Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Pd-Catalyzed asymmetric allylic substitution cascade using α -(pyridin-1-yl)-acetamides formed *in situ* as nucleophiles

Kun Yao,^a Qianjia Yuan,^b Xingxin Qu,^a Yangang Liu,^a Delong Liu,^{*,a} and Wanbin Zhang^{*,a,b}

^a Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy and

^bSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan

Road, Shanghai 200240, P. R. China

Fax: (+)-86-21-54743265; Phone: (+)-86-21-54743265; E-mail: dlliu@sjtu.edu.cn;

wanbin@sjtu.edu.cn

Contents

1. General Information	S2
2. Preparation of 2-Haloacetamides (2)	S2
3. Optimization of the Reaction Conditions	S4
4. General Procedure: Pd-Catalyzed Three-Component Allylic Substitution	S6
5. Derivatization of 4a, 4q, 5f, 5j and 10	S19
6. Synthesis of Dipeptide and Unnatural Amino Acid	S21
7. References	S23
8. NMR Spectra	S24
9. HPLC Data	

1. General Information

All the reactions were monitored by TLC using UV light to visualize the course of reaction. Anhydrous THF, DME, Et₂O, 1,4-dioxane and toluene were prepared by distillation over sodiumbenzophenone prior to use. ¹H, ¹⁹F and ¹³C NMR spectra were obtained using a Varian MERCURY plus-400 or Bruker 500 spectrometer with TMS as an internal standard. HRMS was performed on a Bruck solariX FTICR Mass Spectrometer at the Instrumental Analysis Center of Shanghai Jiao Tong University. Melting points were measured with SGW X-4 micro melting point apparatus. Cinnamyl carbonates **1** were prepared according to literature procedures.^[1] All commercially available reagents were used as received.

2. Preparation of 2-Haloacetamides (2)

Preparation of 2-haloacetamides 2: To a solution of corresponding amine (10 mmol), triethylamine (2.02 g, 20 mmol) in DCM (50 mL) at 0 °C was added chloroacetyl chloride or bromoacetyl bromide (10 mmol) dropwise and stirred for 1 h. The solution was slowly warmed to room temperature and stirred overnight. The reaction mixture was diluted with DCM (100 mL), washed with brine, dried over Na₂SO₄ and then concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc = 10/1) to give the desired product. **2a**, **2b**, **2aa**, **2ab**, **2ac** and **2ad** were synthesized with this procedure and was consistent with the reported spectra^[2]. The data of **2ae** and **2d** were summarized below.

N,*N*-Di(but-3-en-1-yl)-2-chloroacetamide (2ae): Yellow oil (1.68 g, 83%). ¹H NMR (400 MHz, CDCl₃): δ 5.86–5.65 (m, 2H), 5.19–4.96 (m, 4H), 3.82 (s, 2H), 3.46–3.21 (m, 4H), 2.44–2.19 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 134.8, 133.7, 118.2, 117.0, 48.5, 45.7, 33.1, 31.5, 26.2; IR (KBr) cm⁻¹: 3426, 2978, 1643, 1461, 1256, 918; HRMS (APCI) [M+H]⁺ calcd 202.0993, found 202.0999.

2-Chloro-*N*,*N***-di(pent-4-en-1-yl)acetamide (2d):** Yellow oil (1.72 g, 75%). ¹H NMR (400 MHz, CDCl₃): δ 5.86–5.69 (m, 2H), 5.12–4.88 (m, 4H), 4.03 (s, 2H), 3.39–3.18 (m, 4H), 2.15–1.95 (m, 4H), 1.75–1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 137.9, 137.1, 116.1, 115.3, 47.8, 45.9, 41.5, 31.2, 30.9, 28.2, 26.6; IR (KBr) cm⁻¹: 3453, 2976, 1651, 1462, 1432, 912; HRMS (APCI) [M+H]⁺ calcd 230.1306, found 230.1316.

Preparation of 2af:^[3] A solution of *N*-butylidenebutan-1-amine (0.64 g, 5 mmol) in THF (10 mL) was stirred in a round bottom flask under a nitrogen atmosphere at room temperature. Then chloroacetyl chloride (0.57 g, 5 mmol) was added dropwise using a syringe. The mixture was stirred for 30 min at room temperature and then refluxed for a further 2 h. The reaction mixture

was concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc = 20/1) to give **2af** as a yellow oil.

N-(**But-1-en-1-yl**)-*N*-**butyl-2-chloroacetamide (2af):** Yellow oil (0.78 g, 76%). ¹H NMR (400 MHz, CDCl₃, major rotamer): δ 6.36 (dt, J = 14.0, 1.6 Hz, 1H), 5.33–5.22 (m, 1H), 4.14 (s, 2H), 3.57 (t, J = 7.6 Hz, 2H), 2.15–2.04 (m, 2H), 1.40–1.25 (m, 4H), 1.10–0.92 (m, 6H); ¹H NMR (400 MHz, CDCl₃, minor rotamer): δ 7.07 (d, J = 14.0 Hz, 1H), 5.19–5.10 (m, 1H), 4.13 (s, 2H), 3.49 (t, J = 8.0 Hz, 2H), 2.15–2.04 (m, 2H), 1.40–1.25 (m, 4H), 1.10–0.92 (m, 6H); ¹³C NMR (100 MHz, CDCl₃, major rotamer): δ 167.8, 126.1, 119.8, 44.5, 41.8, 29.1, 23.8, 20.3, 14.4, 14.0; ¹³C NMR (100 MHz, CDCl₃, minor rotamer): δ 167.3, 124.9, 115.5, 45.5, 41.4, 30.3, 22.9, 20.8, 14.7, 14.1; IR (KBr) cm⁻¹: 3427, 2934, 1666, 1441, 1260, 912; HRMS (APCI) [M+H]⁺ calcd 204.1150, found 204.1154.

Preparation of 2c and 11: To a solution of *N*-(2,4-dimethoxybenzyl)butan-1-amine or *L*-proline allyl ester hydrochloride (10 mmol) in water (5 mL) at 0 °C was added NaHCO₃ (2.52 g, 30 mmol) and the mixture was stirred for 10 min. Then, a solution of chloroacetyl chloride or bromoacetyl bromide (10 mmol) in toluene (5 mL) was added dropwise. The reaction was slowly warmed to room temperature and stirred for another 2 h. The reaction mixture was diluted with DCM (100 mL), washed with brine, dried over Na₂SO₄ and then concentrated in vacuo. The residue was purified by column chromatography to give the corresponding product.

N-Butyl-2-chloro-*N*-(2,4-dimethoxybenzyl)acetamide (2c): Yellow oil (1.94 g, 65%). ¹H NMR (400 MHz, CDCl₃, mixture of two rotamers): δ 7.14 (d, *J* = 8.0 Hz, 0.3H), 6.94 (d, *J* = 8.0 Hz, 0.7H), 6.50–6.34 (m, 2H), 4.54 (s, 0.7H), 4.41 (s, 1.3H), 4.15 (s, 1.3H), 4.09 (s, 0.7H), 3.87–3.65 (m, 6H), 3.33–3.15 (m, 2H), 1.63–1.38 (m, 2H), 1.21–1.30 (m, 2H), 0.95–0.78 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, mixture of two rotamers): δ 166.9, 166.6, 161.0, 160.5, 158.6, 158.5, 130.5, 128.8, 117.6, 116.6, 104.5, 104.2, 98.9, 98.5, 60.5, 59.5, 55.6, 55.4, 47.5, 47.2, 45.9, 42.8, 41.9, 41.5, 31.0, 29.4, 21.2, 20.3, 14.0, 13.9; IR (KBr) cm⁻¹: 3011, 1749, 1670, 1653, 922; HRMS (APCI) [M+H]⁺ calcd 300.1361, found 300.1378.

(S)-Allyl 1-(2-bromoacetyl)pyrrolidine-2-carboxylate (11): Yellow oil (2.41 g, 87%). ¹H NMR (500 MHz, CDCl₃, mixture of two rotamers): δ 6.06–5.79 (m, 1H), 5.47–5.15 (m, 2H), 4.74–4.49 (m, 3H), 4.05–3.51 (m, 4H), 2.39–1.86 (m, 4H); ¹³C NMR (126 MHz, CDCl₃, major rotamer): δ 171.4, 165.3, 131.8, 118.5, 65.8, 59.3, 47.5, 29.2, 26.9, 24.9; ¹³C NMR (126 MHz,

CDCl₃, minor rotamer): δ 171.2, 165.5, 131.2, 119.5, 66.4, 59.8, 47.0, 31.2, 27.0, 22.4; IR (KBr) cm⁻¹: 2958, 1743, 1648, 1418, 913; HRMS (APCI) [M+H]⁺ calcd 276.0230, found 276.0256.

3. Optimization of the Reaction Conditions

Our study began with the reaction of cinnamyl acetate (1a), 2-chloro-N,N-dibutylacetamide (2a) and pyridine (3a) using a catalytic system consisting of $[Pd(n^3-C_3H_5)Cl]_2$ and a planar chiral phosphino-oxazoline ligand L1 under a nitrogen atmosphere at room temperature for 12 h (Table S1). Unfortunately, no reaction occurred possible due to the low reaction activity for chloroacetamide. Then, 2-bromo-N,N-dibutylacetamide (2b) was employed instead of 2a in the above reaction (entry 1). To our delight, the reaction processed smoothly with the desired product 4a being obtained in 92% yield albeit with low enantioselectivity (entry 2). Subsequently, we examined the effect of solvent on the reaction. It was found that the reaction in protic alcohol solvents presented high yields but with low enantioselectivities (entries 1-4). Therefore, aprotic solvents such as toluene, THF, dioxane was examined and only trace amount of products were formed but with around 40% ee (entries 6-7). No product was observed at all when the reaction was carried out in toluene (entry 5). When MeCN was used, high yield with a little lower enantioselectivity were obtained (entry 8). We envisaged that the low yields might be attributed to low solubility of pyridine quaternary salt intermediates in ether or hydrocarbon solvents. So, some large-polar solvents were added to the above reaction as co-solvents. We were pleased to find that these co-solvents promoted the reaction efficiently (entries 9-11) and a mixed solvent of dioxane and DMSO (10/1, v/v) was found to be the best one (entry 10). Several bases were examined and 1,1,3,3-tetramethylguanidine (TMG) was undoubtedly the best choice (entries 12-16).

Table S1 The effect of solvent and base on the reaction	la]
---	----	---

Entry	Х	Solvent	Base	Yield (%) ^[b]	Ee (%) ^[c]
1	Cl	EtOH	TMG	NP	-
2	Br	EtOH	TMG	92	<10
3	Br	<i>n</i> -PrOH	TMG	95	<10
4	Br	<i>i-</i> PrOH	TMG	92	<10
5	Br	toluene	TMG	NP	-
6	Br	THF	TMG	trace	20
7	Br	dioxane	TMG	trace	43
8	Br	MeCN	TMG	91	41
9	Br	dioxane ^[d]	TMG	71	60
10	Br	dioxane ^[e]	TMG	92	77
11	Br	dioxane ^[f]	TMG	58	55
12	Br	dioxane ^[e]	Et ₃ N	NP	-

13	Br	dioxane ^[e]	Na ₂ CO ₃	NP	-
14	Br	dioxane ^[e]	Cs_2CO_3	72	<10
15	Br	dioxane ^[e]	<i>t</i> -BuONa	NP	-
16	Br	dioxane ^[e]	DBU	88	24

[a] Reaction conditions: **1a** (0.1 mmol) with **2a** (0.2 mmol) and **3a** (0.5 mmol) under nitrogen atmosphere with a catalytic system of $[Pd(\eta^3-C_3H_5)Cl]_2$ (2.5 mol%) and L* (6 mol%) in the presence of a base (0.16 mmol) in an indicated solvent (2 mL) at 20 °C for 12 h; The pyridine quaternary salt was reduced with Raney-Ni under H₂ atomosphere. [b] Isolated yield. [c] Determined by HPLC using a chiral Daicel column. [d] MeCN was added as a co-solvent. [e] DMSO was added as a co-solvent. [f] DMF was added as a co-solvent

Then, 2 with different *N*-substituents were taken into consideration (Table S2). Linear alkyl groups, such as Et, Pr, pentyl could give higher yields but with somewhat lower enantioselectivities (**5aa**, **5ab** and **5ad**) than that of Bu group (**4a**, 96% yield and 95% ee). When *i*-Pr group adopted, only trace amount of product was obtained (**5ac**). Linear unsaturated groups with different steric hindrance were subjected to the reaction, no better results were obtained (**5ae** and **5b**). Replacing one Bu group on the nitrogen atom of **2a** with butenyl group resulted in a dramatically decrease of enantioselectivity (**5af**). When DMB (2,4-dimethoxybenzyl) was used instead of Bu group on the nitrogen atom of **2a**, the desired product **5ag** was obtained in 92% yield and 90% ee.

[a] Reaction conditions: **1a** (0.1 mmol) with **2a** (0.2 mmol) and **3a** (0.5 mmol) in a mixed solvent of dioxane/DMSO (10/1, ν/ν , 2mL) under nitrogen atmosphere with a catalytic system of $[Pd(\eta^3-C_3H_5)Cl]_2$ (2.5 mol%) and L* (6.0 mol%) with 1,1,3,3-Tetramethylguanidine (TMG) as a base (0.16 mmol) in the presence of LiI (0.1 mmol) at 5 °C for 12 h; The pyridine quaternary salt was reduced by NaBH₄; Isolated yields; ees were determined by HPLC using a chiral Daicel column. [b] Data and spectra were collected after removing the DMB group with TFA, see compound **10**.

4. General Procedure: Pd-Catalyzed Three-Component Allylic Substitution

To an oven-dried glassware were added $[Pd(C_3H_5)Cl]_2$ (0.9 mg, 2.5 mol%), L1 (4.8 mg, 5.5 mol%) and anhydrous dioxane (1.0 mL). To another dry glassware were added 2 (0.2 mmol), 3 (0.5 mmol), ultra-dry LiI (0.1 mmol, 13.3 mg) and anhydrous dioxane (1.0 mL). Then the first glassware was stirred at RT and second glassware was stirred at 100 °C under a nitrogen atmosphere for 1 h. Allylic carbonate 1 (0.1 mmol) was added to the first glassware. DMSO (0.2 mL) was added to the second glassware followed by 1,1,3,3-Tetramethylguanidine (TMG, 0.16 mmol). The solution in the first glassware was added dropwise to another one. The reaction was stirred at 5 °C for 12 h. The product was reduced *in situ* by one of the following methods. (1) Reduced by H₂: Raney-Ni (water slurry, 50 µm, 0.2 mL) was added to the reaction mixture and the mixture was stirred at H₂ atmosphere (10 bar) for 1 h. The reaction mixture was filtrated, diluted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄ and then concentrated in vacuo. The residue was then purified by flash column chromatography (PE/EtOAc = 10/1) to give the corresponding products. (2) Reduced with NaBH4: The solvent was removed in vacuo. MeOH (2 mL) was added and the resulting mixture was cooled to -20 °C quickly. Then, NaBH₄ (0.5 mmol) was added in one portion and the reaction was stirred for 2 h. The reaction mixture was diluted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄ and then concentrated in vacuo. The residue was purified by flash column chromatography (PE/EtOAc = 10/1) to give the corresponding products. (3) Reduced with $NaBH_4$ for alkyl substituted substrates (5a, 5b, 5c, 5d and 5e): The solvent was removed in vacuo. MeOH (2 mL) was added and the resulting mixture was cooled to $-40 \,^{\circ}$ C quickly. Then, NaBH₄ (0.5 mmol) was added in one portion and the reaction was stirred for 2 h. The reaction mixture was diluted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄ and then concentrated in vacuo. The residue was purified by flash column chromatography (PE/EtOAc = 10/1) to give the corresponding products.

(E)-N,N-Dibutyl-5-phenyl-2-(piperidin-1-yl)pent-4-enamide (4a): Yellow oil (35.6 mg, 96%).

[α] = +59.9 (*c* 0.18, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.21 (m, 4H), 7.20–7.10 (m, 1H), 6.41 (d, *J* = 16 Hz, 1H), 6.14 (dt, *J* = 15.6, 7.6 Hz 1H), 3.51–3.33 (m, 3H), 3.22–3.00 (m, 2H), 2.83–2.72 (m, 1H), 2.71–2.58 (m, 2H), 2.53–2.32 (m, 3H), 1.64–1.30 (m, 10H), 1.33–1.19 (m, 4H), 0.86 (q, *J* = 7.2 Hz 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 137.7, 131.6, 128.4, 128.2, 126.8, 125.9, 65.8, 50.3, 47.4, 45.6, 31.5, 29.8, 28.9, 26.6, 24.5, 20.3, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2976, 2905, 1671, 1456, 1382, 879; HRMS (APCI) [M+H]⁺ calcd 371.3057, found 371.3088; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm: t_{major} = 24.379 min, t_{minor} = 18.314 min.

(E)-N,N-Dibutyl-2-(piperidin-1-yl)-5-(o-tolyl)pent-4-enamide (4b): Yellow oil (36.2 mg, 94%).

[α] = +45.9 (*c* 0.22, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 5.6 Hz, 1H), 7.13– 7.06 (m, 3H), 6.66–6.54 (d, *J* = 15.6 Hz, 1H), 6.03 (dt, *J* = 15.6, 7.6 Hz 1H), 3.54–3.34 (m, 3H), 3.19–3.05 (m, 2H), 2.88–2.73 (m, 1H), 2.72–2.59 (m, 2H), 2.57–2.40 (m, 3H), 2.29 (s, 3H), 1.52– 1.18 (m, 14H), 0.87 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 136.8, 134.9, 130.1, 129.6, 126.8, 125.9, 125.4, 109.9, 65.8, 50.4, 47.4, 45.6, 31.6, 29.8, 29.3, 26.6, 24.5, 20.3, 20.2, 19.8, 13.9, 13.8; IR (KBr) cm⁻¹: 2971, 2849, 1660, 1507, 938; HRMS (APCI) [M+H]⁺ calcd 385.3213, found 385.3230; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 25.141 min, t_{minor} = 14.969 min.

(*E*)-*N*,*N*-Dibutyl-2-(piperidin-1-yl)-5-(m-tolyl)pent-4-enamide (4c): Yellow oil (35.3 mg, 92%);

[α] = +35.5 (*c* 0.28, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.19–7.05 (m, 3H), 6.98 (d, *J* = 6.8 Hz, 1H), 6.37 (d, *J* = 16.4 Hz, 1H), 6.18–6.07 (m, 1H), 3.52–3.34 (m, 3H), 3.19–3.05 (m, 2H), 2.80–2.71 (m, 1H), 2.70–2.56 (m, 2H), 2.56–2.35 (m, 3H), 2.30 (s, 3H), 1.56–1.19 (m, 14H), 0.88 (q, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 137.8, 137.6, 131.7, 128.2, 128.1, 127.5, 126.6, 123.1, 65.9, 50.3, 47.4, 45.6, 31.5, 29.7, 28.9, 26.5, 24.5, 21.3, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2906, 1716, 1418, 668; HRMS (APCI) [M+H]⁺ calcd 385.3213, found

385.3221 Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: $t_{major} = 19.604 \text{ min}, t_{minor} = 16.423 \text{ min}.$

(E)-N,N-Dibutyl-2-(piperidin-1-yl)-5-(p-tolyl)pent-4-enamide (4d): Yellow oil (33.2 mg, 86%).

[α] = +48.4 (*c* 0.33, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, *J* = 8 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 6.41–6.31 (d, *J* = 16 Hz, 1H), 6.16–6.01 (m, 1H), 3.52–3.34 (m, 3H), 3.22–3.04 (m, 2H), 2.84–2.71 (m, 1H), 2.70–2.58 (m, 2H), 2.59–2.35 (m, 3H), 2.29 (s, 3H), 1.55–1.11 (m, 14H), 0.85 (q, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 136.4, 134.9, 131.4, 129.0, 127.2, 125.8, 65.8, 50.3, 47.3, 45.6, 31.5, 29.7, 28.9, 26.5, 24.5, 21.1, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2925, 1733, 1261, 1045, 879; HRMS (APCI) [M+H]⁺ calcd 385.3213, found 385.3223; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 27.475 min, t_{minor} = 21.027 min.

(E)-N,N-Dibutyl-5-(2-methoxyphenyl)-2-(piperidin-1-yl)pent-4-enamide (4e): Yellow oil (34.1

mg, 85%). [α] = +68.2 (*c* 0.18, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.6 Hz, 1H), 7.13 (t, *J* = 8 Hz, 1H), 6.90–6.76 (m, 2H), 6.70 (d, *J* = 16 Hz, 1H), 6.20–6.07 (m, 1H), 3.81 (s, 3H), 3.53–3.32 (m, 3H), 3.21–3.05 (m, 2H), 2.82–2.71 (m, 1H), 2.72–2.58 (m, 2H), 2.57–2.37 (m, 3H), 1.57–1.17 (m, 14H), 0.96–0.79 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 156.1, 128.9, 127.8, 126.7, 126.3, 125.9, 120.5, 110.6, 65.9, 55.3, 50.3, 47.4, 45.6, 31.5, 29.7, 29.3, 26.5, 24.5, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2360, 1716, 1507, 1086, 1046, 879; HRMS (APCI) [M+H]⁺ calcd 401.3163, found 401.3173; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 85/15, 0.8 mL/min, 254 nm: t_{major} = 30.257 min, t_{minor} = 14.089 min.

(E)-N,N-Dibutyl-5-(3-methoxyphenyl)-2-(piperidin-1-yl)pent-4-enamide (4f): Yellow oil (38.2

mg, 95%). [α] = +44.9 (*c* 0.25, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, *J* = 8 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.84–6.80 (m, 1H), 6.71 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.37 (d, *J* = 16 Hz, 1H), 6.19–6.07 (m, 1H), 3.77 (s, 3H), 3.51–3.35 (m, 3H), 3.20–3.04 (m, 2H), 2.83–2.70 (m, 1H), 2.71–2.56 (m, 2H), 2.53–2.36 (m, 3H), 1.60–1.17 (m, 14H), 0.95–0.82 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 159.7, 139.1, 131.5, 129.3, 128.7, 118.6, 112.5, 111.2, 65.8, 55.1,

50.3, 47.3, 45.6, 31.5, 29.7, 28.8, 26.5, 24.5, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 1716, 1558, 1261, 1085, 879; HRMS (APCI) [M+H]⁺ calcd 401.3163, found 401.3168; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm: $t_{major} = 23.437$ min, $t_{minor} = 19.105$ min.

(E)-N,N-Dibutyl-5-(4-methoxyphenyl)-2-(piperidin-1-yl)pent-4-enamide (4g): Yellow oil

(33.5 mg, 84%). [α] = +46.6 (*c* 0.32, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, *J* = 8.8 Hz, 2H), 6.79 (d, *J* = 8.4 Hz, 2H), 6.34 (d, *J* = 16.0 Hz, 1H), 6.04–5.92 (m, 1H), 3.77 (s, 3H), 3.56–3.33 (m, 3H), 3.19–3.04 (m, 2H), 2.67 (dd, *J* = 60.1, 42.9 Hz, 6H), 1.60–1.16 (m, 14H), 0.96–0.78 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 158.6, 131.0, 130.5, 129.2, 127.0, 126.0, 113.8, 113.6, 65.8, 55.2, 50.3, 47.4, 45.6, 31.5, 29.7, 29.0, 26.5, 24.5, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2979, 1716, 1558, 879; HRMS (APCI) [M+H]⁺ calcd 401.3163, found 401.3173; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm: t_{major} = 21.605 min, t_{minor} = 21.077 min.

(E)-N,N-Dibutyl-5-(4-ethylphenyl)-2-(piperidin-1-yl)pent-4-enamide (4h): Yellow oil (35.9

mg, 90%). [α] = +69.2 (*c* 0.20, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.14–6.03 (m, 1H), 3.52–3.34 (m, 3H), 3.20–3.04 (m, 2H), 2.79–2.71 (m, 1H), 2.70–2.52 (m, 4H), 2.53–2.34 (m, 3H), 1.32–1.14 (m, 17H), 0.89–0.82 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 142.9, 135.1, 131.5, 127.8, 127.3, 125.9, 65.8, 50.3, 47.3, 45.6, 31.5, 29.7, 28.9, 28.5, 26.5, 24.5, 20.3, 20.2, 15.5, 13.9, 13.8; IR (KBr) cm⁻¹: 2934, 1716, 1558, 1456, 880; HRMS (APCI) [M+H]⁺ calcd 399.3370, found 399.3380; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 21.694 min, t_{minor} = 19.572 min.

(E)-N,N-Dibutyl-5-(4-isopropylphenyl)-2-(piperidin-1-yl)pent-4-enamide (4i): Yellow oil

(38.6 mg, 94%). [α] = +71.9 (*c* 0.22, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 7.6 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 2H), 6.37 (d, *J* = 16.0 Hz, 1H), 6.16–6.02 (m, 1H), 3.49–3.35 (m, 3H), 3.21–3.03 (m, 2H), 2.96–2.57 (m, 4H), 2.59–2.32 (m, 3H), 1.66–1.10 (m, 20H), 0.98–0.79

(m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 147.6, 135.3, 131.5, 127.4, 126.4, 125.9, 65.9, 50.4, 47.4, 45.6, 33.7, 31.5, 29.8, 28.9, 26.6, 24.5, 23.9, 20.3, 20.2, 13.8, 13.8.; IR (KBr) cm⁻¹: 2979, 1684, 1507, 1146, 879; HRMS (APCI) [M+H]⁺ calcd 413.3526, found 413.3538; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 16.575 min, t_{minor} = 18.078 min.

(E)-N,N-Dibutyl-5-(4-(tert-butyl)phenyl)-2-(piperidin-1-yl)pent-4-enamide (4j): Yellow oil

(39.7 mg, 93%). [α] = +37.2 (*c* 0.20, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.18 (m, 4H), 6.38 (d, *J* = 15.6 Hz, 1H), 6.16–6.05 (m, 1H), 3.53–3.34 (m, 3H), 3.18–3.05 (m, 2H), 2.80–2.71 (m, 1H), 2.71–2.59 (m, 2H), 2.54–2.36 (m, 3H), 1.51–1.14 (m, 23H), 0.87 (q, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 149.8, 134.9, 131.3, 127.4, 125.6, 125.2, 65.9, 50.3, 47.3, 45.6, 34.4, 31.5, 31.2, 29.7, 28.9, 26.5, 24.50, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2977, 1653, 1418, 1046, 879; HRMS (APCI) [M+H]⁺ calcd 427.3683, found 427.3685; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 13.086 min, t_{minor} = 17.201 min.

(E)-N,N-Dibutyl-5-(2-fluorophenyl)-2-(piperidin-1-yl)pent-4-enamide (4k): Yellow oil (36.1

mg, 93%). [α] = +50.6 (*c* 0.25, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.37 (t, *J* = 8.0 Hz, 1H), 7.17–7.07 (m, 1H), 7.05–6.89 (m, 2H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.30–6.16 (m, 1H), 3.56–3.29 (m, 3H), 3.20–3.05 (m, 2H), 2.85–2.74 (m, 1H), 2.74–2.57 (m, 2H), 2.57–2.32 (m, 3H), 1.63–1.16 (m, 14H), 0.87 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 159.9 (*J*_{C-F} = 250 Hz), 131.2 (*J*_{C-F} = 2 Hz), 128.0 (*J*_{C-F} = 10 Hz), 127.0 (*J*_{C-F} = 2 Hz), 125.4 (*J*_{C-F} = 10 Hz), 123.9 (*J*_{C-F} = 4 Hz), 123.8 (*J*_{C-F} = 4 Hz), 115.5 (*J*_{C-F} = 22 Hz), 65.9, 50.3, 47.4, 45.6, 31.5, 29.7, 29.1, 26.5, 24.4, 20.3, 20.2, 13.9, 13.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –118.9; IR (KBr) cm⁻¹: 2979, 1773, 1559, 1419, 1045, 879; HRMS (APCI) [M+H]⁺ calcd 389.2963, found 389.2966; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 13.455 min, t_{minor} = 11.373 min.

(*E*)-*N*,*N*-Dibutyl-5-(3-fluorophenyl)-2-(piperidin-1-yl)pent-4-enamide (4l): Yellow oil (33.5 20 mg, 86%). [α] = +69.2 (*c* 0.26, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.19 (q, *J* = 7.2 Hz,

1H), 7.03 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 10.4 Hz, 1H), 6.84 (t, J = 9.2 Hz, 1H), 6.36 (d, J = 16.0 Hz, 1H), 6.21–6.09 (m, 1H), 3.56–3.33 (m, 3H), 3.21–3.04 (m, 2H), 2.82–2.72 (m, 1H), 2.69–2.54 (m, 2H), 2.55–2.30 (m, 3H), 1.58–1.19 (m, 14H), 0.96–0.78 (m, 6H), 1.63–1.16 (m, 14H), 0.87 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 163.0 ($J_{C-F} = 240$ Hz), 140.1 ($J_{C-F} = 10$ Hz), 130.6 ($J_{C-F} = 2$ Hz), 129.9, 129.7 ($J_{C-F} = 10$ Hz), 121.8 ($J_{C-F} = 2$ Hz), 113.5 ($J_{C-F} = 8$ Hz), 112.3 ($J_{C-F} = 8$ Hz), 65.7, 50.3, 47.3, 45.5, 31.5, 29.7, 28.6, 26.5, 24.4, 20.2, 20.1, 13.9, 13.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –113.9; IR (KBr) cm⁻¹: 2978, 1653, 1540, 1374, 879, 668; HRMS (APCI) [M+H]⁺ calcd 389.2963, found 389.2967; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 15.438 min, t_{minor} = 12.776 min.

(E)-N,N-Dibutyl-5-(4-fluorophenyl)-2-(piperidin-1-yl)pent-4-enamide (4m): Yellow oil (36.1 20

mg, 93%). [α] = +66.2 (*c* 0.16, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.24 (dd, *J* = 8.4, 5.2 Hz, 2H), 6.93 (t, *J* = 8.4 Hz, 2H), 6.36 (d, *J* = 16.0 Hz, 1H), 6.10–5.97 (m, 1H), 3.54–3.30 (m, 3H), 3.20–3.04 (m, 2H), 2.83–2.72 (m, 1H), 2.72–2.57 (m, 2H), 2.55–2.31 (m, 3H), 1.70–1.13 (m, 14H), 0.98–0.77 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 161.8 (*J*_{C-F} = 240 Hz), 133.8 (*J*_{C-F} = 4 Hz), 130.4, 128.0 (*J*_{C-F} = 2 Hz), 127.3 (*J*_{C-F} = 8 Hz), 115.2 (*J*_{C-F} = 22 Hz), 65.7, 50.2, 47.3, 45.5, 31.5, 29.7, 28.7, 26.5, 24.4, 20.2, 20.1, 13.9, 13.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –115.7; IR (KBr) cm⁻¹: 2979, 2929, 1684, 1362, 879, 517; HRMS (APCI) [M+H]⁺ calcd 389.2963, found 389.2960; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 15.077 min, t_{minor} = 13.774 min.

(E)-N,N-Dibutyl-5-(4-chlorophenyl)-2-(piperidin-1-yl)pent-4-enamide (4n): Yellow oil (36.5

mg, 90%). [α] = +48.9 (*c* 0.4, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.23–7.18 (m, 4H), 6.36 (d, *J* = 14.8 Hz, 1H), 6.20–6.01 (m, 1H), 3.60–3.25 (m, 3H), 3.21–3.07 (m, 2H), 2.92–2.25 (m, 6H), 1.53–1.19 (m, 14H), 0.91–0.84 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 136.2, 132.3, 130.4, 129.1, 128.5, 127.1, 65.7, 50.3, 47.3, 45.6, 31.5, 29.7, 26.5, 24.5, 22.7, 20.3, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2927, 1684, 1362, 879, 568; HRMS (APCI) [M+H]⁺ calcd 405.2667, found 405.2668; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.4 mL/min, 254 nm: t_{major} = 38.173 min, t_{minor} = 22.855 min.

(E)-N,N-Dibutyl-5-(4-bromophenyl)-2-(piperidin-1-yl)pent-4-enamide (40): Yellow oil (42.2

mg, 94%). [α] = +29.9 (*c* 0.36, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.34 (d, *J* = 16.0 Hz, 1H), 6.13 (dt, *J* = 15.2, 7.6 Hz, 1H), 3.55–3.33 (m, 3H), 3.20–3.04 (m, 2H), 2.82–2.73 (m, 1H), 2.71–2.57 (m, 2H), 2.56–2.36 (m, 3H), 1.57–1.20 (m, 14H), 0.93–0.81 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 136.6, 131.4, 130.5, 129.3, 127.4, 120.4, 65.7, 50.3, 47.3, 45.5, 31.5, 29.7, 28.7, 26.5, 24.4, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2977, 2928, 1683, 1066, 879, 688; HRMS (APCI) [M+H]⁺ calcd 449.2162, found 449.2164; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 25.302 min, t_{minor} = 17.077 min.

(*E*)-*N*,*N*-Dibutyl-2-(piperidin-1-yl)-5-(4-(trifluoromethyl)phenyl)pent-4-enamide (4p):

Yellow oil (33.0 mg, 75%). [α] = +73.3 (*c* 0.24, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.33–6.23 (m, 1H), 3.57–3.36 (m, 3H), 3.19–3.06 (m, 2H), 2.88–2.79 (m, 1H), 2.76–2.62 (m, 2H), 2.61–2.39 (m, 3H), 1.54–1.18 (m, 14H), 0.92–0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 141.1, 131.4, 127.9 (*J*_{C-F} = 190 Hz), 130.4, 126.0, 125.3 (q, *J*_{C-F} = 4 Hz), 65.8, 50.3, 47.3, 45.5, 31.5, 29.7, 28.6, 26.5, 24.4, 20.2, 20.1, 13.9, 13.8; ¹⁹F NMR (376 MHz, CDCl₃): δ –62.4; IR (KBr) cm⁻¹: 2978, 2923, 1670, 1653, 879; HRMS (APCI) [M+H]⁺ calcd 439.2931, found 439.2928; Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99.5/0.5, 0.8 mL/min, 254 nm: t_{major} = 27.012 min, t_{minor} = 15.523 min.

(E)-5-([1,1'-Biphenyl]-4-yl)-N,N-dibutyl-2-(piperidin-1-yl)pent-4-enamide (4q): Yellow oil

(40.7 mg, 91%). [α] = +49.9 (*c* 0.25, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.45–7.20 (m, 5H), 6.45 (d, *J* = 16.0 Hz, 1H), 6.31–6.08 (m, 1H), 3.62–3.30 (m, 3H), 3.24–3.01 (m, 2H), 2.90–2.75 (m, 1H), 2.75–2.59 (m, 2H), 2.57–2.26 (m, 3H), 1.38–1.18 (m, 14H), 0.85–0.94 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 140.8, 139.5, 136.7, 131.2, 128.7, 128.5, 127.1, 127.0, 126.8, 126.3, 65.8, 50.3, 47.4, 45.6, 31.5, 29.6, 28.9, 26.5, 24.5, 20.3, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 1748, 1540, 1472, 912; HRMS (APCI) [M+H]⁺ calcd 447.3370, found 447.3380; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 27.566 min, t_{minor} = 24.641 min.

(E)-N,N-Dibutyl-5-(naphthalen-2-yl)-2-(piperidin-1-yl)pent-4-enamide (4r): Yellow oil (39.2

mg, 93%). [α] = +61.4 (*c* 0.11, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.59 (m, 4H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.39 (p, *J* = 7.2 Hz, 2H), 6.57 (d, *J* = 15.6 Hz, 1H), 6.36–6.22 (m, 1H), 3.62–3.29 (m, 3H), 3.23–3.05 (m, 2H), 2.91–2.74 (m, 1H), 2.78–2.59 (m, 2H), 2.60–2.27 (m, 3H), 1.60–1.16 (m, 14H), 0.97–0.75 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 135.2, 133.6, 132.6, 131.7, 128.8, 127.9, 127.7, 127.5, 126.0, 125.4, 125.3, 123.5, 65.8, 50.3, 47.3, 45.6, 31.5, 29.7, 29.0, 26.5, 24.5, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 1558, 962, 688; [M+H]⁺ calcd 421.3213, found 421.3216; Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99/1, 1 mL/min, 254 nm: t_{major} = 19.661 min, t_{minor} = 15.967 min.

(E)-N,N-Dibutyl-5-(furan-2-yl)-2-(piperidin-1-yl)pent-4-enamide (4s): Yellow oil (32.9 mg, 20

91%). [α] = +40.7 (*c* 0.21, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.25 (s, 1H), 6.32–6.25 (m, 1H), 6.22 (d, *J* = 16.0 Hz, 1H), 6.11–5.97 (m, 2H), 3.52–3.32 (m, 3H), 3.20–3.03 (m, 2H), 2.79–2.68 (m, 1H), 2.68–2.52 (m, 2H), 2.54–2.31 (m, 3H), 1.56–1.14 (m, 14H), 0.94–0.80 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 153.1, 141.2, 127.2, 120.3, 110.9, 106.1, 65.5, 50.2, 47.4, 45.6, 31.5, 29.7, 28.7, 26.5, 24.4, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2975, 2926, 1683, 1653, 1048, 880; HRMS (APCI) [M+H]⁺ calcd 361.2850, found 361.2853; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 43.549 min, t_{minor} = 30.185 min.

(E)-N,N-Dibutyl-4-methyl-5-phenyl-2-(piperidin-1-yl)pent-4-enamide (4t): Yellow oil (36.1

mg, 94%). [α] = +45.9 (*c* 0.60, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.33–7.24 (m, 2H), 7.22–7.09 (m, 3H), 6.30 (s, 1H), 3.65–3.55 (m, 1H), 3.54–3.36 (m, 2H), 3.26–3.05 (m, 2H), 2.86– 2.64 (m, 3H), 2.61–2.37 (m, 3H), 1.88 (s, 3H), 1.58–1.20 (m, 14H), 0.95–0.78 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 138.5, 136.5, 128.7, 127.9, 127.1, 125.8, 63.9, 50.3, 47.5, 45.8, 36.1, 31.6, 29.8, 26.5, 24.5, 20.3, 20.2, 18.5, 13.9, 13.8; IR (KBr) cm⁻¹: 2973, 2925, 1677, 1250, 819; HRMS (APCI) [M+H]⁺ calcd 385.3213, found 385.3213; Daicel Chiralpak IC-3 column, *n*hexane/*i*-PrOH = 97/3, 0.8 mL/min, 254 nm: t_{major} = 16.562 min, t_{minor} = 13.513 min.

*N***,***N***-Dibutyl-2-(5,6-dihydropyridin-1(2***H***)-yl)pent-4-enamide (5a): Yellow oil (22.2 mg, 76%).**

[α] = +25.0 (*c* 0.26, acetone); ¹H NMR (400 MHz, CDCl₃): δ 5.81–5.61 (m, 3H), 5.11–4.94 (m, 2H), 3.57–3.29 (m, 3H), 3.24–3.01 (m, 4H), 2.84–2.55 (m, 3H), 2.39–2.24 (m, 1H), 2.18–1.94 (m, 2H), 1.57–1.16 (m, 8H), 0.89 (q, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 136.1, 125.6, 125.0, 116.5, 64.0, 48.7, 47.4, 45.7, 45.4, 31.5, 29.8, 29.7, 26.8, 20.2, 20.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 1698, 1558, 1046, 879; HRMS (APCI) [M+H]⁺ calcd 293.2587, found 293.2605; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 210 nm: t_{major} = 22.716 min, t_{minor} = 23.954 min.

(*E*)-2-(5,6-Dihydropyridin-1(*2H*)-yl)-*N*,*N*-diethyl-5-phenylpent-4-enamide (5aa): Yellow oil (28.4 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.13 (m, 5H), 6.44 (d, *J* = 16.0 Hz, 1H), 6.25–6.09 (m, 1H), 5.79–5.56 (m, 2H), 3.63–3.51 (m, 1H), 3.51–3.35 (m, 2H), 3.36–3.17 (m, 3H), 3.17–3.06 (m, 1H), 2.91–2.65 (m, 3H), 2.57–2.45 (m, 1H), 2.20–2.07 (m, 2H), 1.24–1.02 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 137.5, 132.0, 128.4, 127.6, 126.9, 126.0, 125.5, 125.1, 64.4, 48.7, 45.8, 41.9, 40.4, 29.7, 26.8, 14.6, 13.0; IR (KBr) cm⁻¹: 2918, 2848, 1636, 694; HRMS (APCI) [M+H]⁺ calcd 313.2274, found 313.2273.

(*E*)-2-(5,6-Dihydropyridin-1(*2H*)-yl)-5-phenyl-*N*,*N*-dipropylpent-4-enamide (5ab): Yellow oil (31.6 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.17 (m, 5H), 6.43 (d, *J* = 15.6 Hz, 1H), 6.26–6.08 (m, 1H), 5.78–5.56 (m, 2H), 3.64–3.53 (m, 1H), 3.46–3.34 (m, 2H), 3.31–3.22 (m, 1H), 3.21–3.06 (m, 3H), 2.91–2.66 (m, 3H), 2.56–2.44 (m, 1H), 2.16–2.07 (m, 2H), 1.61–1.45 (m, 4H), 0.89–0.81 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 137.6, 131.9, 128.4, 127.8, 126.9, 126.0, 125.6, 125.1, 64.4, 49.5, 48.8, 47.7, 45.6, 30.2, 29.4, 26.8, 22.6, 20.9, 11.4; IR (KBr) cm⁻¹: 3236, 2853, 1636, 1384; HRMS (APCI) [M+H]⁺ calcd 341.2587, found 341.2589.

(E)-2-(5,6-Dihydropyridin-1(2H)-yl)-N,N-dipentyl-5-phenylpent-4-enamide (5ad): Yellow oil

(35.6 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 7.38–7.11 (m, 5H), 6.43 (d, J = 16.4 Hz, 1H), 6.23–6.09 (m, 1H), 5.77–5.55 (m, 2H), 3.62–3.51 (m, 1H), 3.49–3.34 (m, 2H), 3.35–3.07 (m, 4H), 2.91–2.62 (m, 3H), 2.54–2.43 (m, 1H), 2.19–2.03 (m, 2H), 1.45–1.16 (m, 12H), 0.92–0.76 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 137.6, 132.0, 128.4, 127.8, 126.9, 126.0, 125.6, 125.1, 64.4, 48.8, 47.8, 46.0, 45.6, 29.4, 29.2, 29.18, 29.15, 27.4, 26.8, 22.4, 22.4, 14.0, 13.9; IR (KBr) cm⁻¹: 2929, 1631, 1507, 1456, 1265, 965, 879, 784; HRMS (APCI) [M+H]⁺ calcd 397.3213, found 397.3211.

(*E*)-*N*,*N*-Di(but-3-en-1-yl)-2-(5,6-dihydropyridin-1(*2H*)-yl)-5-phenylpent-4-enamide (5ad): Yellow oil (33.4 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.14 (m, 5H), 6.44 (d, *J* = 15.6 Hz, 1H), 6.24–6.09 (m, 1H), 5.85–5.59 (m, 4H), 5.16–4.84 (m, 4H), 3.65–3.43 (m, 3H), 3.36–3.17 (m, 3H), 3.16–3.05 (m, 1H), 2.92–2.76 (m, 2H), 2.75–2.62 (m, 1H), 2.53–2.41 (m, 1H), 2.38–2.23 (m, 4H), 2.17–2.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 137.6, 135.6, 134.7, 132.0, 128.4, 127.8, 126.9, 126.0, 125.5, 125.1, 117.1, 116.4, 64.8, 48.6, 47.4, 45.7, 45.6, 33.6, 32.2, 28.7, 26.8; IR (KBr) cm⁻¹: 2920, 2852, 1637, 1490, 1275, 748; HRMS (APCI) [M+H]⁺ calcd 365.2587, found 365.2586.

(*E*)-*N*-(**But-1-en-1-yl**)-*N*-**butyl-2-(5,6-dihydropyridin-1**(*2H*)-**yl**)-5-phenylpent-4-enamide (5af): Yellow oil (33.6 mg, 92%,). ¹H NMR (400 MHz, CDCl₃, mixture of two rotamers): δ 7.42–7.12 (m, 5.34H), 6.71 (d, *J* = 14.4 Hz, 0.66H), 6.43 (d, *J* = 15.6 Hz, 1H), 6.22–6.08 (m, 1H), 5.78–5.60 (m, 2H), 5.23–5.12 (m, 0.66H), 5.12–4.99 (m, 0.34H), 3.78–3.53 (m, 3H), 3.24 (d, *J* = 16.0 Hz, 1H), 3.12 (d, *J* = 16.0 Hz, 1H), 2.97–2.55 (m, 4H), 2.16–2.04 (m, 4H), 1.35–1.22 (m, 4H), 1.06–0.96 (m, 3H), 0.91–0.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 137.7, 132.3, 128.6, 127.5, 127.3, 127.2, 126.2, 125.7, 125.3, 117.0, 65.3, 48.8, 46.1, 44.1, 30.1, 29.4, 27.0, 23.8, 20.4, 14.4, 14.1; IR (KBr) cm⁻¹: 3290, 1644, 1265, 740; HRMS (APCI) [M+H]⁺ calcd 367.2744, found 367.2740.

(E)-N,N-Dibutyl-5-cyclohexyl-2-(5,6-dihydropyridin-1(2H)-yl)pent-4-enamide (5b): Yellow

oil (32.6 mg, 87%). [α] = +31.3 (*c* 0.60, acetone); ¹H NMR (400 MHz, CDCl₃): δ 5.74–5.57 (m, 2H), 5.46–5.36 (m, 1H), 5.34–5.21 (m, 1H), 3.52–3.30 (m, 3H), 3.29–2.98 (m, 4H), 2.81–2.53 (m, 3H), 2.30–2.18 (m, 1H), 2.14–2.01 (m, 2H), 1.93–1.79 (m, 1H), 1.68–1.03 (m, 18H), 0.96–

0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 138.9, 125.7, 125.1, 124.4, 64.4, 49.0, 47.6, 45.9, 45.5, 40.7, 33.02, 33.0, 31.7, 29.9, 29.4, 26.8, 26.2, 26.0, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2919, 2849, 1634, 1558, 1506, 914; HRMS (APCI) [M+H]⁺ calcd 375.3370, found 375.3379; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 98/2, 0.8 mL/min, 210 nm: t_{major} = 29.191 min, t_{minor} = 33.756 min.

(E)-N,N-Dibutyl-2-(5,6-dihydropyridin-1(2H)-yl)-6-phenylhex-4-enamide (5c): Yellow oil

(28.4 mg, 74%). [α] = +10.8 (*c* 0.80, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.25 (t, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.16–7.11 (m, 2H), 5.77–5.58 (m, 3H), 5.51–5.39 (m, 1H), 3.52–3.34 (m, 3H), 3.30 (d, *J* = 6.8 Hz, 2H), 3.27–3.04 (m, 4H), 2.83–2.72 (m, 1H), 2.71–2.60 (m, 2H), 2.38–2.25 (m, 1H), 2.14–2.04 (m, 2H), 1.54–1.38 (m, 4H), 1.35–1.27 (m, 4H), 0.96–0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.8, 141.0, 131.6, 129.0, 128.7, 128.5, 126.1, 125.9, 125.3, 64.5, 49.1, 47.8, 46.1, 45.8, 39.3, 31.9, 30.1, 29.1, 27.1, 20.5, 14.2, 14.1; IR (KBr) cm⁻¹: 2956, 2920, 1646, 1558, 1265, 969; HRMS (APCI) [M+H]⁺ calcd 383.3057, found 383.3059; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 98/2, 0.8 mL/min, 230 nm: t_{major} = 31.521 min, t_{minor} = 28.512 min.

(*E*)-*N*,*N*-Dibutyl-2-(5,6-dihydropyridin-1(*2H*)-yl)-5-methylhex-4-enamide (5d): Yellow oil (16.8 mg, 52%). ¹H NMR (400 MHz, CDCl₃): δ 5.72–5.55 (m, 2H), 5.07–4.98 (m, 1H), 3.49–3.32 (m, 3H), 3.26–2.98 (m, 4H), 2.80–2.61 (m, 2H), 2.59–2.46 (m, 1H), 2.34–2.23 (m, 1H), 2.12–1.98 (m, 2H), 1.62 (s, 3H), 1.59 (s, 3H), 1.52–1.39 (m, 4H), 1.32–1.23 (m, 4H), 0.92–0.83 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 133.1, 125.7, 125.1, 121.3, 63.8, 48.9, 47.5, 45.8, 45.5, 31.5, 29.8, 26.8, 25.7, 24.8, 20.2, 20.1, 17.7, 13.9, 13.8; IR (KBr) cm⁻¹: 2919, 2849, 1634, 1507, 895, 739; HRMS (APCI) [M+H]⁺ calcd 321.2900, found 321.2906.

(E)-N, N-Dibutyl-2-(5, 6-dihydropyridin-1(2H)-yl)-5, 9-dimethyldeca-4, 8-dienamide(5e):

Yellow oil (21.2 mg, 54%). [α] = +10.7 (*c* 0.50, acetone); ¹H NMR (400 MHz, CDCl₃): δ 5.74–5.59 (m, 2H), 5.13–5.01 (m, 2H), 3.52–3.33 (m, 3H), 3.31–3.01 (m, 4H), 2.84–2.74 (m, 1H), 2.73–2.63 (m, 1H), 2.62–2.51 (m, 1H), 2.39–2.29 (m, 1H), 2.15–2.06 (m, 2H), 2.06–1.98 (m, 2H), 1.98–1.90 (m, 2H), 1.65 (s, 3H), 1.62 (s, 3H), 1.57 (s, 3H), 1.55–1.39 (m, 4H), 1.34–1.25 (m, 4H),

0.98–0.78 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.9, 136.9, 131.3, 125.7, 125.1, 124.3, 121.1, 63.8, 48.9, 47.6, 45.9, 45.6, 39.8, 31.6, 29.9, 26.8, 26.7, 25.7, 24.7, 20. 3, 20.2, 17.6, 16.1, 13.9, 13.8; IR (KBr) cm⁻¹: 2958, 2927, 1646, 1558, 1265, 969; HRMS (APCI) [M+H]⁺ calcd 389.3526, found 389.3531; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 97/3, 0.8 mL/min, 210 nm: t_{maior} = 13.680 min, t_{minor} = 11.816 min.

(E)-2-(5,6-Dihydropyridin-1(2H)-yl)-N,N-di(pent-4-en-1-yl)-5-phenylpent-4-enamide (5f):

Yellow oil (36.3 mg, 92%). [α] = +25.3 (*c* 0.15, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.35–7.08 (m, 5H), 6.42 (d, *J* = 15.6 Hz, 1H), 6.25–6.07 (m, 1H), 5.96–5.55 (m, 4H), 5.16–4.84 (m, 4H), 3.62–3.50 (m, 1H), 3.50–3.32 (m, 2H), 3.30–2.99 (m, 4H), 2.91–2.74 (m, 2H), 2.75–2.63 (m, 1H), 2.54–2.38 (m, 1H), 2.22–1.79 (m, 6H), 1.74–1.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 138.0, 137.5, 137.4, 132.0, 128.4, 127.7, 126.9, 125.9, 125.5, 125.1, 115.4, 114.8, 64.5, 48.7, 47.2, 45.6, 45.5, 31.1, 31.0, 28.9, 28.3, 26.9, 26.8; IR (KBr) cm⁻¹: 2977, 2927, 1717, 1507, 880, 668; HRMS (APCI) [M+H]⁺ calcd 393.2900, found 393.2924; Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 98/2, 1 mL/min, 254 nm: t_{major} = 15.029 min, t_{minor} = 11.897 min.

(E)-N, N-Dibutyl-2-(4-methyl-5,6-dihydropyridin-1(2H)-yl)-5-phenylpent-4-enamide(5g):

Yellow oil (34.5 mg, 90%). [α] = +29.3 (*c* 0.22, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.31–7.21 (m, 4H), 7.20–7.12 (m, 1H), 6.42 (d, *J* = 15.6 Hz, 1H), 6.20–6.08 (m, 1H), 5.37–5.28 (m, 1H), 3.69–3.48 (m, 1H), 3.52–3.34 (m, 2H), 3.33–2.93 (m, 4H), 2.91–2.61 (m, 3H), 2.57–2.40 (m, 1H), 2.13–1.89 (m, 2H), 1.65 (s, 3H), 1.54–1.19 (m, 8H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.83 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 137.8, 132.8, 132.1, 128.6, 128.0, 127.1, 126.2, 119.6, 67.3, 64.3, 49.1, 47.8, 46.1, 45.8, 31.8, 31.7, 30.1, 29.9, 23.2, 20.4, 14.1, 14.0; IR (KBr) cm⁻¹: 2977, 2927, 1684, 1653, 879, 668; HRMS (APCI) [M+H]⁺ calcd 383.3057, found 383.3068; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 26.938 min, t_{minor} = 30.912 min.

(*E*)-*N*,*N*-Dibutyl-2-(3-methyl-5,<u>6</u>-dihydropyridin-1(2*H*)-yl)-5-phenylpent-4-enamide (5h):

Yellow oil (32.5 mg, 85%). [α] = +64.9 (c 0.30, acetone); ¹H NMR (400 MHz, CDCl₃): δ

7.36–7.28 (m, 4H), 7.24–7.16 (m, 1H), 6.47 (d, J = 15.6 Hz, 1H), 6.27–6.14 (m, 1H), 5.50–5.38 (m, 1H), 3.62 (dd, J = 9.6, 4.0 Hz, 1H), 3.51–3.39 (m, 2H), 3.25–3.12 (m, 3H), 3.05–2.96 (m, 1H), 2.93–2.84 (m, 1H), 2.83–2.75 (m, 1H), 2.73–2.64 (m, 1H), 2.58–2.48 (m, 1H), 2.14–2.05 (m, 2H), 1.66 (s, 3H), 1.49–1.31 (m, 8H), 0.93–0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 137.6, 132.5, 132.0, 128.4, 127.7, 126.9, 126.0, 119.4, 64.3, 52.8, 47.6, 45.9, 45.7, 31.6, 29.9, 29.7, 26.5, 22.7, 21.0, 20.3, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 1684, 1653, 1338, 879, 668; HRMS (APCI) [M+H]⁺ calcd 383.3057, found 383.3074; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 35.416 min, t_{minor} = 30.117 min.

(E)-N,N-Dibutyl-2-(4-(tert-butyl)-5,6-dihydropyridin-1(2H)-yl)-5-phenylpent-4-enamide (5i):

Yellow oil (41.2 mg, 97%). [α] = +54.8 (*c* 0.25, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.27–7.20 (m, 4H), 7.19–7.09 (m, 1H), 6.41 (d, *J* = 15.6 Hz, 1H), 6.21–6.08 (m, 1H), 5.42–5.28 (m, 1H), 3.62–3.52 (m, 1H), 3.38–3.08 (m, 6H), 2.91–2.65 (m, 3H), 2.57–2.39 (m, 1H), 2.19–2.00 (m, 2H), 1.50–1.25 (m, 8H), 0.99 (s, 9H), 0.89–0.82 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 144.1, 137.5, 131.9, 128.3, 127.7, 126.8, 125.9, 115.8, 64.0, 49.2, 47.6, 46.0, 45.8, 34.8, 31.5, 29.9, 29.8, 28.7, 26.0, 20.3, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2926, 1680, 1653, 879, 669; HRMS (APCI) [M+H]⁺ calcd 425.3526; found 425.3529; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 33.248 min, t_{minor} = 29.290 min.

(*E*)-*N*,*N*-Dibutyl-5-phenyl-2-(4-phenyl-5,6-dihydropyridin-1(2*H*)-yl)pent-4-enamide (5j): I_{0}

Yellow oil (42.3 mg, 95%). [α] = +46.6 (*c* 0.28, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.52–7.06 (m, 10H), 6.45 (d, *J* = 15.8 Hz, 1H), 6.24–6.12 (m, 1H), 6.10–5.96 (m, 1H), 3.70–3.60 (m, 1H), 3.53–3.07 (m, 6H), 3.06–2.74 (m, 3H), 2.65–2.37 (m, 3H), 1.54–1.21 (m, 8H), 0.89 (t, *J* = 7.6 Hz, 3H), 0.84 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 140.8, 137.5, 134.8, 132.0, 128.4, 128.2, 127.5, 126.9, 126.8, 125.9, 124.7, 122.0, 64.0, 49.2, 47.6, 45.8, 45.8, 31.6, 29.8, 29.7, 29.6, 28.7, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2928, 1640, 1684, 1670, 689; HRMS (APCI) [M+H]⁺ calcd 445.3213, found 445.3208; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 36.138 min, t_{minor} = 32.405 min.

(E)-N, N-Dibutyl-2-(5', 6'-dihydro-[2, 4'-bipyridin]-1'(2'H)-yl)-5-phenylpent-4-enamide (5k):

Yellow oil (41.1 mg, 92%). [α] = +41.4 (*c* 0.16, acetone); ¹H NMR (400 MHz, CDCl₃): δ 8.58–8.49 (m, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.35–7.07 (m, 7H), 6.67–6.57 (m, 1H), 6.44 (d, *J* = 15.6 Hz, 1H), 6.24–6.10 (m, 1H), 3.70–3.59 (m, 1H), 3.58–3.31 (m, 4H), 3.22–3.06 (m, 2H), 3.04–2.79 (m, 3H), 2.68–2.43 (m, 3H), 1.54–1.26 (m, 8H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.82 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 157.4, 148.8, 137.5, 136.2, 134.7, 132.0, 128.3, 127.6, 126.9, 125.9, 125.7, 121.6, 118.8, 64.0, 49.0, 47.5, 45.9, 45.8, 31.6, 30.1, 29.6, 29.2, 27.3, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 2924, 1684, 1670, 1046, 879; HRMS (APCI) [M+H]⁺ calcd 446.3166, found 446.3179; Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 98.5/1.5, 1 mL/min, 254 nm: t_{maior} = 42.850 min, t_{minor} = 50.916 min.

(E)-N, N-Dibutyl-2-(5,6-dihydro-[4,4'-bipyridin]-1(2H)-yl)-5-phenylpent-4-enamide(51):

Yellow oil (42.8 mg, 96%). [α] = +31.1 (*c* 0.18, acetone); ¹H NMR (400 MHz, CDCl₃): δ 8.55 (d, *J* = 5.6 Hz, 2H), 7.35–7.15 (m, 7H), 6.49 (d, *J* = 15.6 Hz, 1H), 6.40–6.30 (m, 1H), 6.27– 6.13 (m, 1H), 3.74–3.64 (m, 1H), 3.58–3.36 (m, 4H), 3.27–3.15 (m, 2H), 3.07–2.84 (m, 3H), 2.63–2.45 (m, 3H), 1.50–1.25 (m, 8H), 0.93 (t, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 149.9, 147.7, 137.4, 132.8, 132.2, 128.4, 127.2, 127.0, 126.0, 125.9, 119.3, 63.7, 49.1, 47.6, 45.9, 45.6, 31.6, 29.9, 29.7, 29.7, 27.8, 20.2, 13.9, 13.8; IR (KBr) cm⁻¹: 2978, 1684, 1653, 1084, 879, 668; HRMS (APCI) [M+H]⁺ calcd 446.3166, found 446.3156; Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 95/5, 1 mL/min, 254 nm: t_{major} = 30.526 min, t_{minor} = 38.624 min.

(E)-N,N-Dibutyl-2-(isoquinolin-2(1H)-yl)-5-phenylpent-4-enamide (5m): Yellow oil (36.9 mg, 20

88%). [α] = +44.6 (*c* 0.26, acetone); ¹H NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.52–7.33 (m, 3H), 7.22–6.95 (m, 4H), 6.52 (d, *J* = 7.6 Hz, 1H), 6.45 (d, *J* = 15.6 Hz, 1H), 6.20–6.08 (m, 2H), 3.56–3.28 (m, 3H), 3.29–3.05 (m, 3H), 3.07–2.97 (m, 1H), 2.96–2.81 (m, 1H), 2.76–2.63 (m, 1H), 1.53–1.24 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.72 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 161.3, 137.0, 136.6, 133.7, 132.4, 128.3, 128.1, 128.0, 127.2, 126.8, 126.1, 125.9, 124.6, 106.7, 52.3, 47.5, 46.2, 36.1, 31.4, 31.2, 29.5, 20.1, 19.8, 13.7, 13.6; IR (KBr) cm⁻¹: 2978, 2928, 1698, 1684, 1085, 879; HRMS (APCI) [M+H]⁺ calcd 417.2900, found 417.2897; Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 17.766 min, t_{minor} = 26.716 min.

5. Derivatization of 4a, 4q, 5f, 5j and 10

To a solution of **4a** (37.1 mg, 0.1 mmol) in anhydrous THF (1.0 mL) under N₂ was added LiAlH₄ (16.0 mg, 0.4 mmol) at 0 °C and the mixture was stirred at RT overnight. The reaction mixture was quenched with ethanol, diluted with DCM, washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography to give the yellow oil **6** in 91% yield. The two enantiomers are difficult to be separated on several kinds of $\frac{25}{25}$

chiral column in HPLC analysis, the reported similar reactions showed no loss in ee.^[4] [α] = +45.9 (*c* 0.3, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.17 (m, 5H), 6.41–6.24 (m, 2H), 2.78–2.09 (m, 13H), 1.56–1.24 (m, 14H), 0.87 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 138.0, 133.1, 130.3, 128.4, 126.6, 125.8, 63.6, 54.4, 50.1, 32.9, 29.6, 29.1, 26.6, 25.0, 20.7, 14.1; IR (KBr) cm⁻¹: 2978, 2928, 1748, 1489 1045, 879, 668; HRMS (APCI) [M+H]⁺ calcd 357.3264, found 357.3275.

To a solution of 4q (44.7 mg, 0.1 mmol) in MeOH (2.0 mL) was added Pd/C (10%, 10 mg) and the mixture was stirred under H₂ atmosphere (20 bar) at room temperature for 20 h. The reaction mixture was diluted with DCM, filtered, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography to give 7 as a yellow oil (83%, 88% ee).

[α] = +8.3 (*c* 0.50, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.34–7.29 (m, 1H), 7.25–7.20 (m, 2H), 3.56–3.39 (m, 2H), 3.38–3.25 (m, 1H), 3.21–3.04 (m, 2H), 2.80–2.52 (m, 4H), 2.55–2.36 (m, 2H), 1.64–1.25 (m, 18H), 0.98–0.83 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 141.6, 141.1, 138.6, 128.8, 128.7, 127.0, 126.9, 126.8, 65.0, 50.3, 47.3, 45.6, 35.8, 31.6, 29.8, 28.9, 26.5, 25.0, 24.5, 20.3, 20.2, 13.9; IR (KBr) cm⁻¹: 2920, 2850, 1635, 1558, 1471 1373, 1265, 667; HRMS (APCI) [M+H]⁺ calcd 449.3526, found 449.3527; Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 14.175 min, t_{minor} = 12.130 min.

To a solution of **5f** (39.5 mg, 0.1 mmol) in anhydrous DCM (20 mL) under N₂ was added fresh distilled Ti(O*i*-Pr)₄ (28.4 mg, 0.1 mmol) and stirred for 10 min, then Grubbs Catalyst II (8.5 mg, 0.01 mmol) was added. The resulting mixture was stirred under reflux for 10 h. The reaction mixture was concentrated in vacuo. The residue was purified by flash column chromatography to 20

give the compound **8** (81%, 90% *ee* and E/Z = 2:1).^[5] [α] = +10.0 (*c* 0.15, acetone); ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.11 (m, 5H), 6.46 (d, *J* = 16.0 Hz, 1H), 6.26–6.07 (m, 1H), 5.81–5.62 (m, 4H), 4.10–4.02 (m, 2H), 3.55–3.30 (m, 7H), 2.28–1.71 (m, 12H); ¹³C NMR (100 MHz, CDCl₃, major isomer): δ 170.8, 137.6, 132.0, 131.6, 128.4, 128.2, 128.1, 126.9, 125.9, 125.6, 125.0, 65.4, 53.4, 50.6, 48.3, 47.6, 45.9, 28.3, 27.8, 26.8, 25.9, 23.6; ¹³C NMR (101 MHz, CDCl₃, minor isomer) δ 171.6, 137.5, 132.3, 130.0, 129.7, 127.2, 127.1, 127.0, 125.9, 125.6, 125.2, 63.7, 49.3, 48.7, 47.9, 47.3, 41.6, 30.2, 29.5, 26.9, 26.6, 23.2; IR (KBr) cm⁻¹: 2979, 1684, 1670, 1045, 879, 668; HRMS (APCI) [M+H]⁺ calcd 365.2587, found 365.2591; Daicel Chiralpak AD-H column, *n*-hexane */i*-PrOH = 98/2, 0.8 mL/min, 254 nm: t_{major} = 24.955 min, t_{minor} = 18.207 min.

To a solution of **5j** (44.5 mg, 0.1 mmol) in THF (10.0 mL) and H₂O (4 mL) was added NaHCO₃ (84 mg, 1 mmol) and I₂ (190 mg, 0.75 mmol). The mixture was stirred at RT for 12 h. The reaction mixture was quenched with saturated Na₂SO₃ and saturated NaHCO₃, extracted with DCM, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column **20** chromatography to give the compound **9** (98%, 88% *ee*).^[6] [α] = +101.3 (*c* 0.3, acetone); ¹H

NMR (400 MHz, CDCl₃) δ 7.57–7.09 (m, 10H), 6.51 (d, J = 15.6 Hz, 1H), 6.30 (s, 1H), 6.22–6.06 (m, 1H), 5.66 (t, J = 7.2 Hz, 1H), 3.75–3.65 (m, 1H), 3.61–3.41 (m, 3H), 3.25–3.08 (m, 2H), 2.87–2.58 (m, 4H), 1.61–1.43 (m, 4H), 1.39–1.21 (m, 4H), 1.02–0.75 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 164.7, 150.3, 137.5, 137.4, 133.3, 129.8, 128.9, 128.7, 127.4, 126.4, 125.9, 119.7, 51.3, 47.5, 46.0, 40.6, 33.5, 31.7, 29.9, 27.0, 20.4, 20.2, 14.1, 14.1; IR (KBr) cm⁻¹: 2978, 2924, 1654, 1647 1374, 1045, 879, 668; HRMS (APCI) [M+H]⁺ calcd 459.3006, found 459.3023; Daicel Chiralpak AD-H column, *n*-hexane /*i*-PrOH = 95/5, 1 mL/min, 254 nm: t_{major} = 22.878 min, t_{minor} = 40.089 min.

6. Synthesis of Dipeptide and Unnatural Amino Acid

The reaction of **1b** (0.1 mmol), **2e** (0.2 mmol) and **3a** (0.5 mmol) was conducted using general procedure. The reaction mixture was filtrated through a short column of silica gel to remove DMSO and concentrated under vacuum. To the crude product was added TFA (2 mL) and the mixture was then stirred at 60 °C for 6 h. TFA was evaporate under vacuo and TEA (2 mL) was added. The mixture was stirred for further 0.5 h. The reaction mixture was diluted with DCM, the organic phase was washed with saturate NaHCO₃, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (PE/EA = 5/1) to give **10**

(92%, 90% *ee*). Mp: 39–40 °C. [α] = –14.9 (*c* 0.20, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.08 (m, 6H), 6.44 (d, *J* = 15.6 Hz, 1H), 6.29 (dd, *J* = 15.6, 8.4 Hz, 1H), 5.82–5.61 (m, 2H), 3.40–2.96 (m, 5H), 2.87–2.73 (m, 1H), 2.73–2.49 (m, 3H), 2.24–2.04 (m, 2H), 1.51–1.37 (m, 2H), 1.31–1.22 (m, 2H), 0.92–0.79 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 137.6, 132.1, 128.6, 127.6, 127.2, 126.2, 125.5, 125.4, 69.1, 49.8, 47.7, 38.9, 32.0, 31.8, 26.7, 20.3, 13.9; IR (KBr) cm⁻¹: 2974, 1843, 1715, 1646, 1615, 1435, 766, 720; HRMS (APCI) [M+H]⁺ calcd 313.2274, found 313.2291; Daicel Chiralpak OD-H column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm: t_{major} = 24.966 min, t_{minor} = 17.239 min.

10 (0.13 mmol) and DMAP (0.26 mmol) were dissolved in $(Boc)_2O$ (2 mL). The mixture was stirred at RT overnight before another portion of DMAP (0.13 mmol) and $(Boc)_2O$ (2 mL) were added and the mixture was stirred at 80 °C for another 2 h. The reaction mixture was directly purified by flash column chromatography (PE/EA = 20/1) to give Boc-protected 10, which was dissolved in THF (3 mL) followed by the addition of water (1 mL) and LiOH (0.78 mmol). The mixture was stirred at RT for 2 days. The reaction was quenched with acetic acid, concentrated in vacuo. The residue was purified by flash column chromatography (DCM/MeOH = 15/1) to give

the compound **11** (72%). mp: 46–48 °C. [α] = –4.0 (*c* 0.2, MeOH); ¹H NMR (400 MHz, D₂O) δ 7.49–7.04 (m, 5H), 6.50 (d, *J* = 15.6 Hz, 1H), 6.15–6.00 (m, 1H), 5.91–5.76 (m, 1H), 5.65–5.48 (m, 1H), 3.79–3.49 (m, 3H), 3.42–3.10 (m, 2H), 2.88–2.62 (m, 2H), 2.46–2.15 (m, 2H); ¹³C NMR (101 MHz, D₂O) δ 172.4, 136.7, 133.8, 128.8, 127.9, 126.3, 125.6, 123.0, 119.4, 68.7, 48.9, 48.7, 31.1, 22.3; IR (KBr) cm⁻¹: 3502, 1868, 1791, 1683, 1635, 1456, 457, 418; HRMS (APCI) [M+H]⁺ calcd 258.1489; found 258.1501.

To a solution of **10** (31.2 mg, 0.1 mmol) in toluene (2.0 mL) was added Lawesson's reagent (80.8 mg, 0.2 mmol) under N₂ atmosphere and the mixture was stirred at 80 °C for 20 h. The reaction mixture was diluted with DCM, washed with saturated NaHCO₃, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography to $\frac{10}{10}$

give **12** as a yellow oil (31%, 88% ee). [α] = +22.9 (*c* 0.20, acetone); ¹H NMR (400 MHz, CDCl₃): δ 9.15 (s, 1H), 7.35–7.16 (m, 5H), 6.44 (d, *J* = 15.6 Hz, 1H), 6.21–6.04 (m, 1H), 5.87–5.72 (m, 1H), 5.73–5.61 (m, 1H), 3.73–3.48 (m, 3H), 3.43–3.19 (m, 1H), 3.15–2.93 (m, 2H), 2.89–2.53 (m, 3H), 2.27–2.02 (m, 2H), 1.63–1.46 (m, 2H), 1.40–1.26 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.0, 137.2, 132.8, 132.7, 128.5, 127.3, 126.1, 125.3, 125.1, 49.7, 49.6, 48.2, 44.8, 34.9, 30.1, 26.3, 20.3, 13.7; IR (KBr) cm⁻¹: 2920, 2850, 1683, 1635 1521, 1265, 895; HRMS (APCI) [M+H]⁺ calcd 329.2046, found 329.2045; Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 1 mL/min, 254 nm: t_{major} = 11.591 min, t_{minor} = 13.361 min.

To an oven-dried glassware were added $[Pd(C_3H_5)Cl]_2$ (0.9 mg, 2.5 mol%), L1 (4.8 mg, 5.5 mol%) and anhydrous DCE (1.0 mL). To another dry glassware were added 13 (0.1 mmol), 3a (0.2 mmol), and anhydrous DCE (0.5 mL). Then the first glassware was stirred at RT and the second glassware was reflux under a nitrogen atmosphere for 1 h. After cooling to RT, anhydrous K₂CO₃ (0.1 mmol) was added to the second glassware. The solution in the first glassware was removed in vacuo. THF (1 mL) was added and the resulting mixture was cooled to -20 °C. Then methanol (1 mL) was added and the mixture was stirred for 5 min. NaBH₄ (0.5 mmol) was added in one portion and the reaction was stirred for 2 h. The reaction was quenched with acetic acid, and then was concentrated in vacuo. The residue was purified by flash column chromatography to give the $\frac{10}{20}$

compound 14 (93%, >20:1 dr, determined by the ¹H-NMR of the crude reaction mixture). [α]

= -18.0 (*c* 0.10, acetone); ¹H NMR (400 MHz, CDCl₃) δ 6.01–5.50 (m, 3H), 5.06 (d, *J* = 16.4 Hz, 1H), 4.98 (d, *J* = 9.6 Hz, 1H), 4.33–4.18 (m, 1H), 3.90–2.79 (m, 7H), 2.81–2.27 (m, 4H), 2.08–1.80 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 179.1, 170.8, 135.8, 125.5, 125.1, 116.9, 65.6, 62.3, 49.0, 47.5, 46.0, 31.8, 29.3, 26.5, 25.1; IR (KBr) cm⁻¹: 2977, 2923, 1748, 1716 1271, 1045, 879; HRMS (APCI) [M+H]⁺ calcd 279.1703, found 279.1716.

7. References

[1] X. Huo, J. Zhang, J. Fu, R. He and W. Zhang, J. Am. Chem. Soc., 2018, 140, 2080.

- [2] J. D. Sivey and A. L. Roberts, *Environ. Sci. Technol.*, 2012, 46, 2187.
- [3] K. Moonen, C. V. Stevens, Synthesis, 2005, 20, 3603.
- [4] (a) K. Ishihara and K. Nakano, J. Am. Chem. Soc., 2005, 127, 10504; (b) J. Roane, J. Wippich,
- S. D. Ramgren and M. J. Krische, Org. Lett., 2017, 19, 6634.
- [5] Q. Yang, W.-J. Xiao and Z. Yu, Org. Lett., 2005, 7, 871.
- [6] R. J. Griffiths, G. A. Burley and E. P. A. Talbot, Org. Lett., 2017, 19, 870.

8. NMR Spectra

yk-proline-1h13c

130 120 110 100 90 f1 (ppm)

S40

S41

S45

S47

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (DMSO-*d*₆) of the crude reaction mixture

9. HPLC Data

Racemate:

	Retention Time (min)	Area (%)	_
Peak 1	18.314	2.608	95% ee
Peak 2	24.379	97.392	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	14.574	49.576
Peak 2	24.274	50.424

Chiral:

	Retention Time (min)	Area (%)	_
Peak 1	14.969	6.242	88% ee
Peak 2	25.141	93.758	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate: 400-300 22.5 25.0 12.5 15.0 17.5 27.5 32.5 20.0 30.0 35.0 Retention Time (min) Area (%) Peak 1 16.492 48.946 Peak 2 20.214 51.054

92% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)	_
Peak 1	21.027	4.121	92% ee
Peak 2	27.475	95.879	

82% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 85/15, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	13.069	49.216
Peak 2	29.484	50.784

Chiral:

Peak 2

91.098

30.257

87% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm.

_

	Retention Time (min)	Area (%)
Peak 1	17.811	50.137
Peak 2	23.205	49.863

	Retention Time (min)	Area (%)	_
Peak 1	19.105	6.264	87% ee
Peak 2	23.437	93.736	

92% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 90/10, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	20.333	49.993
Peak 2	23.047	50.007

	Retention Time (min)	Area (%)	
Peak 1	21.077	3.879	92% ee
Peak 2	21.605	96.121	

91% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	19.532	49.256
Peak 2	21.910	50.744

Chiral:

	Retention Time (min)	Area (%)	_
Peak 1	19.572	4.262	91% ee
Peak 2	21.694	95.738	

Peak 2

90% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

18.526

49.874

Peak 2

87% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	13.049	49.861
Peak 2	17.121	50.139

Chiral:

6.308

17.201

84% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	11.145	49.964
Peak 2	13.274	50.036

Chiral:

	Retention Time (min)	Area (%)	
Peak 1	11.373	7.947	84% ee
Peak 2	13.455	92.053	

91% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

-

	Retention Time (min)	Area (%)	
Peak 1	12.877	50.973	
Peak 2	15.837	49.027	

Chiral:

	Retention Time (min)	Area (%)	_
Peak 1	12.776	4.577	91% ee
Peak 2	15.438	95.423	

93% ee, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, nhexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	13.277	49.015
Peak 2	14.890	50.985

Chiral:

																									-
1.0	1 1	0	20	4.0	6.0	6.0	70	0.0	0.0	10.0	410	120	12.0	110	160	100	170	10.0	10.0	20.0	210	22.0	22.0	240	
1.0	· · · ·		0.0	4.0	0.0	0.0	1.0	0.0	0.0	10.0	11.0	12.0	10.0	14.0	10.0	10.0	11.9	10.0	10.0	20.0	21.0	22.0	23.0	24.0	

	Retention Time (min)	Area (%)	_
Peak 1	13.774	3.597	93% ee
Peak 2	15.077	96.403	

92% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.4 mL/min, 254 nm.

Racemate:

_

	Retention Time (min)	Area (%)
Peak 1	23.481	49.729
Peak 2	38.651	50.271

Chiral: 检测器A 254nm Time 46 554 0.806 Inter 泵A压力 20.0 10.0 15.0 25.0 30.0 35.0 40.0 45.0 5.0 min

	Retention Time (min)	Area (%)	_
Peak 1	22.855	4.014	92% ee
Peak 2	38.173	95.986	

93% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane/*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	14.501	48.860
Peak 2	15.344	51.140

Chiral:

96% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 99.5/0.5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	15.367	49.661
Peak 2	26.836	50.339

Chiral:

	Retention Time (min)	Area (%)	
Peak 1	15.523	2.065	96% ee
Peak 2	27.012	97.935	

_

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	24.717	49.176
Peak 2	28.418	50.824

	Retention Time (min)	Area (%)	_
Peak 1	24.641	6.073	88% ee
Peak 2	27.566	93.927	

91% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /i-PrOH = 99/1, 1 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	15.857	50.233
 Peak 2	19.728	49.767

	Retention Time (min)	Area (%)	
Peak 1	15.967	4.469	91% ee
Peak 2	19.661	95.531	

95% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)	
Peak 1	27.132	49.241	
Peak 2	42.020	50.759	

	Retention Time (min)	Area (%)	
Peak 1	30.185	2.728	95% ee
Peak 2	43.549	97.272	

57% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 97/3, 0.8 mL/min, 254 nm.

Racemate:

2000											
1500-											
1250											
750			-	-							
250-			13.42	716.89							
				*							_
0.0	2.5 5.0	7.5 10.0	12.5 15.0	17.5	20.0 22.5	25.0	27.5 30.0	32.5	35.0	37.5	min

	Retention Time (min)	Area (%)
Peak 1	13.424	50.730
Peak 2	16.894	49.270

Chiral:

	Retention Time (min)	Area (%)	
Peak 1	13.513	21.427	57% ee
Peak 2	16.562	78.573	

80% ee, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 210 nm.

Racemate:

	Retention Time (min)	Area (%)	
Peak 1	22.733	51.047	
Peak 2	23.841	48.953	

Chiral:

	Retention Time (min)	Area (%)	
Peak 1	22.716	89.816	80% ee
Peak 2	23.954	10.184	

71% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 98/2, 0.8 mL/min, 210 nm.

Racemate:

	Retention Time (min)	Area (%)	
Peak 1	28.771	50.626	
Peak 2	31.874	49.374	

	Retention Time (min)	Area (%)	
Peak 1	29.191	85.607	71% ee
Peak 2	33.756	14.393	

68% ee, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 98/2, 0.8 mL/min, 210 nm.

Racemate:

	Retention Time (min)	Area (%)	
Peak 1	29.441	51.587	
Peak 2	33.432	48.413	

	Retention Time (min)	Area (%)	_
Peak 1	28.512	16.026	68% ee
Peak 2	31.521	83.974	

24% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 97/3, 0.8 mL/min, 210 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	12.210	49.386
Peak 2	14.238	50.614

Chiral:

-

	Retention Time (min)	Area (%)	
Peak 1	11.816	38.002	24% ee
Peak 2	13.680	61.998	

90% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /i-PrOH = 98/2, 1 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	11.575	50.253
Peak 2	14.819	49.747

	Retention Time (min)	Area (%)	
Peak 1	11.897	5.215	90% ee
Peak 2	15.029	94.785	

93% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)	_
Peak 1	26.938	96.530	93% ee
Peak 2	30.912	3.470	

84% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

Chiral:

90% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 1 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	27.426	50.017
Peak 2	33.212	49.983

Chiral:

	Retention Time (min)	Area (%)		
Peak 1	29.290	4.801	90% ee	
Peak 2	33.248	95.199		

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 1 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	32.365	49.867
Peak 2	36.716	50.133

Chiral:

_

	Retention Time (min)	Area (%)	_
Peak 1	32.405	5.962	88% ee
Peak 2	36.138	94.038	

91% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /*i*-PrOH = 98.5/1.5, 1 mL/min, 254 nm. Racemate:

	Retention Time (min)	Area (%)
Peak 1	42.422	48.735
Peak 2	48.071	51.265

	Retention Time (min)	Area (%)	
Peak 1	42.850	95.371	91% ee
Peak 2	50.916	4.629	

92% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /*i*-PrOH = 95/5, 1 mL/min, 254 nm.

	Retention Time (min)	Area (%)
Peak 1	32.179	47.792
Peak 2	38.249	52.208

	Retention Time (min)	Area (%)	
Peak 1	30.526	95.910	92% ee
Peak 2	38.624	4.090	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

	Retention Time (min)	Area (%)
Peak 1	18.160	50.875
Peak 2	27.567	49.125

-

	Retention Time (min)	Area (%)	_
Peak 1	17.766	93.794	88% ee
Peak 2	26.716	6.206	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /*i*-PrOH = 95/5, 0.8 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	11.875	50.360
Peak 2	14.258	49.640

_

	Retention Time (min)	Area (%)	_
Peak 1	12.130	6.148	88% ee
Peak 2	14.175	93.852	

90% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /i-PrOH = 98/2, 0.8 mL/min, 254 nm.

Racemate:

150 125 100 75					2319						
50- 25-				/	Č	1823					
	25 50	7.5 10	0 125	150	17.5 20.0	225	250	275	30.0	325	min

	Retention Time (min)	Area (%)
Peak 1	17.319	51.198
Peak 2	23.311	48.802

Chiral:

	Retention Time (min)	Area (%)	
Peak 1	18.207	4.950	90% ee
Peak 2	24.955	95.050	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak AD-H column, *n*-hexane /i-PrOH = 95/5, 1 mL/min, 254 nm.

Racemate:

1250													
1000													
750					Ø								
500					24.18			-					
250								37.90					
0					-		* *	/			_		*
0.0	2.5 5.0	7.5 10.0	12.5 15.0	17.5 20.0	22.5 25.0	27.5 30.0	32.5 35.0	37.5 40.0	42.5 45.	47.5 50	52.5	55.0 5	57.5 min

	Retention Time (min)	Area (%)
Peak 1	24.189	50.038
Peak 2	37.904	49.962

Chiral: $\frac{1}{25} + \frac{1}{50} + \frac{1}{75} + \frac{1}{100} + \frac{1}{125} + \frac{1}{100} + \frac{1}{175} + \frac{1}{200} + \frac{1}{225} + \frac{1}{200} + \frac{1}{200}$

	Retention Time (min)	Area (%)	_
Peak 1	22.878	94.076	88% ee
Peak 2	40.089	5.924	

90% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak OD-H column, *n*-hexane /i-PrOH = 95/5, 1 mL/min, 254 nm.

Racemate:

			 			÷	 	 	
		5	\cap	\		\land			
л				\mathbf{X}					
M	-				*				

	Retention Time (min)	Area (%)
Peak 1	17.092	50.696
Peak 2	25.188	49.304

Chiral:

	Retention Time (min)	Area (%)	_
Peak 1	17.239	5.169	90% ee
Peak 2	24.966	94.831	

88% *ee*, enantiomeric excess was determined by HPLC, Daicel Chiralpak IC-3 column, *n*-hexane /i-PrOH = 95/5, 1 mL/min, 254 nm.

Racemate:

	Retention Time (min)	Area (%)
Peak 1	11.084	49.361
Peak 2	12.687	50.639

Chiral:

	Retention Time (min)	Area (%)	_
Peak 1	11.591	94.016	88% ee
Peak 2	13.361	5.984	