Supplementary Information

First 3D imaging characterization of Pele's hair from Kilauea volcano (Hawaii)

Cannata C.B.; De Rosa, R.; Donato, P.; Donato, S.; Lanzafame, G.; Mancini, L.; Houghton, B. F.

Supplementary Methods

Stacks of reconstructed slice were firstly converted to 8-bit values (due to the large size of the data), then registered and merged using built in functions of Avizo (Register Image and Merge). After that, each hair was selected and extracted using the Extract Subvolume module for further preprocessing and segmentation. Due to the slight blurring introduced by the phase-retrieval processing, an Unsharp masking module was applied to sharpen edges, particularly thin films between adjacent vesicles, without increasing the noise. This filter generates a Gaussian smoothing of an image that is then subtracted away from the original image to detect the presence of edges. The amount of sharpening is controlled building a mask, from the gradient image, and applying it only to edges above a certain threshold size (Radius in Supplementary Table S5). The auto-thresholding module was applied to select only high intensity voxels (melt phase of the hair) on the basis of their gray levels using the Otsu criterion [1]. Then, a series of morphological operators were used in order to close the vesicles, obtaining the total volume of each hair. These Volumes of Interest (VOIs) were used as a mask to further segment the hosted vesicles with an interactive (manual) thresholding module. Since vesicles of the samples are sometimes separated by very thin films, a marker-based watershed segmentation [2] module was applied using markers as prior knowledge. This procedure requires to calculate a distance map [2] (a chessboard-like distance map in our case) to assign to each background pixel the distance from the foreground. This gray image is interpreted as landscape height field that controls the flood process and the location of watershed separation. Markers are selected applying an H-maxima transform [2] to the distance map suppressing all the maxima whose depth is below or equal to a given threshold given as input parameter. Finally, the watershed segmentation was started using markers as seed points. The obtained watershed lines were subtracted from the binary image of segmented vesicles that are then labeled and individually analyzed. The main steps of image segmentation are shown in Supplementary Fig. S8. Evident vesicle breaks due to segmentation faults are corrected by means of linear interpolation using the Segmentation Editor of Avizo. For KI samples, due to the large amount of vesicles, a borderkill module was used to suppress labels intersecting the borders of the sample. For KI samples we computed also: (i) sphericity (s, defined as $s = \pi^{1/3} (6V)^{2/3} / A$, where V and A stand for volume and 3D area of the vesicle, respectively) and (ii) the diameter of the equivalent sphere obtained from the volume of the vesicle ($d = 2^*(0.75^*V/\pi)^{1/3}$). The quantification of vesicle parameters was performed using the label analysis module of Avizo. For KI3 and KI6 samples we evaluated the local vesicle thickness using the *Thickness Map* module. It computes the diameter of the largest ball containing the voxel and entirely inscribed in the vesicle [3].

References

[1] Otsu, N. A thresholding selection method from grayscale histogram. *IEEE Trans. Syst. Man Cybern.* **9**, 62-66 (1979).

[2] Soille, P. Morphological Image Analysis: Principles and Applications. (2nd ed. Springer), Berlin/Heidelberg, Germany (2004).

[3] Hildebrand, T. & Ruegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. *J.Microscopy*, **185**:1 (1997).

Supplementary Figure S1: Site of sampling for HMM, LOE, KI samples (image from Google Earth: Image © 2018 DigitalGlobe, Data MBARI, Data SOEST/UHM).

Supplementary Figure S2: (a,d,g) 3D rendering the imaged HMM Pele's hairs in grayscale for sample 1, 2 and 3; (b,e,h) Corresponding labeled vesicles, displayed with an RGB colormap; (c,f,i). Enlargement of the labeled vesicles, selected from a region of interest (marked with a box) on the grayscale 3D images.

Supplementary Figure S3: (a,d,g) 3D rendering the imaged LOE Pele's hairs in grayscale for sample 1, 3 and 8; (b,e,h) Corresponding labeled vesicles, displayed with an RGB colormap; (c,f,i) Enlargement of the labeled vesicles, selected from a region of interest (marked with a box) on the grayscale 3D images.

Supplementary Figure S4: (a,d,g) 3D rendering the imaged KI Pele's hairs in grayscale for sample 1, 6 and 8; (b,d,f) Corresponding labeled vesicles, displayed with an RGB colormap.

Supplementary Figure S5: Log10 VSDs for all vesicles collected from KI samples. (From left to right) Probability density function of vesicle volume, length and width (from the equivalent circular diameter Deq). The logarithmic transform enable a quasi-normalization of the distribution. From average and standard deviation of Log-10 distribution we can back-transform to obtain geometric moment of the data in natural units: i.e. the median and geometric standard deviation. These two quantities enable to define confidence interval reported in Table 2 of the manuscript.

Supplementary Figure S6: (a) 3D rendering showing a sagittal cut of the vesicles thickness map (for KI sample no. 6) displayed using a color code: yellow colors correspond to the higher vesicle thickness; (b) 3D rendering of vesicles (blue objects) having sphericity > 0.9 overlayed to the thickness map. Spherical vesicles of large size are mostly located in the swelled section of the hair.

Supplementary Figure S7: Schematic example of the multiple scans analysis. Typically, 4 to 6 Pele's hairs were glued with nail polish to a wooden stick and mounted with their elongation axis parallel to the rotational axis of the rotation stage. Multiple scans were performed with an overlap of ~ 0.3 mm between two consecutive scans.

Supplementary Figure S8: Main steps of vesicle segmentation procedure. a) Axial reconstructed slice sharpened to enhance edge contrast; b) Segmented vesicles using the manual thresholding; c) Chessboard distance map overlaid on the grayscale slice, color gradients represent the Chessboard distance from the borders (red color corresponds to the higher values); d) labeled markers used for watershed segmentation computed from the H-Maxima module; e) Computed watershed lines that show the effective vesicle separation; f) Separated vesicles, each color indicates a different label. Isotropic pixel size of 1.3x1.3 μm².

Supplementary Figure S9: Measure of the vesicle width as equivalent circular diameter (*Deq*), computed as the average value of the n diameters of the equal area circles (*d1*) of the n surfaces orthogonal to the vesicle elongation axis.

КІ				LOE					HMM (N=71)				
#	Thickness (µm)	#	Thickness (μm)	#	Thickness (µm)	#	Thickness (μm)		#	Thickness (μm)	#	Thickness (μm)	
1	552	41	201	1	238	41	181		1	382	41	119	
2	902	42	152	2	177	42	168		2	155	42	85	
3	470	43	198	3	346	43	305		3	58	43	59	
4	502	44	189	4	61	44	127		4	70	44	90	
5	666	45	415	5	75	45	85		5	86	45	58	
6	234	46	205	6	167	46	228		6	421	46	76	
7	183	47	552	7	285	47	161		7	60	47	74	
8	324	48	206	8	155	48	461		8	38	48	32	
9	450	49	462	9	391	49	89		9	65	49	42	
10	306	50	99	10	313	50	279		10	46	50	49	
11	278	51	226	11	13	51	473		11	77	51	62	
12	361	52	108	12	36	52	193		12	52	52	45	
13	243	53	127	13	43	53	171		13	35	53	42	
14	33	54	244	14	536	54	149		14	31	54	77	
15	161	55	167	15	227	55	149		15	29	55	59	
16	142	56	391	16	49	56	122		16	77	56	73	
17	219	57	270	17	79	57	139		17	35	57	54	
18	265	58	244	18	175	58	97		18	62	58	64	
19	365	59	505	19	391	59	135		19	64	59	40	
20	293	60	134	20	357	60	105		20	31	60	51	
21	236	61	254	21	147	61	74		21	53	61	86	
22	234	62	206	22	205	62	122		22	59	62	25	
23	115	63	250	23	343	63	106		23	96	63	35	
24	149	64	170	24	263	64	113		24	57	64	76	
25	109	65	123	25	257	65	100		25	6/	65	68	
20	200	67	144	20	87	67	132		20	72	67	129	
27	00 797	67	122	27	490	67	202		27	100	67	70	
20	601	60	152	20	101	60	1/2		20	75	60	52	
30	314	70	336	30	109	70	269		30	75	70	105	
31	115	70	340	31	156	70	105		31	24	70	61	
32	293	72	115	32	202	72	184		32	74	/1	01	
33	271	73	242	33	92	73	135		33	59			
34	158	74	245	34	181	74	77		34	89			
35	469	75	165	35	178	75	205		35	59			
36	544	76	304	36	120	76	40		36	119			
37	163	77	455	37	291	77	535		37	97			
38	196	78	432	38	292	78	135		38	59			
39	200			39	179	79	173		39	33			
40	135			40	151	80	97		40	67			
KI (N=78)			LOE (I			N=80)		HMM (N=71)			71)		
Mean 271				Mean	189			Mean			74		
σ		156		σ		118			σ		62		
Mode			206		Mode	122			Mode		59		
Median		234		Median		158			Median			62	

Supplementary Table S1: Pele's hair thickness measured under the Scanning Electron Microscope. As the shape of the Pele's hair is not constant, the measure has been taken where no "knots" (thickening) or visible thinning of the Pele's hair occur. The main statistical parameters for each group of samples is also reported.

	Sample	SiO ₂	TiO ₂	Al ₂ O ₃	FeO _T	MnO	MgO	CaO	Na₂O	K₂O	Total
	HMM_01	52.54	2.47	13.86	10.14	b.d.l.	7.52	10.67	2.35	0.44	100
	HMM_02	52.49	2.67	13.82	9.48	b.d.l.	7.54	10.99	2.3	0.71	100
	HMM_03	52.08	2.25	13.82	10.7	b.d.l.	7.68	10.71	2.36	0.41	100
	HMM_04	52.02	2.67	13.66	10.55	b.d.l.	7.45	10.74	2.47	0.44	100
	HMM_05	52.67	2.2	13.48	10.24	b.d.l.	7.5	10.95	2.47	0.5	100
нала	HMM_06	51.96	2.36	13.44	10.53	b.d.l.	7.77	11.23	2.38	0.33	100
	HMM_07	52.26	2.34	13.31	10.89	b.d.l.	7.53	11.01	2.24	0.42	100
	HMM_08	51.81	2.45	13.73	10.42	0.63	7.63	10.66	2.22	0.44	100
	HMM_09	52.2	2.38	13.55	10.8	b.d.l.	7.53	10.7	2.33	0.49	100
	HMM_10	52.17	2.44	13.92	10.17	0	7.67	10.88	2.25	0.49	100
	Mean	52.22	2.42	13.66	10.39	0.32	7.58	10.85	2.34	0.47	100
	σ	0.27	0.16	0.21	0.41	0.45	0.10	0.19	0.09	0.10	
	KI_01	50.3	2.38	12.55	10.82	b.d.l.	9.77	11.4	2.29	0.49	100
	KI_02	50.41	2.19	12.44	10.6	b.d.l.	10.55	11.11	2.1	0.6	100
	KI_05	50.15	2.69	12.23	10.84	b.d.l.	10.27	11.05	2.19	0.57	100
	KI_06	50.36	2.63	12.1	11.05	b.d.l.	10.1	11.15	2.14	0.47	100
КІ	KI_07	50.15	2.37	12.33	11.5	b.d.l.	10.08	11.1	2.01	0.46	100
NI	KI_08	50.36	2.59	12.29	11.15	b.d.l.	9.54	11.49	2.05	0.53	100
	KI_09	49.79	2.6	12.37	10.89	b.d.l.	10.57	11.04	2.25	0.5	100
	KI_10	49.98	2.3	12.4	11.33	b.d.l.	10.7	10.81	1.9	0.59	100
	KI_11	49.81	2.63	12.19	10.5	b.d.l.	10.23	11.35	2.52	0.78	100
	KI_12	49.89	2.44	12.3	11.24	b.d.l.	10.06	11.28	2.17	0.62	100
	Mean	50.12	2.48	12.32	10.99		10.19	11.18	2.16	0.56	100
	σ	0.24	0.17	0.13	0.32	_	0.36	0.20	0.17	0.10	
	LOE_01	52.6	2.5	13.66	10.58	b.d.l.	7.03	10.84	2.34	0.45	100
	LOE_02	52.08	2.64	13.77	10.79	b.d.l.	7.03	10.9	2.38	0.41	100
	LOE_03	52.65	2.34	13.92	10.48	b.d.l.	6.95	10.77	2.41	0.48	100
	LOE_04	52.27	2.5	14.17	10.47	b.d.l.	6.87	10.88	2.45	0.38	100
	LOE_05	52.02	2.45	13.76	10.8	b.d.l.	7.02	10.88	2.67	0.42	100
LOF	LOE_06	52.24	2.3	14.12	10.59	b.d.l.	7.05	11.03	2.38	0.29	100
	LOE_07	52.25	2.38	13.87	10.8	b.d.l.	6.98	10.73	2.48	0.5	100
	LOE_08	52.34	2.55	13.88	10.43	b.d.l.	7.03	10.94	2.4	0.43	100
	LOE_09	52.21	2.45	13.97	10.56	b.d.l.	6.83	11.21	2.37	0.41	100
	LOE_10	52.31	2.47	13.73	10.56	b.d.l.	6.86	11.2	2.48	0.37	100
	Mean	52.30	2.46	13.89	10.61	_	6.97	10.94	2.44	0.41	100
	σ	0.20	0.10	0.17	0.14		0.08	0.16	0.09	0.06	

Supplementary Table S2: Pele's hair glass composition determined by Energy Dispersive X-ray Spectroscopy

microanalysis. Details on the acquisition parameters are in the 4.2.1 subsection.

H ₂ O: 0.5 wt.%								
Sample	Viscosity η log (Pa s)	T Liquidus (°C)						
НММ	1.67	1187						
КІ	1.19	1211						
LOE	1.62	1201						

Supplementary Table S3: Calculated viscosity and liquidus temperature on the basis of chemical composition. Details on the calculation are in the text.

Group name	Sample to detector distance (mm)	# of samples imaged at the same time	# of vertical scans per group	# of projection s per scan	Exposure time per projection (s)	Total angular range (°)
нмм	100	6	3	1500	1.5	180
LOE	100	4	3	1500	1.5	180
К1	100	5	2	1500	1.5	180
K1_BIS	100	4	2	3000	1.5	360
LOE_BIS	100	4	4	1500	1.5	180
HMM_LONG	100	5	5	1500	1.5	180

Supplementary Table S4: Acquisition parameters of the synchrotron radiation computed microtomography (XCT) experiment. The second column report the sample-to detector distance used to perform perform phase-contrast enhanced XCT. We collected different samples at the same time (third column) and covered the full length by consecutive vertical scan (fourth column) with a small overlap to enable the merging of image stacks. For each vertical step, a fixed number of projections (fifth column) were collected using fidex exposure time of 1.5 s and pixel size of $1.3 \times 1.3 \ \mu\text{m}^2$. Every group of samples were collected over 180° except the group KI_BIS which required an extended field-of-view acquisition over 360°. In HMM group were imaged samples from 1 to 6B, in HMM_LONG samples from 7 to 11 (see sample list in Tab.1 of the main text). In LOE group were imaged samples from 1 to 5, and in KI_BIS samples from 6 to 9.

	Unsharp masking module			Auto thresholding (Otsu criterion)	Interactive (manual) thresholding	H-Maxima transform	
	Radius	Edge Contrast	Brightness threshold	8 bit gray value	8 bit gray value	Contrast size	
LOE SAMPLES							
LOE_1	4	0.5	150	146	142	4	
LOE_2	4	0.5	150	146	140	4	
LOE_3	2	0.5	150	146	131	3	
LOE_4	2	0.5	150	146	127	3	
LOE_5	3	0.5	150	146	138	3	
LOE_6	2	0.5	150	146	135	2	
LOE_7	3	0.5	150	146	137	3	
LOE_8	2	0.5	150	146	130	3	
KI SAMPLES							
KI_1	4	0.5	140	135	125	4	
KI_2	3	0.5	140	135	130	4	
KI_3	4	0.5	140	135	123	5	
КІ_4	4	0.5	140	135	125	5	
КІ_5	3	0.5	140	135	127	4	
кі_6	4	0.5	140	135	133	4	
KI_7	4	0.5	140	135	126	3	
KI_8	4	0.5	140	135	133	4	
кі_9	4	0.5	140	135	137	4	
HMM SAMPLES							
HMM_1	4	0.5	150	145	138	5	
HMM_2	4	0.5	150	145	136	4	
HMM_3_A	4	0.5	150	145	140	4	
HMM_3_B	4	0.5	150	145	140	5	
HMM_4	2	0.5	150	145	137	2	
HMM_5	4	0.5	150	145	140	4	
HMM_6_A	4	0.5	150	145	141	5	
HMM_6_B	2	0.5	150	145	138	3	
HMM_7	4	0.5	150	148	142	3	
HMM_8	2	0.5	150	148	144	2	
HMM_9	2	0.5	150	148	143	2	
HMM_10	2	0.5	150	148	144	3	
HMM_11	2	0.5	150	148	144	2	

Supplementary Table S5: Main parameters for image segmentation for each studied sample. Unsharp Masking module requires three parameters: (i) *Radius* affect the size of the edges to be enhanced, only edges above this value are considered in the process (fine details need a smaller radius); (ii) *Edge Contrast* defines the amount of contrast added at the processed edges; (iii) Brightness threshold set the minimum gray value of the image to be considered when the gradient image has to be calculated. *Auto thresholding* column report the 8-bit gray value, based on the Otsu criterion, to select only voxels of the melt phase of

the hair. *Interactive thresholding* column reports the manually selected gray values for vesicle segmentation. *H-maxima* column report the threshold applied to the distance map to suppress all maxima lower or equal to this value.

Supplementary Table S6: Quantitative results of the analysis of vesicles done in Avizo for each samples of HMM Pele's hair ("HMM_vesicle_results" excel file in Supplementary data). Sheet names indicate the corresponding studied sample. The first column is the volume of the vesicle in μm^3 . The second column report the vesicle length (maximum of the Feret diameters) in μm .

Equivalent diameter is reported in the third column and expressed in μ m. The fourth column is the vesicle elongation.

Supplementary Table S7: Quantitative results of the vesicle analysis done in Avizo for each samples of LOE Pele's hair ("LOE_vesicle_results" excel file in Supplementary data). Sheet names indicate the corresponding studied sample. The first column is the volume of the vesicle in μm^3 . The second column report the vesicle length (maximum of the Feret diameters) in μm . Equivalent diameter is reported in the third column and expressed in μm . The fourth column is the vesicle elongation.

Supplementary Table S8: Quantitative results of the vesicle analysis done in Avizo for each samples of KI Pele's hair ("KI_vesicle_results" excel file in Supplementary data). Sheet names indicate the corresponding studied sample. The first column is the volume of the vesicle in μm^3 . The second column report the vesicle length (maximum of the Feret diameters) in μm . Equivalent diameter is reported in the third column and expressed in μm . The fourth column is the vesicle elongation. Vesicle sphericity is reported in the fifth column.