighv1-47 R	AATGTGGCCTTGCCCTTGAA
Gp2 F	GCTCAGTTGGCCTCTCAGAA
Gp2 R	CTGCTACCTCGAAGGGGACT
SpiB F	CAGCTGTCCAGGTCGTAGAAG
SpiB R	AACCACCATGCTTGCTCTG
Anxa5 F	CCGAAGGACTTCTGCATCA
Anxa5 R	GCTCTACTGCCTGCTCCAGT
Muc2 F	CCTGAAGACTGTCGTGCTGT
Muc2 R	GGGTAGGGTCACCTCCATCT
Alk Phos F	GTGCCAGAGAAAGAGAGAGA
Alk Phos R	TTTCAGGGCATTTTTCAAGGT
Chga F	GTCTCCAGACACTCAGGGCT
Chga R	ATGACAAAAGGGGACACCAA
<i>Tff3</i> F	GCACCATACATTGGCTTGG
<i>Tff3</i> R	AGAGCCCTCTGGCTAATGCT
Cdh1 F	AAAAGAAGGCTGTCCTTGGCC
Cdh1 R	GAGGTCTACACCTTCCCGGT
<i>Ki</i> 67 F	AGCACAAAGAGACGGTCTAAGA
<i>Ki67</i> R	CTCTGCCTCGTGACTGTGTT
<i>Tnfrsfl1a</i> (RANK) F	CCGCTAGAGATGAACGTGGA
<i>Tnfrsfl1a</i> (RANK) R	CTGATGAGAAGGGAGCCTCA
Foxp3 F	CTCGTCTGAAGGCAGAGTCA
<i>Foxp3</i> R	TGGCAGAGAGGTATTGAGGG

<i>Rorc</i> F	TCCACTACGGGGTTATCACCT
<i>Rorc</i> R	AGTAGGCCACATTACACTGCT
Ahr F	CTCCTTCTTGCAAATCCTGC
Ahr R	GGCCAAGAGCTTCTTTGATG
<i>ll17a</i> F	TGAGCTTCCCAGATCACAGA
<i>Il17a</i> R	TCCAGAAGGCCCTCAGACTA
<i>Il22</i> F	TCGCCTTGATCTCTCCACTC
<i>Il22</i> R	GCTCAGCTCCTGTCACATCA
<i>ll10</i> F	CTTACTGACTGGCATGAGGATCA
<i>Il10</i> R	GCAGCTCTAGGAGCATGTGG
Prevotellaceae F	ATTGGAGGGCAAGTCTGGTG
Prevotellaceae R	CCGATCCCTAGTCGGCATAG
Prevotella F	CACGGTAAACGATGGATGCC
Prevotella R	GGTCGGGTTGCAGACC
Akkermansia F	CAGCACGTGAAGGTGGGGAC
Akkermansia R	CCTTGCGGTTGGCTTCAGAT
<i>Flexispira</i> F	AATACATGCAAGTCGAACGATGA
<i>Flexispira</i> R	AATCACCGTTTCCAGTGGCT
Lactobacillus F	TGGATGCCTTGGCACTAGGA
Lactobacillus R	AAATCTCCGGATCAAAGCTTACTTAT
SFB F	GACGCTGAGGCATGAGAGCA
SFB R	GACGGCACGGATTGTTATTC