Biophysical Journal, Volume 116

Supplemental Information

β -Branched Amino Acids Stabilize Specific Conformations of Cyclic

Hexapeptides

Ashleigh E. Cummings, Jiayuan Miao, Diana P. Slough, Sean M. McHugh, Joshua A. Kritzer, and Yu-Shan Lin

I. Simulation data tables and figures

Table S1. Cumulative variance associated to the first three eigenvectors for the cyclic hexapeptides analyzed in the paper.

Name	Sequence	% Variance of the first 3 PC's
P7	VVGGVG	67.4%
P6	VVGVGG	60.9%
V1A	AVGGVG	70.3%
V2A	VAGGVG	64.0%
V5A	VVGGAG	68.5%
V1I	IVGGVG	66.9%
V1L	LVGGVG	72.3%
V1T	TVGGVG	68.0%
V1S	SVGGVG	68.5%

Table S2. Thermodynamic decomposition between cluster 1 and cluster 2 for P7, V1A, V1I, V1L; and between cluster 1 and cluster 3 for V1T, V1S. S1 and S2 are two sets of parallel simulations beginning with different initial structures. The error of ΔG is the standard error of the mean (SEM) estimated from the five neutral replicas in BE-META simulations. $-T\Delta S_P^{\text{conf}}$ is calculated using maximum information spanning tree (MIST) approach, which provides a tight estimation of the upper bound of the entropy. The error of $-T\Delta S$ is propagated from ΔG and ΔH according to the relation: $-T\Delta S = \Delta G - \Delta H$. The error of $-T\Delta S_W$ is propagated from $-T\Delta S$ according to the relation: $-T\Delta S_P^{\text{conf}}$). The errors of the remaining quantities are SEM calculated from 60,000 frames sampled from the additional MD simulations.

S 1	P7		ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\mathrm{W}}$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({ m SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$	-50
	VVGGVG	75.3%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25
	VVGGVG	2.6%	8.38±0.14	12.17±1.29	-3.79±1.30	46.77±0.16	-34.60±1.28	-14.72	10.93±1.30	4.21±0.06	38.23±0.11	-0.25±0.07	0.20±0.11	4.42±0.05	-0.03±0.02	0.49±1.28	-22.93±2.01	-12.16±0.12	-25
			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest}	$-T\Delta S_{\rm p}^{\rm conf}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({ m SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\text{rest}}^{\text{EE(SR)}}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$	-50
	AVGGVG	47.2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25 E
	AVGGVG	10.2%	3.84±0.13	2.09±1.31	1.75±1.32	49.991.0.15	47.9011.11	-6.00	7.75±1.32	-2.73±0.06	49.6810.11	-0.15±0.07	1.72±0.10	1.82±0.05	-0.34±0.02	6.33±1.31	-24.30 1 2.05	-29.93±0.12	-0 🕱 -25
			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest}	$-T\Delta S_{p}^{conf}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({\rm SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\text{rest}}^{\text{LJ}}$	$\Delta H_{\text{rest}}^{\text{EE(SR)}}$	$\Delta H_{\text{rest}}^{\text{EE(LR)}}$	-50
	V1I IVGGVG	77.8%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25 E
	IVGGVG	2.9%	8.22±0.06	10.67±1.23	-2.45±1.23	51.16±0.16	-40.49±1.23	-15.97	13.52±1.23	7.26±0.06	39.25±0.11	-0.03±0.07	0.55±0.11	4.20±0.05	-0.08±0.02	0.69±1.23	-25.62±1.92	-15.56±0.12	-0 🕱 -25
			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest}	$-T\Delta S_p^{conf}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({\rm SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{rest}^{EE(SR)}$	$\Delta H_{rest}^{EE(LR)}$	-50
	V1L LVGGVG	32.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25 P
	LVGGVG	14.4%	2.03±0.07	1.81±1.22	0.22±1.23	62.74±0.17	40 03 11.22	-9.15	9.37±1.23	5.61±0.06	60.33±0.12	-0.67±0.07	-3.18±0.11	0.51±0.06	0.13±0.02	-2.91±1.22	-21.26±1.91	-36.76±0.12	-0 🖵 -25
			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest}	$-T\Delta S_{p}^{conf}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({\rm SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\text{rest}}^{\text{LJ}}$	$\Delta H_{\text{rest}}^{\text{EE(SR)}}$	$\Delta H_{\text{rest}}^{\text{EE(LR)}}$	-50
	V1T TVGGVG	63.8%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25 E
	TVGGVG	4.1%	6.87±0.05	5.71±1.23	1.16±1.23	61.27±0.16	-00-0511-00	-12.71	13.87±1.23	-0.20±0.06	54.4410.13	-0.01±0.07	1.60±0.11	5.50±0.05	-0.06±0.02	3.10±1.23	-29.01±1.92	-29.65±0.12	-0 7 -25
			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest}	$-T\Delta S_p^{conf}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{{\rm EE}({\rm SR}+1,4)}$	$^{(1)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\text{rest}}^{\text{LJ}}$	$\Delta H_{\text{rest}}^{\text{EE(SR)}}$	$\Delta H_{rest}^{EE(LR)}$	-50
	V1S SVGGVG	44.2%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25 E
	SVGGVG	7.6%	4.40±0.10	1.08±1.23	3.32±1.23	53.701-0.17	52.02.11.22	-5.75	9.07±1.23	-1.26±0.06	52.11.1.0.13	-0.07±0.07	1.65±0.10	1.49±0.05	-0.21±0.02	4.09±1.23	-28.95±1.92	-27.77±0.12	-0 7 -25
																		_	-50
S2	P7	77 7%	ΔG	Δ <i>H</i>	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm p}^{\rm out}$	$-T\Delta S_W$	$\Delta H_{\rm P}^{\rm LJ} \Delta$	HPEE(SR+1.4	$^{(i)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$	-50 50 25 2
S2	P7 VVGGVG	77.7%	Δ <i>G</i> 0.00	Δ <i>H</i> 0.00	-T\[]	ΔH _P ^{vac}	ΔH _{rest}	$-T\Delta S_{\rm p}^{\rm conf}$	- <i>T</i> Δ <i>S</i> _W	ΔH ^{LJ} _P Δ	H ^{EE(SR+1,4} 0.00	¹⁾ ∆H ^{bond} _P	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	ΔH ^{imp.} 0.00	ΔH ^{LJ} _{rest}	$\Delta H_{\rm rest}^{\rm EE(SR}$	0.00	-50 50 25 0 1
S2	P7 vvggvg vvggvg	77.7% 1.4%	∆G 0.00 9.96±0.20	∆ <i>H</i> 0.00 10.87±1.25	-T∆S 0.00 -0.91±1.26	∆H ^{vac} 0.00 47.15±0.16	ΔH _{rest} 0.00	-TΔSponf 0.00 -15.54	-T∆S _W 0.00 14.64±1.26	△H ^{LJ} _P △ 0.00 3.71±0.06	H ^{EE(SR+1,4} 0.00 37.80±0.12 (JEE(SR+1,4	⁴⁾ ∆H ^{bond} 0.00 -0.05±0.07	ΔH ^{angle} 0.00 0.64±0.11	∆H ^{dih.} 0.00 5.13±0.05	ΔH ^{imp.} 0.00 -0.08±0.02	ΔH ^{LJ} _{rest} 0.00 0.78±1.24	∆H ^{EE(SR} 0.00 -23.33±1.94	△H ^{EE(LR)} 0.00 -13.72±0.12	-50 50 25 0 -25 -25 -50
S2	P7 vvggvg vvggvg vvggvg vvggvg	77.7% 1.4%	ΔG 0.00 9.96±0.20 ΔG	ΔH 0.00 10.87±1.25 ΔH	-TΔS 0.00 -0.91±1.26 -TΔS	$\Delta H_{\rm P}^{\rm vac}$ 0.00 47.15±0.16 $\Delta H_{\rm P}^{\rm vac}$	ΔH_{rest} 0.00 -36.28±1.24 ΔH_{rest}	$-T\Delta S_{\rm P}^{\rm conf}$ 0.00 -15.54 $-T\Delta S_{\rm P}^{\rm conf}$	- <i>T</i> Δ <i>S</i> _W 0.00 14.64±1.26 - <i>T</i> Δ <i>S</i> _W	$\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 3.71±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$	H ^{EE(SR+1,4} 0.00 37.80±0.12 H ^{EE(SR+1,4} _P	 ⁴⁾∆H^{bond} 0.00 0.05±0.07 ⁴⁾∆H^{bond} 	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 0.78±1.24 $\Delta H_{\text{rest}}^{\text{LJ}}$	$\Delta H_{\text{rest}}^{\text{EE}(\text{SR})}$ 0.00 -23.33±1.94 $\Delta H_{\text{rest}}^{\text{EE}(\text{SR})}$	$\Delta H_{\text{rest}}^{\text{EE}(\text{LR})}$ 0.00 -13.72±0.12 $\Delta H_{\text{rest}}^{\text{EE}(\text{LR})}$	-50 50 peu/rx -25 -50 50 pe
S2	P7 vvggvg vvggvg v1A avggvg	77.7% 1.4% 47.6%	ΔG 0.00 9.96±0.20 ΔG 0.00	ΔH 0.00 10.87±1.25 ΔH 0.00	-TΔS 0.00 -0.91±1.26 -TΔS 0.00	$\Delta H_{\rm P}^{\rm var}$ = 0.00 47.15±0.16 $\Delta H_{\rm P}^{\rm var}$ = 0.00	ΔH _{rest} 0.00 - -36.2811.24 ΔH _{rest} 0.00 -	$-T\Delta S_{\rm P}^{\rm conf}$ - 0.00 -15.54 $-T\Delta S_{\rm P}^{\rm conf}$ - 0.00 - 5.01	- <i>T</i> Δ <i>S</i> _W 0.00 14.64±1.26 - <i>T</i> Δ <i>S</i> _W 0.00	$\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 3.71±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00	H ^{EE(SR+1,4} 0.00 37.80±0.12 H ^{EE(SR+1,4} 0.00	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13 \pm 0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00	$\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 0.78 \pm 1.24 $\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 1.0911.22	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00	$\Delta H_{\text{rest}}^{\text{EE}(\text{LR})}$ 0.00 -13.72±0.12 $\Delta H_{\text{rest}}^{\text{EE}(\text{LR})}$ 0.00	-50 50 25 0 -25 50 50 10 25 0 2 2 2 2 2 2 2 2 2 2 2 2 2
S2	P7 VVGGVG VVGGVG VVGGVG AVGGVG AVGGVG	77.7% 1.4% 47.6% 8.3%	ΔG 0.00 9.96±0.20 ΔG 0.00 4.38±0.13	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23	-TΔS 0.00 -0.91±1.26 -TΔS 0.00 -0.20±1.23	$\Delta H_{\rm P}^{\rm vac}$ 0.00 47.15 \pm 0.16 $\Delta H_{\rm P}^{\rm vac}$ 0.00 50.40 \pm 0.15 $\Delta H^{\rm vac}$	ΔH _{rest} 0.00 -3628±1.24 ΔH _{rest} 0.00 -45.82(1.22)	$-T\Delta S_{\rm p}^{\rm conf}$ 0.00 -15.54 $-T\Delta S_{\rm p}^{\rm conf}$ 0.00 -5.91 TA Sconf	$-T\Delta S_W$ 0.00 14.64±1.26 $-T\Delta S_W$ 0.00 5.72±1.23	$\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 3.71±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 -2.47±0.06	H ^{EE(SR+1,4} 0.00 37.80±0.12 H ^{EE(SR+1,4} 0.00 50 24 4 0 11 H ^{EE(SR+1,4}	 ⁴⁾∆H^{bond}_P 0.00 -0.05±0.07 ⁴⁾∆H^{bond}_P 0.00 -0.07±0.07 ⁴⁾∆H^{bond}_P 	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm angle}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00 1.39±0.05 $\Delta H^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm imp.}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$ 0.00 0.78±1.24 $\Delta H_{\rm rest}^{\rm LJ}$ 0.00 1.98±1.23 $\Delta H_{\rm LJ}^{\rm LJ}$	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14±1.92 $\Delta H^{EE[SR}$	$\Delta H_{rest}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rest}^{EE(LR)}$ 0.00 -29.66±0.11 $\Delta H_{rest}^{EE(LR)}$	-50 50 25 0 -25 -50 50 10 -25 -50 50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -25 -25 -50 -25 -25 -50 -25 -25 -50 -50 -25 -50 -50 -50 -50 -50 -50 -50 -5
S2	P7 VVGGVG VVGGVG VVGGVG AVGGVG AVGGVG V11	77.7% 1.4% 47.6% 8.3%	ΔG - 0.00 - 9.96±0.20 ΔG - 0.00 - 4.38±0.13 ΔG	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH	- <i>T</i> Δ <i>S</i> 0.00 -0.91±1.26 - <i>T</i> Δ <i>S</i> 0.00 -0.20±1.23 - <i>T</i> Δ <i>S</i> 0.00	$\Delta H_{\rm P}^{\rm var}$ 0.00 47.15±0.16 $\Delta H_{\rm P}^{\rm var}$ 0.00 50.40±0.13 $\Delta H_{\rm var}^{\rm var}$	ΔH_{rest} 0.00 -36281124 ΔH_{rest} 0.00 -45821122 ΔH_{rest}	$-T\Delta S_{\rm P}^{\rm conf}$ 0.00 -15.54 $-T\Delta S_{\rm P}^{\rm conf}$ 0.00 -5.91 $-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_W$ 0.00 14.64±126 $-T\Delta S_W$ 0.00 5.72±123 $-T\Delta S_W$ 0.00	$\Delta H_{\rm P}^{[,J]} \Delta$ 0.00 3.71±0.06 $\Delta H_{\rm P}^{[,J]} \Delta$ 0.00 -2.47±0.06 $\Delta H_{\rm P}^{[,J]} \Delta$	H ^{EE} (SR+1,4 0.00 37.80±0.12 H ^{EE} (SR+1,4 0.00 30.34.10.18 H ^{EE} (SR+1,4 0.01	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dh.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dh.}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dh.}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 0.78±1.24 $\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 1.98±1.23 $\Delta H_{\text{rest}}^{\text{LJ}}$	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14±1.92 ΔH_{rest}^{rest}	$\Delta H_{rest}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rest}^{EE(LR)}$ 0.00 -29.66±0.11 $\Delta H_{rest}^{EE(LR)}$	-50 50 25 0 -25 -50 50 10 -25 -50 50 10 -25 -50 50 10 -25 -50 50 10 -25 -50 50 50 10 -25 -25 -50 50 50 -25 -25 -50 -25 -50 -25 -50 -25 -50 -25 -50 -50 -50 -50 -50 -50 -50 -5
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG V11 IVGGVG	77.7% 1.4% 47.6% 8.3% 81.1%	ΔG 0.00 9.96±0.20 ΔG 4.38±0.13 ΔG 0.00	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00	- <i>T</i> Δ <i>S</i> 0.00 0.91±1.26 - <i>T</i> Δ <i>S</i> 0.00 0.20±1.23 0.00 - <i>T</i> Δ <i>S</i> 0.00	$\Delta H_{\rm P}^{\rm vac}$ 0.00 67.15±0.16 $\Delta H_{\rm P}^{\rm vac}$ 0.00 50.40±0.15 $\Delta H_{\rm Vac}^{\rm vac}$ 0.00	ΔHrost 0.00 -36.2811.24 ΔHrest 0.00 -45.8211.22 ΔHrest 0.00	$-T\Delta S_{P}^{conf}$ 0.00 -15.54 $-T\Delta S_{P}^{conf}$ 0.00 -5.91 $-T\Delta S_{P}^{conf}$ 0.00	$-T\Delta S_{W}$ 0.00 14.64±1.26 $-T\Delta S_{W}$ 0.00 5.72±1.23 $-T\Delta S_{W}$ 0.00	$\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 3.71±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 -2.47±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$	H ^{EE} [SR+1,4 0.00 37.80±0.12 H ^{EE} [SR+1,4 0.00 50.24±0.11 H ^{EE} [SR+1,4 0.00	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64 \pm 0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66 \pm 0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00	$\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 0.78±1.24 $\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00 1.98±1.23 $\Delta H_{\text{rest}}^{\text{LJ}}$ 0.00	$\Delta H_{rest}^{EE/SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE/SR}$ 0.00 -18.14±1.92 $\Delta H_{rest}^{EE/SR}$ 0.00	$\Delta H_{\text{rot}}^{\text{EE}(LR)}$ 0.00 -13.72±0.12 $\Delta H_{\text{rot}}^{\text{EE}(LR)}$ 0.00 -29.6610.11 $\Delta H_{\text{rot}}^{\text{EE}(LR)}$ 0.00	-50 50 pew/rx -25 50 pew/rx -50 50 pew/rx -50 50 pew/rx -50 50 pew/rx -50 50 pew/rx -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -25 -50 50 pew/rx -50 50 pew/rx -50 50 50 50 50 50 50 50 50 50
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG V11 IVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8%	ΔG 0.00 9.96±0.20 ΔG 0.00 4.38±0.13 ΔG 0.00 9.46±0.16	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24	-TΔS 0.00 -0.91±1.26 -TΔS 0.00 -0.20±1.23 -TΔS 0.00 0.59±1.25	$\Delta H_{\rm P}^{\rm suc}$ 0.00 67.15±0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.46±0.15 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.85±0.16 $\Delta H_{\rm D}^{\rm suc}$	ΔH _{rest} 0.00 -36.28±1.24 ΔH _{rest} 0.00 -45.82±1.23 ΔH _{rest} 0.00 -41.99±1.24	$-T\Delta S_{P}^{conf}$ 0.00 -1554 $-T\Delta S_{P}^{conf}$ 0.00 -5.91 $-T\Delta S_{P}^{conf}$ 0.00 -5.91 $-T\Delta S_{P}^{conf}$	$-T\Delta S_{W}$ 0.00 14.64±1.26 $-T\Delta S_{W}$ 0.00 5.72±1.23 $-T\Delta S_{W}$ 0.00 15.92±1.25 15.92±1.25	$\begin{array}{c} \Delta H_{\rm F}^{\rm LJ} \\ 0.00 \\ 3.71\pm0.06 \\ \Delta H_{\rm F}^{\rm LJ} \\ 0.00 \\ -2.47\pm0.06 \\ \Delta H_{\rm F}^{\rm LJ} \\ 0.00 \\ -7.63\pm0.06 \\ 0.01 \\ -7.63\pm0.06 \end{array}$	H ^{EE} / _P SR+1,4 0.00 37.80±0.12 H ^{EE} /SR+1,4 0.00 39.24.10.33 H ^{EE} /SR+1,4 0.00 39.20±0.34 H ^{EE} /SR+1,4 0.00	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 0.02±0.07	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.22±0.11 $\Delta H^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 1.39±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00 3.86±0.05 $\Delta trdih.$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$ 0.00 0.78±1.24 $\Delta H_{\rm rest}^{\rm LJ}$ 0.00 1.98±1.23 $\Delta H_{\rm rest}^{\rm LJ}$ 0.00	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14±1.92 $\Delta H_{rest}^{EE(SR}$ 0.00 -26.26±1.94 $\Delta t_{rest}^{EE(SR}$	$\Delta H_{rot}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -29.6610.11 $\Delta H_{rot}^{EC(LR)}$ 0.00 -15.52±0.12 0.00	-50 50 25 0 -25 50 50 50 50 50 50 50 50 50 5
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG V11 IVGGVG IVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8%	ΔG - 0.00 - 9.96±0.20 ΔG - 0.00 - 4.38±0.13 ΔG - 0.00 - 9.46±0.16 ΔG - 0.00	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24 ΔH	-TΔS 0.00 -0.91±1.26 -TΔS 0.00 -0.20±1.23 -TΔS 0.00 0.59±1.25 -TΔS 0.00	$\Delta H_{\rm P}^{cac}$ 0.00 47.15±0.16 $\Delta H_{\rm P}^{cac}$ 0.00 50.401.0.15 $\Delta H_{\rm P}^{cac}$ 0.00 50.85±0.16 $\Delta H_{\rm P}^{cac}$	ΔH _{rost} 0.00 36.2811.24 ΔH _{rost} 0.00 45.8211.22 ΔH _{rost} 0.00 41.9911.24 ΔH _{rost}	$-T\Delta S_{p}^{conf}$ 0.00 -15.54 $-T\Delta S_{p}^{conf}$ 0.00 -5.91 $-T\Delta S_{p}^{conf}$ 0.00 -15.33 $-T\Delta S_{p}^{conf}$	$-T\Delta S_{W}$ 0.00 14.64±126 $-T\Delta S_{W}$ 0.00 5.72±123 $-T\Delta S_{W}$ 0.00 15.92±125 $-T\Delta S_{W}$	$\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 371+0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 -2.47±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$ 0.00 -2.47±0.06 $\Delta H_{\rm P}^{\rm LJ} \Delta$	H ^{EE} (SR+1,4 0.00 37.80±0.12 H ^{EE} (SR+1,4 0.00 30.201.011 H ^{EE} (SR+1,4 0.00 39.201.011 H ^{EE} (SR+1,4 P	$^{(i)}\Delta H_{P}^{bond}$ 0.00 $^{(i)}\Delta H_{P}^{bond}$ $^{(i)}\Delta H_{P}^{bond}$ $^{(i)}\Delta H_{P}^{bond}$ $^{(i)}\Delta H_{P}^{bond}$ 0.00 0.02±0.07 $^{(i)}\Delta H_{P}^{bond}$	$\frac{\Delta H_{\rm P}^{\rm angle}}{0.00}$ 0.64±0.11 $\frac{\Delta H_{\rm P}^{\rm angle}}{0.00}$ 1.66±0.10 $\frac{\Delta H_{\rm P}^{\rm angle}}{0.00}$ 0.00 0.22±0.11 $\frac{\Delta H_{\rm P}^{\rm angle}}{0.00}$	$\Delta H_{\rm P}^{\rm dih.}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dih.}$ 0.00 3.86±0.05 $\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ $ 0.78 \pm 1.24 $ $ 0.00 $ $ 0.78 \pm 1.24 $ $ 0.00 $ $ 1.98 \pm 1.23 $ $ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ $ 0.00 $ $ 0.21 \pm 1.24 $ $ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14±1.92 $\Delta H_{rest}^{EE(SR}$ 0.00 -26.26±1.94 $\Delta H_{rest}^{EE(SR}$	$\Delta H_{rot}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rot}^{EE(LR)}$	-50 50 pow/rx -25 50 pow/rx
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG V1I IVGGVG IVGGVG V1L LVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0%	ΔG - 0.00 - 9.96±9.20 ΔG - 0.00 - 4.38±0.13 ΔG - 0.00 - 9.46±0.16 ΔG - 0.00	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24 ΔH 0.00	-TΔS 0.00 0.91±126 -TΔS 0.00 0.20±123 -TΔS 0.00 0.59±125 -TΔS 0.00	$\Delta H_{\rm P}^{\rm suc}$ 0.00 47.15±0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.40±0.15 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.09±0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00	ΔH _{rost} 0.00 -36.28±1.24 ΔH _{rost} 0.00 -45.82±1.22 ΔH _{rost} 0.00 -41.99±1.24 ΔH _{rost} 0.00	$-T\Delta S_{p}^{conf}$ 0.00 -15.54 $-T\Delta S_{p}^{conf}$ 0.00 -5.91 $-T\Delta S_{p}^{conf}$ 0.00 -15.33 $-T\Delta S_{p}^{conf}$ 0.00 -15.54	$-T\Delta S_{W}$ 0.00 14.64±1.26 $-T\Delta S_{W}$ 0.00 5.72±1.23 $-T\Delta S_{W}$ 0.00 15.92±1.25 $-T\Delta S_{W}$ 0.00	$\begin{array}{c} \Delta H_{\rm P}^{ \bot } \Delta \\ \bullet 000 \\ \bullet 000 \\ \bullet 371 \pm 0.06 \\ \Delta H_{\rm P}^{ \bot } \Delta \\ \bullet 000 \\ \bullet 2.47 \pm 0.06 \\ \bullet \Delta H_{\rm P}^{ \bot } \Delta \\ \bullet 000 \\ \hline 7.63 \pm 0.06 \\ \bullet \Delta H_{\rm P}^{ \bot } \Delta \\ \bullet 000 \\ \hline \end{array}$	H ^{EE} (SR+1,4) 0.00 37.80±0.12 H ^{EE} (SR+1,4) 0.00 30.20±0.11 H ^{EE} (SR+1,4) 0.00 30.20±0.11 H ^{EE} (SR+1,4) 0.00	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 0.00 0.02±0.07 ⁴⁾ ΔH ^{bond} 0.00 0.02±0.07	$\begin{array}{c} \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 0.64\pm0.11 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 1.66\pm0.10 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 0.22\pm0.11 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ \end{array}$	$\begin{array}{c} \Delta H_{\rm P}^{\rm dih.} \\ 0.00 \\ \hline 0.01 \\ \hline 0.00 \\ \hline \Delta H_{\rm P}^{\rm dih.} \\ 0.00 \\ \hline 1.39\pm 0.05 \\ \hline \Delta H_{\rm P}^{\rm dih.} \\ 0.00 \\ \hline 3.86\pm 0.05 \\ \hline \Delta H_{\rm P}^{\rm dih.} \\ 0.00 \end{array}$	$\begin{array}{c} \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.08\pm 0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.36\pm 0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.08\pm 0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.08\pm 0.02 \\ \end{array}$	$ \begin{array}{c} \Delta H_{\rm rest}^{\rm LJ} \\ \hline 0.00 \\ 0.78 \pm 1.24 \\ \hline \Delta H_{\rm rest}^{\rm LJ} \\ \hline 0.00 \\ 1.98 \pm 1.23 \\ \hline \Delta H_{\rm rest}^{\rm LJ} \\ \hline 0.00 \\ \hline -0.21 \pm 1.24 \\ \hline \Delta H_{\rm rest}^{\rm LJ} \\ \hline 0.00 \\ \hline -0.01 \pm 1.24 \\ \hline \end{array} $	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14±1.92 $\Delta H_{rest}^{EE(SR}$ 0.00 -26.26±1.94 $\Delta H_{rest}^{EE(SR}$ 0.00	$\begin{array}{c c} \Delta H_{\rm rest}^{\rm EE(LR)} \\ \hline 0.00 & - \\ \hline -13.72\pm0.12 \\ \Delta H_{\rm rost}^{\rm EE(LR)} \\ \hline 0.00 & - \\ \hline -29.66\pm0.11 \\ \hline \Delta H_{\rm rost}^{\rm EE(LR)} \\ \hline 0.00 & - \\ \hline -15.52\pm0.12 \\ \hline \Delta H_{\rm rost}^{\rm EE(LR)} \\ \hline 0.00 & - \\ \hline \end{array}$	-50 50 20 -25 50 -25
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG IVGGVG IVGGVG LVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0%	ΔG 0.00 9.96±0.20 ΔG 0.00 4.38±0.13 ΔG 0.00 9.46±0.16 ΔG 0.00 2.40±0.05	<u>Δ</u> H 0.00 10.87±1.25 <u>Δ</u> H 0.00 4.58±1.23 <u>Δ</u> H 0.00 8.87±1.24 <u>Δ</u> H 0.00 2.10±1.27	-TΔS 0.00 -0.91±1.26 -TΔS 0.00 0.20±1.23 -TΔS 0.00 0.59±1.25 -TΔS 0.00 0.30±1.27	$\Delta H_{\rm P}^{\rm vac}$ 0.00 67.15±0.16 $\Delta H_{\rm P}^{\rm vac}$ 0.00 50.60±0.15 $\Delta H_{\rm P}^{\rm vac}$ 0.00 50.35±0.16 $\Delta H_{\rm P}^{\rm vac}$ 0.00 52.29±0.16	ΔH _{rest} 0.00 -36.28±1.24 ΔH _{rest} 0.00 -45.82±1.22 ΔH _{rest} 0.00 -41.92±1.24 ΔH _{rest} 0.00 -41.92±1.24 ΔH _{rest}	$-T\Delta S_{p}^{conf}$ 0.00 -15.54 $-T\Delta S_{p}^{conf}$ 0.00 -5.91 $-T\Delta S_{p}^{conf}$ 0.00 -15.33 $-T\Delta S_{p}^{conf}$ 0.00 -8.68 $T\Delta S_{p}^{conf}$	$-T\Delta S_W$ 0.00 14.64±126 $-T\Delta S_W$ 0.00 572±123 $-T\Delta S_W$ 0.00 15.92±125 $-T\Delta S_W$ 0.00 8.96±127 0.00	$\begin{array}{c} \Delta H_{1}^{ \perp } \Delta \\ 0.00 \\ 3.71\pm0.06 \\ \Delta H_{1}^{ \perp } \Delta \\ 0.00 \\ -2.47\pm0.06 \\ \Delta H_{1}^{ \perp } \Delta \\ 0.00 \\ -6.30\pm0.06 \\ \Delta H_{2}^{ \perp } \Delta \\ 0.00 \\ 6.30\pm0.06 \\ 0.01 \\ 0.01 \\ 0.00 \end{array}$	$H_{P}^{EE(SR+1,4)}$ 0.00 37,80±0.12 $H_{P}^{EE(SR+1,4)}$ 0.00 50 \times 0.01 $H_{P}^{EE(SR+1,4)}$ 0.00 39,204.011 $H_{P}^{EE(SR+1,4)}$ 0.00 50.04.1012 $H_{P}^{EE(SR+1,4)}$	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 0.02±0.07 ⁴⁾ ΔH ^{bond} 0.00 0.02±0.07 ⁴⁾ ΔH ^{bond} 0.00	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.22±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.393±0.11	$\Delta H_{\rm P}^{\rm dh}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 3.86±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 0.48±0.05 $\Delta H_{\rm P}^{\rm dh}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ 0.78±1.24 0.00 0.78±1.24 0.00 1.96±1.23 0.00 1.96±1.23 0.00 0.021±1.24 0.00 0.021±1.24 0.00 1.21±1.27 0.00 0.121±1.27 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	$\Delta H_{rest}^{EE}(SR)$ 0.00 -23.33±1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00 -18.14±1.92 $\Delta H_{rest}^{EE}(SR)$ 0.00 -26.26±1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00 -23.26±1.94 0.00	$\Delta H_{rot}^{EE(LR)}$ 0.00 -13.72±10.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -29.6640.11 $\Delta H_{rot}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rot}^{EE(LR)}$	-30 9 25 0 -25 9
S2	P7 VVGGVG VVGGVG AVGGVG AVGGVG V11 IVGGVG IVGGVG LVGGVG LVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0% 13.7%	ΔG 0.00 9.96±0.20 ΔG 0.00 4.38±0.13 ΔG 0.00 9.46±0.16 ΔG 0.00 2.40±0.05 ΔG	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24 ΔH 0.00 2.10±1.27 ΔH 0.00	-TΔS 0.00 -0.91±1.26 -TΔS 0.00 -7ΔS 0.00 0.59±1.25 -TΔS 0.00 0.39±1.27 -TΔS 0.00 0.39±1.27 -TΔS 0.00 0.	$\Delta H_{\rm P}^{\rm soc}$ 0.00 47.15+0.16 $\Delta H_{\rm P}^{\rm soc}$ 0.00 50.4010.15 $\Delta H_{\rm P}^{\rm soc}$ 0.00 50.98:10.16 $\Delta H_{\rm P}^{\rm soc}$ 0.00 62.29:10.16 $\Delta H_{\rm P}^{\rm soc}$	ΔH _{rest} 0.00 -362811.24 ΔH _{rest} 0.00 45.8211.22 ΔH _{rest} 0.00 41.9911.24 ΔH _{rest} 0.00 90 (sci.72 ΔH _{rest}	$-T\Delta S_{p}^{oof}$ 0.00 -15.54 $-T\Delta S_{p}^{oof}$ 0.00 -5.91 $-T\Delta S_{p}^{oof}$ 0.00 -15.33 $-T\Delta S_{p}^{oof}$ 0.00 -8.68 $-T\Delta S_{p}^{oof}$	$-T\Delta S_{W}$ 0.00 14.64±1.26 $-T\Delta S_{W}$ 0.00 5.72±1.23 $-T\Delta S_{W}$ 0.00 15.92±1.25 $-T\Delta S_{W}$ 0.00 8.98±1.27 $-T\Delta S_{W}$	$\Delta H_{l}^{l-1} \Delta$ 0.00 3.71+0.06 $\Delta H_{l}^{l-1} \Delta$ 0.00 -2.47±0.06 $\Delta H_{l}^{l-1} \Delta$ 0.00 -7.63±0.06 $\Delta H_{l}^{l-1} \Delta$ 0.00 -6.30±0.06 $\Delta H_{l}^{l-1} \Delta$	H ^{EE} (SR+1.4 0.00 37.00-10.12 H ^{EE} (SR+1.4 0.00 90.24 (0.11) H ^{EE} (SR+1.4 0.00 93.20 (0.11) H ^{EE} (SR+1.4 0.00 90.00 (0.12) H ^{EE} (SR+1.4 0.00	⁴⁾ ΔH ^{bond} 0.00 -0.05±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 0.02±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.70±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.70±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.00 -0.07±0.07 ⁴⁾ ΔH ^{bond} 0.00 -0.00	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.22±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 -3.93±0.11 $\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dh}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 3.86±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 0.48±0.05 $\Delta H_{\rm P}^{\rm dh}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.00 0.00±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$ \Delta H_{\rm rest}^{\rm LJ} = 0.00 \\ 0.78 \pm 1.24 \\ \Delta H_{\rm rest}^{\rm LJ} = 0.00 \\ 0.78 \pm 1.24 \\ 0.00 \\ 1.98 \pm 1.23 \\ \Delta H_{\rm rest}^{\rm LJ} = 0.00 \\ 0.21 \pm 1.24 \\ 0.00 \\ -0.21 \pm 1.24 \\ 0.00 \\ -1.21 \pm 1.27 \\ \Delta H_{\rm rest}^{\rm LJ} = 0.00 \\ 0.00 \\ -1.21 \pm 1.27 \\ \Delta H_{\rm rest}^{\rm LJ} = 0.00 \\ 0.00 \\ -1.21 \pm 1.27 \\ 0.00 \\ -1$	$\Delta H_{rest}^{EE(SR}$ 0.00 -23.33.1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -18.14.1.92 $\Delta H_{rest}^{EE(SR}$ 0.00 -26.26.1.94 $\Delta H_{rest}^{EE(SR}$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$ 0.00 -23.26.1.99 $\Delta H_{rest}^{EE(SR})$	$\Delta H_{rest}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rest}^{EE(LR)}$ 0.00 -29.66±0.11 $\Delta H_{rest}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rest}^{EE(LR)}$ 0.00 -35.72±0.12 $\Delta H_{rest}^{EE(LR)}$ 0.00	-50 50 50 0 -25 50 50 0 -25
S2	P7 VVGGVG VVGGVG V1A AVGGVG AVGGVG V11 IVGGVG LVGGVG LVGGVG LVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0% 13.7% 64.1%	ΔG 9.96±0.20 ΔG 0.00 4.38±0.13 ΔG 0.00 9.46±0.16 ΔG 0.00 2.40±0.05 ΔG 0.00	<u>Δ</u> H 0.00 10.87±1.25 <u>Δ</u> H 0.00 4.58±1.23 <u>Δ</u> H 0.00 8.87±1.24 <u>Δ</u> H 0.00 2.10±1.27 <u>Δ</u> H 0.00	TΔS 0.00 -0.91±1.26 -TΔS 0.00 -0.20±1.23 -TΔS 0.00 0.59±1.25 -TΔS 0.00 0.30±1.27 -TΔS 0.00 0.30±1.27 -TΔS 0.00	$\Delta H_{\rm P}^{\rm suc}$ 0.00 47.1530.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.4010.15 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.0510.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 42.5510.16 $\Delta H_{\rm P}^{\rm suc}$	ΔHrost 0.00 -362811.24 ΔHrost 0.00 -45.9211.25 ΔHrost 0.00 -41.9911.24 ΔHrost	$-T\Delta S_{p}^{out}$ 0.00 -15.54 $-T\Delta S_{p}^{out}$ 0.00 -5.91 $-T\Delta S_{p}^{out}$ 0.00 -15.33 $-T\Delta S_{p}^{out}$ 0.00 -8.68 $-T\Delta S_{p}^{out}$	$-T\Delta S_{W}$ 0.00 14.64±126 $-T\Delta S_{W}$ 0.00 5.72±123 $-T\Delta S_{W}$ 0.00 15.92±125 $-T\Delta S_{W}$ 0.00 8.98±127 $-T\Delta S_{W}$ 0.00	$\begin{array}{c} \Delta H_{1}^{1-1} \Delta \\ 0.00 \\ \mathbf{3.71\pm0.06} \\ \Delta H_{1}^{1-1} \Delta \\ 0.00 \\ \mathbf{2.47\pm0.06} \\ \Delta H_{1}^{1-1} \Delta \\ 0.00 \\ \mathbf{7.63\pm0.06} \\ \Delta H_{1}^{1-1} \Delta \\ 0.00 \\ \mathbf{6.30\pm0.06} \\ \Delta H_{1}^{1-1} \Delta \\ 0.00 \\ \mathbf{6.30\pm0.06} \\ \end{array}$	$H_{P}^{EE(SR+1,4)}$ 0.00 37.00+0.12 H_{P}^{EE(SR+1,4)} 0.00 50.34 ±0.11 H_{P}^{EE(SR+1,4)} 0.00 50.30±0.11 H_{P}^{EE(SR+1,4)} 0.00 50.00±0.12 H_{P}^{EE(SR+1,4)} 0.00	¹⁾ ∆H ^{bond} _P 0.00 -0.05±0.07 ¹⁾ ∆H ^{bond} 0.00 -0.07±0.07 ¹⁾ ∆H ^{bond} 0.00 0.02±0.07 ¹⁾ ∆H ^{bond} 0.00 -0.70±0.07 -0.70±0.07	$\begin{array}{c} \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 0.04 \pm 0.11 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 1.66 \pm 0.10 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ 0.22 \pm 0.11 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ -3.93 \pm 0.11 \\ \Delta H_{\rm P}^{\rm angle} \\ 0.00 \\ \end{array}$	$\begin{array}{c} \Delta H_{\rm P}^{\rm dh}, \\ 0.00 \\ \hline \\ 5.13\pm 0.05 \\ \Delta H_{\rm P}^{\rm dh}, \\ 0.00 \\ \hline \\ 3.9\pm 0.05 \\ \Delta H_{\rm P}^{\rm dh}, \\ 0.00 \\ \hline \\ 3.86\pm 0.05 \\ \Delta H_{\rm P}^{\rm dh}, \\ 0.00 \\ \hline \\ 0.00 \\ 0.48\pm 0.05 \\ \Delta H_{\rm P}^{\rm dh}, \\ 0.00 \\ \hline \\ 0.00 \\ \hline \end{array}$	$\begin{array}{c} \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.08\pm0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.36\pm0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ -0.08\pm0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ 0.00\pm0.02 \\ \Delta H_{\rm P}^{\rm imp.} \\ 0.00 \\ 0.00\pm0.02 \\ \Delta H_{\rm P}^{\rm imp.} \end{array}$	$\begin{array}{c} \Delta H_{\rm rest}^{\rm LJ} \\ 0.00 \\ 0.78 \pm 1.24 \\ \Delta H_{\rm rest}^{\rm LJ} \\ 0.00 \\ 1.96 \pm 1.23 \\ 0.00 \\ 1.96 \pm 1.23 \\ 0.00 \\ 0.21 \pm 1.27 \\ 0.00 \\ 0.21 \pm 1.27 \\ 0.00 \\ 1.21 \pm 1.27 \\ 0.00 \\ 0.00 \\ \end{array}$	$ \Delta H_{rest}^{EE(SR} \\ 0.00 \\ -23.34E(SR) \\ \Delta H_{rest}^{EE(SR)} \\ 0.00 \\ -18.1421.92 \\ \Delta H_{rest}^{EE(SR)} \\ 0.00 \\ -26.261.94 \\ \Delta H_{rest}^{EE(SR)} \\ 0.00 \\ -23.261.19 \\ 0.00 \\ -23.261.19 \\ 0.00 \\ -23.261.19 \\ 0.00 \\ -24.261$	$\begin{array}{c} \Delta H_{\rm rest}^{\rm EE(LR)} \\ 0.00 \\ - 13.72\pm0.12 \\ \Delta H_{\rm rest}^{\rm EE(LR)} \\ 0.00 \\ - 296610.11 \\ \Delta H_{\rm rest}^{\rm EE(LR)} \\ 0.00 \\ - 1552\pm0.12 \\ \Delta H_{\rm rest}^{\rm EE(LR)} \\ 0.00 \\ - \end{array}$	-50 50 25 0 -25 50 20 25 0 -25 50 20 20 20 20 20 20 20 20 20 20 20 20 20
S2	P7 VVGGVG VVGGVG AVGGVG AVGGVG V11 IVGGVG IVGGVG LVGGVG TVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0% 13.7% 64.1% 3.8%	ΔG - 0.00 - 9.9610.20 ΔG - 0.00 - 4.3810.13 ΔG - 0.00 - 9.4610.16 ΔG - 0.00 - 2.4010.05 ΔG - 0.00 - 2.4010.05 - 2.4010.	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24 ΔH 0.00 2.10±1.27 ΔH 0.00 5.02±1.24	$\begin{array}{c} -T \Delta S \\ 0.00 \\ -0.91 \pm 1.26 \\ -T \Delta S \\ 0.00 \\ -0.20 \pm 1.23 \\ -T \Delta S \\ 0.00 \\ 0.59 \pm 1.25 \\ -T \Delta S \\ 0.00 \\ 0.30 \pm 1.27 \\ -T \Delta S \\ 0.00 \\ 2.04 \pm 1.24 \\ \end{array}$	$\Delta H_{\rm P}^{vac}$ 0.00 67.15+0.16 $\Delta H_{\rm P}^{vac}$ 0.00 50.401.0.15 $\Delta H_{\rm P}^{vac}$ 0.00 50.851.0.16 $\Delta H_{\rm P}^{vac}$ 0.00 62.261.0.16 $\Delta H_{\rm P}^{vac}$ 0.00 60.30.16 50.30.16	ΔH _{rest} 0.00 36281124 ΔH _{rest} 0.00 45821122 ΔH _{rest} 0.00 41991124 ΔH _{rest} 0.00 61991124 ΔH _{rest} 0.00 61991124 ΔH _{rest} 0.00	$-T\Delta S_{p}^{conf}$ 0.00 -15.54 $-T\Delta S_{p}^{conf}$ 0.00 -5.91 $-T\Delta S_{p}^{conf}$ 0.00 -15.33 $-T\Delta S_{p}^{conf}$ 0.00 -15.68 $-T\Delta S_{p}^{conf}$ 0.00 -12.78 Th. Society	$-T\Delta S_{W}$ 0.00 14.64±126 $-T\Delta S_{W}$ 0.00 5.72±123 $-T\Delta S_{W}$ 0.00 15.92±125 $-T\Delta S_{W}$ 0.00 8.98±127 $-T\Delta S_{W}$ 0.00 14.81±124	$\begin{array}{c} \Delta H_{\rm P}^{ \perp } \Delta \\ 0.00 \\ \hline 0.00 \\ 3.71\pm0.06 \\ \Delta H_{\rm P}^{ \perp } \Delta \\ 0.00 \\ \hline 0.00 \\ \hline 0.00 \\ \hline 0.00 \\ \hline 7.63\pm0.06 \\ \Delta H_{\rm P}^{ \perp } \Delta \\ 0.00 \\ \hline 0.00$	H ^{EE} (SR+1,4 0.00 37.80+0.12 H ^{EE} (SR+1,4 0.00 30.20±0.11 H ^{EE} (SR+1,4 0.00 30.20±0.11 H ^{EE} (SR+1,4 0.00 40.00±10.13 H ^{EE} (SR+1,4 H ^{EE} (SR+1,4) 0.00 40.00±10.13 H ^{EE} (SR+1,4) H ^E	⁴⁾ ∆H ^{bond} 0.00 -0.05±0.07 ⁴⁾ ∆H ^{bond} 0.00 -0.07±0.07 ⁶⁾ ∆H ^{bond} 0.00 0.02±0.07 ⁴⁾ ∆H ^{bond} 0.00 -0.70±0.07 ⁶⁾ ∆H ^{bond} 0.00 -0.70±0.07 ⁶⁾ ∆H ^{bond} 0.00 -0.70±0.07 ⁶⁾ ∆H ^{bond} 0.00 -0.70±0.07 ⁶⁾ ∆H ^{bond} 0.00 -0.	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.22±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.53±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00	$\Delta H_{\rm P}^{\rm dh}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 3.86±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 0.48±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 5.51±0.05 5.51±0.05	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.10±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 0.00 -0.06±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ 0.78±1.24 $ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ 1.98±1.23 $ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ 0.00 $ -0.21\pm1.24 $ 0.00 $ -0.21\pm1.24 $ 0.00 $ -1.21\pm1.27 $ $ \Delta H_{\rm rest}^{\rm LJ} = 0.00 $ $ -3.36\pm1.24 $	$\Delta H_{rest}^{EE}(SR)$ 0.00 23.33+1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00 -18.14+1.92 $\Delta H_{rest}^{EE}(SR)$ 0.00 -26.26+1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00 -21.26+1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00 -21.26+1.94 $\Delta H_{rest}^{EE}(SR)$ 0.00	$\Delta H_{rot}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -29.6610.11 $\Delta H_{rot}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00 -3.572±0.12 $\Delta H_{rot}^{EE(LR)}$ 0.00	-30 50 50 - 25 50 50 - 25 5
S2	P7 VVGGVG VVGGVG AVGGVG AVGGVG V11 IVGGVG IVGGVG IVGGVG IVGGVG TVGGVG	77.7% 1.4% 47.6% 8.3% 81.1% 1.8% 36.0% 13.7% 64.1% 3.8%	ΔG 0.00 9.96±0.20 ΔG 0.00 4.38±0.13 ΔG 0.00 9.46±0.16 ΔG 0.00 2.40±0.05 ΔG 0.00 7.06±0.10 ΔG	ΔH 0.00 10.87±1.25 ΔH 0.00 4.58±1.23 ΔH 0.00 8.87±1.24 ΔH 0.00 2.10±1.27 ΔH 0.00 5.02±1.24 ΔH	-TΔS 0.00 0.91±126 -TΔS 0.00 0.20±123 -TΔS 0.00 0.59±125 -TΔS 0.00 0.39±127 -TΔS 0.00 2.04±124 -TΔS 0.00	$\Delta H_{\rm P}^{\rm suc}$ 0.00 67.15±0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.40±0.15 $\Delta H_{\rm P}^{\rm suc}$ 0.00 50.05±1.0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 62.25±0.16 $\Delta H_{\rm P}^{\rm suc}$ 0.00 60.9±1.0.16 $\Delta H_{\rm P}^{\rm suc}$	ΔH _{rost} 0.00 -36.2811.24 ΔH _{rost} 0.00 -41.9211.29 ΔH _{rost} 0.00 -41.9211.24 0.00 -41.9211.24 ΔH _{rost} 0.00 -5.9411.29 ΔH _{rost} 0.00 -5.9411.29 ΔH _{rost} 0.00 -5.9411.29 ΔH _{rost}	$\begin{array}{c} -T \Delta S_{\rm p}^{\rm conf} \\ 0.00 \\ \hline 15.54 \\ -T \Delta S_{\rm p}^{\rm conf} \\ 0.00 \\ \hline -5.91 \\ -T \Delta S_{\rm p}^{\rm conf} \\ 0.00 \\ \hline -15.33 \\ -T \Delta S_{\rm p}^{\rm conf} \\ 0.00 \\ \hline -8.68 \\ -T \Delta S_{\rm p}^{\rm conf} \\ 0.00 \\ \hline -12.78 \\ -T \Delta S_{\rm p}^{\rm conf} \\ \end{array}$	$-T\Delta S_{W}$ 0.00 14.64±126 $-T\Delta S_{W}$ 0.00 5.72±123 $-T\Delta S_{W}$ 0.00 15.92±125 $-T\Delta S_{W}$ 0.00 8.98±127 $-T\Delta S_{W}$ 0.00 14.81±124 $-T\Delta S_{W}$	$\begin{array}{c} \Delta H_{\rm P}^{ \perp } \Delta \\ \bullet 000 \\ \bullet 371+0.06 \\ \Delta H_{\rm P}^{ \perp } \Delta \\ \bullet 000 \\ \bullet 2.47140.06 \\ \bullet \Delta H_{\rm P}^{ \perp } \Delta \\ \bullet 000 \\ \bullet 3.000 \\ \bullet 3.000 \\ \bullet 3.01006 \\ \bullet \Delta H_{\rm P}^{ \perp } \Delta \\ \bullet 000 \\ \bullet 0.00 \\ $	H ^{EE} (SR+1.4 0.00 37.80±0.12 H ^{EE} (SR+1.4 0.00 39.20±0.13 H ^{EE} (SR+1.4 0.00 39.20±0.13 H ^{EE} (SR+1.4 0.00 40.	$^{(1)}\Delta H_{P}^{bond}$ 0.00 $^{(2)}OS\pm0.07$ $^{(1)}\Delta H_{P}^{bond}$ 0.00 $^{(1)}\Delta H_{P}^{bond}$ 0.00 $^{(2)}OO$ $^{(2)}\Delta H_{P}^{bond}$ 0.00 $^{(2)}OO$ $^{(2)}DH_{P}^{bond}$ 0.00 $^{(2)}OO$ $^{(2)}DH_{P}^{bond}$ 0.00 $^{(2)}OO$ $^{(2)}DH_{P}^{bond}$ 0.00 $^{(2)}OO$ $^{(2)}DH_{P}^{bond}$ 0.00 $^{(2)}DH_{P}^{bond}$ $^{(2)}DH_{P}^{bond}$ $^{(2)}DH_{P}^{bond}$ $^{(2)}DH_{P}^{bond}$ $^{(2)}DH_{P}^{bond}$ $^{(2)}DH_{P}^{bond}$	$\Delta H_{\rm P}^{\rm angle}$ 0.00 0.64±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.66±0.10 $\Delta H_{\rm P}^{\rm angle}$ 0.00 0.22±0.11 $\Delta H_{\rm P}^{\rm angle}$ 0.00 1.53±0.11 $\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dh}$ 0.00 5.13±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 1.39±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 3.86±0.05 $\Delta H_{\rm P}^{\rm dh}$ 0.00 5.51±0.05 $\Delta H_{\rm P}^{\rm dh}$	$\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.36±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.08±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.04±0.02 $\Delta H_{\rm P}^{\rm imp.}$ 0.00 -0.06±0.02 $\Delta H_{\rm P}^{\rm imp.}$	$\begin{array}{c} \Delta H_{\rm rest}^{\rm LJ} \\ \bullet 0.00 \\ \bullet 0.78 \pm 1.24 \\ \bullet 0.00 \\ \bullet 0.78 \pm 1.24 \\ \bullet 0.00 \\ \bullet 0.78 \pm 1.24 \\ \bullet 0.00 \\ \bullet 0.90 \\ \bullet 0.21 \pm 1.27 \\ \bullet 0.00 \\ \bullet 0.21 \pm 1.24 \\ \bullet 0.00 \\ \bullet 0.21 \pm 1.27 \\ \bullet 0.00 \\ \bullet 0.21 \pm 1.27 \\ \bullet 0.00 \\ \bullet 0.35 \pm 1.24 \\ \bullet 0.00 \\ \bullet 0.35 \pm 1.24 \\ \bullet 0.12 \\ \bullet 0.00 \\ \bullet 0.35 \pm 1.24 \\ \bullet 0.01 \\ \bullet 0$	$ \Delta H_{rest}^{EE/SR} 0.00 23.33+1.94 \Delta H_{rest}^{EE/SR} 0.00 -18.14±1.92 \Delta H_{rest}^{EE/SR} 0.00 -26.26±1.94 \Delta H_{rest}^{EE/SR} 0.00 -23.26±1.94 \Delta H_{rest}^{EE/SR} 0.00 -23.99±1.94 \Delta H_{rest}^{EE/SR} 0.00 -23.99±1.94 -24.99±1.94 -25.95 -25.95 -2$	$\Delta H_{rest}^{EE(LR)}$ 0.00 -13.72±0.12 $\Delta H_{rost}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rost}^{EE(LR)}$ 0.00 -15.52±0.12 $\Delta H_{rost}^{EE(LR)}$ 0.00 -29.31±0.12 $\Delta H_{rost}^{EE(LR)}$	-30 50 50 0 -25 50 50 0 -25

-5.59

8.95±1.25

-1.32±0.06

-0.12±0.07 0.88±0.10 1.88±0.05 -0.21±0.02

4.42±1.24 -27.77±1.94 -29.00±0.13

-25

SVGGVG 8.3% 4.21±0.03 0.84±1.25 3.36±1.25

Table S3. The population percentages and structures of the top three clusters from BE-META simulations using the amber99sb force field. S1 and S2 are two sets of simulations beginning with different initial structures. Types I, II and II' β turns are colored red, green and blue, respectively.

CP	VVG	GVG	AVG	GVG	IVG	GVG	LVG	GVG	TVG	GVG	SVG	GVG
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
Cluster	VVGGVG	VV GGVG	AVGGVG	AVGGVG	IVGGVG	IVGGVG	LVGGVG	LVGGVG	TVGGVG	TVGGVG	SV GGVG	SV GGVG
1	22.9%	27.2%	31.4%	26.8%	25.6%	31.3%	36.7%	31.2%	34.9%	29.1%	32.0%	26.3%
Cluster	VVGGVG	VVGGVG	AVGGVG	AVGGVG	IV GGVG	IVGGVG	LVGGVG	LVGGVG	TVGGVG	TVGGVG	SVGGVG	SVGGVG
2	12.6%	9.7%	9.9%	12.6%	25.5%	14.1%	9.9%	11.1%	10.5%	9.7%	8.7%	12.6%
Cluster	VVGGVG	VVGGVG	AVGGVG	AVGGVG	IVGGVG	IVGGVG	LVGGVG	LVGGVG	TVGGVG	TVGGVG	SVGGVG	SVGGVG
3	10.5%	8.7%	6.3%	6.8%	6.1%	8.2%	7.6%	10.1%	8.6%	9.2%	6.7%	7.0%

cyclo-(VVGGVG)

cyclo-(VVGGAG)

cyclo-(SVGGVG)

Figure S1. NIP figures of all cyclic hexapeptides analyzed in the paper.

AVGGVG

GLY ALA VAL GLY GLY

H H8 HA HA HG#

 Res #
 Dihedral
 Upper
 Lower
 Range of violations

 19
 5
 VAL (φ)
 -90.0
 -150.0
 -89.999 to -87.426

HG# 4.1 HA# 3.6
 Dihedral
 Upper
 Lower
 Range of violations

 VAL (φ)
 -90.0
 -150.0
 -89.886 to -87.434

VAL ALA GLY

IVGGVG

Simulated annealing starting from initial structure #1

Number of violations of the predicted top cluster

4.312-4

Range of violations -89.843 to -37.581

LVGGVG

TVGGVG

VAL

Violations

 Violations

 m1 Res 0 Res ame 2 Acong

 1
 104 Mgr

 4
 Ggr

 4
 Ggr

 4
 Ggr

 4
 Ggr

 4
 Ggr

 Res #
 Dihedral
 Upper
 Lower
 Range of violations

 18
 1
 THR (\$)
 -90.0
 -150.0
 -151.143 to -150.022; -89.061

 67
 5
 VAL (\$)
 -90.0
 -150.0
 -89.931 to -87.039

1 Car	

								Violati	ons	
Upper	Lower	Range of violations		Res #	Res name 1	Atom 1	Res #	Res name 2	Atom 2	U
5.6	0.0	5.631-8.020	17	4	GLY	HAI	1	THR	HG#	Γ
3.6	0.0	3.790-4.462	17	2	VAL	н	1	THR	HB	Г
3.5	0.0	3.645-3.934	11	6	GLY	н	5	VAL	HA	Г
3.4	0.0	3.536-3.624	11	2	VAL	н	2	VAL	HB	Г
3.7	0.0	3.724-3.941	6	5	VAL	н	5	VAL	HB	Г
3.5	0.0	3.599-3.656	2	2	VAL	н	1	THR	н	Г
4.6	0.0	4.609-4.646	1	3	GLY	н	4	GLY	н	Г
4.2	0.0	4.319-4.396		La				I		
4.1	0.0	4.392-4.660	- 1-2	Ret	s Dihed	ral	Upper	Lower	R	*
3.8	0.0	4 385-4 444	10	2 1	THR	φ)	-90.0	-150.0	-152.02	
4.6	0.0	4.608	65	5 5	VAL	φ)	-90.0	-150.0	-	89
3.5	0.0	3.572								
4.7	0.0	4.819								

					violati	UIIS					
1	Res #	Res name 1	Atom 1	Res #	Res name 2	Atom 2	Upper	Lower	Range of violations		6
7	4	GLY	HAI	1	THR	HG#	5.6	0.0	5.646-6.744	53	ľ
7	2	VAL	н	1	THR	HB	3.6	0.0	3.707-4.044	10	Ī
1	6	GLY	н	5	VAL	HA	3.4	0.0	3.493-3.608	9	Ī
1	2	VAL	н	2	VAL	HB	3.5	0.0	3.641-3.830	1	ľ
i	5	VAL	н	5	VAL	HB	3.7	0.0	3.735-3.856	1	ľ
1	2	VAL	н	1	THR	н	4.6	0.0	4.621-4.627	1	ľ
L	3	GLY	н	4	GLY	н	3.8	0.0	4.308		
	Res	# Dihed	Iral I	Upper	Lower	R	ange of	l violatio	205	3	7
1	1	THR	φ)	-90.0	-150.0	-152.02	7 to -1	150.312	-89.718	9	1
ŝ	5	VAL	(d)	-90.0	-150.0	-	89.975	to -86.8	81	-	

Simulated annealing starting from initial structure #2

						Vio	lati	ons			
Г	Res #	Res	name 1	Atom 1	Res #	Res n	ame 2	Atom	2 Upper	Lower	Range of vic
53	2		VAL	н	1	T	1R	HB	3.6	0.0	3.601-4
10	4		GLY	HA#	1	TP	HR .	HG#	5.6	0.0	5.604-6
9	2		VAL	н	1	T	-IR	н	4.6	0.0	4.609-4
1	3		GLY	н	2	V	AL	HGI	4.2	0.0	4.31
1	2		VAL	н	2	V	AL	HB	3.5	0.0	3.73
1	1	<u> </u>	THR	н	1	TR	HR	HG#	4.1	0.0	4.567
	Re	5.8	Dif	edral	U	pper	Low	ver	Rar	nge of v	iolations
3	7	1	TH	IR (ф)	-	90.0	-15	0.0	-175.136	to -150	0.161; -87.84
9	1	5	V	uL (φ)	-	90.0	-15	0.0	-87	.369 to	-42.814

Ramachandran Plots	т	v	G	G	v	G
100 simulated annealing structures starting from 51			e 🦎 🕴			2 v p
100 simulated annealing structures starting from \$2		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¢ *		-	۰ ۲ ۲
Cluster 1 from BE-META simulation		e	e 9		·	- P

Number of violations of the predicted top cluster

Figure S2. Simulated annealing results of P7, P6, V1A, V1I, V1L, V1T, and V1S using the distance and dihedral restraints derived from the experimental NOEs and J-couplings, along with the number of violations of the top clusters from the BE-META simulations. Throughout the simulated annealing protocol, NOE-based distance restraints (Tables S6, S9, S12, S15, S18, S21, and S24) were applied to the peptide with a force constant of 1,000 kJ/mol/rad² with the lower bounds changed to 0 Å. When there is degeneracy, the longer or shorter NOE-based distance restraints were kept in the simulated annealing simulations. From the J-coupling values, additional restraints are placed on the dihedral angles. For each CP, two different initial structures, S1 and S2, were first energy minimized in vacuum. Next, beginning with the minimized structure, 100 simulations were performed with different initial velocities and each replica was annealed from 300 K to 800 K in vacuum for 200 ps in an NVT ensemble. After annealing, each replica was solvated using pre-equilibrated water molecules. The box dimensions were chosen such that the minimum distance between the box walls and any atom of the CP was 1.0 nm. The entire system was then energy minimized using the steepest descent algorithm to remove any bad contacts. Next, the system underwent a 500 ps NVT equilibration at 300 K. Lastly, the system was annealed from 300 K to 500 K and then subsequently down to 5K over 1 ns in an NPT ensemble. The temperature was regulated using the v-rescale thermostat, with a coupling time constant of 0.1 ps. The pressure was regulated using the Berendsen barostat, with a time coupling constant of 2.0 ps and isothermal compressibility of 4.5×10⁻⁵ bar⁻¹. The leapfrog algorithm with an integration time step of 2 fs was used to evolve the dynamics of the system. The LINCS algorithm was used to constrain all peptide bonds containing hydrogen to their equilibration values. For vacuum simulation steps, all non-bonded (electrostatics and van der Waals) interaction cutoffs were set to 999.0 nm and the neighbor list was only constructed once and never updated. For simulation steps in solvent, all non-bonded interactions as well as neighbor searching were truncated at 1.0 nm. Long-range electrostatics beyond the 1.0 nm were calculated using the particle mesh Ewald (PME) method with a Fourier spacing of 0.12 nm and an interpolation order of 4. To account for truncation of the Lennard-Jones interactions, a long-range analytic dispersion correction was applied to both energy and pressure. After all simulation steps, the final frames from each of the 100 trajectories were used to calculate distance and dihedral violations.

(B) V1L

Figure S3. (A) The configurational entropy of V1L. $TS_P^{conf} = TS_P^{conf}_{self} - TS_P^{conf}_{mutual}$. (B) The configurational selfentropy for each dihedral degree of freedom of V1L. (C) The configurational self-entropy for each dihedral degree of freedom of V1I. Note that the dihedrals shown here were the chosen n-3 independent torsional degrees of freedom in the internal coordinate system of the molecule used in the PARENT program. (D) The distributions of the N-C_{α}-C_{β}-C_{γ} (χ_1) dihedral of the first residue for V1L (dihedral 12) and the distribution of N-C_{α}-C_{β}-C_{γ 2} of the first residue for V1I (dihedral 6). (E) Decomposition of ΔH_P^{dih} into contributions of each dihedral for V1L and V1I. The major contributions to ΔH_P^{dih} come from dihedrals 5, 6, 19, 21, and 25, which are just the dihedrals ϕ , ϕ , χ_1' , ψ , and ψ' of the first residue.

II. NMR data tables and spectra

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
9.07	3Gly-NH	3 77	3Glv-Haa
9.07	3Gly-NH	<u> </u>	3Gly-Hab
8.97	6Gly-NH	3 74	6Gly-Haa
8.97	6Gly-NH	4 13	6Gly-Hab
8.15	4Gly-NH	3.65	4Gly-Haa
8.65	5Val-NH	4 15	5Val-Ha
8 38	2Val-NH	3 90	2Val-Ha
8.15	4Gly-NH	4 34	4Gly-Hab
7 39	1Val-NH	4.34	1Val-Ha
8.66	5Val-NH	2.05	5Val-Hb
8.37	2Val-NH	1.98	2Val-Hb
7 39	1Val-NH	2 20	1Val-Hb
8.66	5Val-NH	0.96	5Val-Hga
8.37	2Val-NH	0.93	2Val-Hga
7 39	1Val-NH	0.55	2 Val-Hga
7 39	1Val-NH	0.87	1Val-Hoh
837	2Val-NH	1.03	2Val-Hgb
<u> </u>	1Val-Ha	2 19	1Val-Hb
4.15	5Val-Ha	2.15	5Val-Hb
3.90	2Val-Ha	1.98	2Val-Hb
3.90	2 Val-Ha	0.93	2 Val-110
3.90	2 Val-Ha	1.03	2Val-Hgh
<u> </u>	1Val-Ha	0.69	1Val-Hga
4.47	1 Val-Ha	0.09	1 Val-Hgb
4.47	5Val-Ha	0.88	5Val-Hga
9.07	3Gly-NH	3.90	2Val-Ha
8.15	4Gly-NH	4 14	2 Val-Hab
8.66	5Val-NH	3.64	4Gly-Haa
8.00	6Gly-NH	4 16	5Val-Ha
7 39	1Val-NH	4.10	6Gly-Hab
8 38	2Val-NH	4.13	1Val-Ha
8.15	4Gly-NH	3 77	3Gly-Haa
7 39	1Val-NH	3.73	6Gly-Haa
8.66	5Val-NH	4 34	4Gly-Hab
8 37	2Val-NH	2.20	1Val-Hh
8 37	2Val-NH	0.68	1Val-Høa
9.07	3Glv-NH	0.00	2Val-Hga
3 90	2Val-Ha	0.69	1Val-Høa
8.66	5Val-NH	4 33	4Gly-Hab
8.00	6Glv-NH	2.05	5Val-Hh
9.07	3Gly-NH	1.98	2Val-Hb
9.07	3Glv-NH	1.04	2Val-Høh
8.97	6Gly-NH	7.39	1Val-NH
9.07	3Gly-NH	8.15	4Gly-NH
8.38	2Val-NH	7.39	1Val-NH
8.66	5Val-NH	8.15	4Gly-NH
8.15	4Glv-NH	0.69	1Val-Hga
8.15	4Gly-NH	3.91	2Val-Ha
8.66	5Val-NH	0.69	1Val-Hga

Table S4. NOEs for P7, cyclo-(VVGGVG).

8.14	4Gly-NH	0.87	1Val-Hgb
3.64	4Gly-Haa	0.69	1Val-Hga
3.64	4Gly-Haa	0.88	1Val-Hgb

Table S5. *J*-coupling values and associated torsional restraints for P7, cyclo-(VVGGVG). If the coupling constant was ≤ 5 Hz, a dihedral restraint of $-60^{\circ} \pm 30^{\circ}$ was assigned; if the coupling constant was ≥ 8 Hz, a dihedral restraint of $-120^{\circ} \pm 30^{\circ}$ was assigned.

Residue	${}^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
V_1	8.1	-120 ± 30
V_2	4.7	-60 ± 30
G ₃	6.3	
G_4	7.3	
V_5	8.7	-120 ± 30
G ₆	6.2	

Table S6. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for P7, cyclo-(VVGGVG). The list was generated using CNSsolve (1, 2). In the list of distance restraints, the first number was the distance value between the two atoms in Å, and the second and third numbers were subtracted and added from the first number to obtain the lower and upper bounds, respectively. In the list of dihedral restraints, the first number was the energy constant (1.0), the second the value of the dihedral in degrees, the third the range around the dihedral (\pm), and the last the exponent of the restraining function.

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) 3.60.70.7assign (resid 1 and name HN) (resid 1 and name HB) 4.30.90.9assign (resid 1 and name HN) (resid 1 and name HG1#) 3.70.70.7assign (resid 1 and name HN) (resid 1 and name HG2#) 4.10.80.8assign (resid 1 and name HN) (resid 6 and name HA2) 3.50.70.7assign (resid 1 and name HN) (resid 6 and name HA2) 3.50.70.7assign (resid 1 and name HN) (resid 6 and name HA1) 4.20.80.8assign (resid 1 and name HA) (resid 1 and name HG1#) 3.30.70.7assign (resid 1 and name HA) (resid 1 and name HG2#) 2.80.60.6assign (resid 1 and name HA) (resid 1 and name HG2#) 2.60.50.5

```
assign (resid 2 and name HN) (resid 2 and name HA) 3.5 0.7 0.7
assign (resid 2 and name HN) (resid 2 and name HB) 3.0 0.6 0.6
assign (resid 2 and name HN) (resid 2 and name HG2#) 4.1 0.8 0.8
assign (resid 2 and name HN) (resid 2 and name HG1#) 3.2 0.6 0.6
assign (resid 2 and name HN) (resid 1 and name HA) 2.9 0.6 0.6
assign (resid 2 and name HN) (resid 1 and name HB) 3.1 0.6 0.6
assign (resid 2 and name HN) (resid 1 and name HB) 3.1 0.6 0.6
assign (resid 2 and name HN) (resid 1 and name HB) 3.1 0.6 0.6
assign (resid 2 and name HN) (resid 1 and name HG1#) 4.1 0.8 0.8
assign (resid 2 and name HN) (resid 1 and name HG1#) 2.9 0.6 0.6
assign (resid 2 and name HA) (resid 2 and name HG1#) 2.7 0.5 0.5 0.5
assign (resid 2 and name HA) (resid 1 and name HG1#) 2.7 0.5 0.5
assign (resid 2 and name HA) (resid 1 and name HG1#) 2.7 0.5 0.5
assign (resid 2 and name HA) (resid 1 and name HG1#) 2.7 0.5 0.5
assign (resid 2 and name HA) (resid 1 and name HG1#) 2.7 0.5 0.5
assign (resid 2 and name HA) (resid 1 and name HG1#) 2.7 0.5 0.5
```

assign (resid 3 and name HN) (resid 3 and name HA1) 2.90.60.6assign (resid 3 and name HN) (resid 3 and name HA2) 4.20.80.8assign (resid 3 and name HN) (resid 2 and name HA) 2.70.50.5assign (resid 3 and name HN) (resid 2 and name HG2#) 4.00.80.8assign (resid 3 and name HN) (resid 4 and name HN) 3.50.70.7

assign (resid 4 and name HN) (resid 4 and name HA1) $3.3\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 4 and name HA2) $3.5\ 0.7\ 0.7$

assign (resid 4 and name HN) (resid 3 and name HA2) $3.7\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 3 and name HA1) $3.9\ 0.8\ 0.8$ assign (resid 4 and name HN) (resid 1 and name HG1#) $4.1\ 0.8\ 0.8$

assign (resid 5 and name HN) (resid 5 and name HA) $3.6\ 0.7\ 0.7$ assign (resid 5 and name HN) (resid 5 and name HB) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG1#) $3.6\ 0.7\ 0.7$ assign (resid 5 and name HN) (resid 4 and name HA2) $2.9\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HA2) $2.9\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HN) $5.1\ 1.0\ 1.0$ assign (resid 5 and name HA) (resid 5 and name HG1#) $2.7\ 0.5\ 0.5$ assign (resid 5 and name HA) (resid 5 and name HB) $3.2\ 0.6\ 0.6$

assign (resid 6 and name HN) (resid 6 and name HA1) 2.90.60.6 assign (resid 6 and name HN) (resid 6 and name HA2) 2.70.50.5 assign (resid 6 and name HN) (resid 5 and name HA) 2.70.50.5 assign (resid 6 and name HN) (resid 1 and name HN) 3.80.80.8

Phi dihedral angle constraints:

assign (resid 6 and name c) (resid 1 and name n) (resid 1 and name ca) (resid 1 and name c) 1.0 -120.0 30.0 2 assign (resid 1 and name c) (resid 2 and name n)

(resid 2 and name ca) (resid 2 and name c) 1.0 -60.0 30.0 2 assign (resid 4 and name c) (resid 5 and name n)

(resid 5 and name ca) (resid 5 and name c) 1.0 -120.0 30.0 2

Table S7. NOEs for P6, cyclo-(VVGVGG).

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
8.96	5Gly-NH	3.86	5Gly-Haa
8.96	5Gly-NH	4.07	5Gly-Hab
8.02	2Val-NH	4.18	2Val-Ha
7.80	6Gly-NH	3.91	6Gly-Haa
7.80	6Gly-NH	4.24	6Gly-Hab
8.34	4Val-NH	3.94	4Val-Ha
8.33	1Val-NH	4.00	1Val-Ha
8.29	3Gly-NH	3.85	3Gly-Haa
8.29	3Gly-NH	4.05	3Gly-Hab
8.28	3Gly-NH	2.09	2Val-Hb
8.96	5Gly-NH	0.94	4Val-Hga
8.97	5Gly-NH	2.05	4Val-Hb
8.34	4Val-NH	2.04	4Val-Hb
8.32	1Val-NH	2.11	1Val-Hb
8.02	2Val-NH	2.90	2Val-Hb
8.32	1Val-NH	1.00	1Val-Hga
8.02	2Val-NH	0.91	2Val-Hga
8.34	4Val-NH	0.94	4Val-Hga
4.17	2Val-Ha	2.08	2Val-Hb
4.00	1Val-Ha	2.12	1Val-Hb
3.94	4Val-Ha	2.05	4Val-Hb
4.17	2Val-Ha	0.92	2Val-Hga
4.00	1Val-Ha	1.00	1Val-Hga
3.94	4Val-Ha	1.00	4Val-Hgb
3.93	4Val-Ha	0.94	4Val-Hga
8.32	1Val-NH	4.24	6Gly-Hab
8.29	3Gly-NH	4.18	2Val-Ha

8.03	2Val-NH	4.01	1Val-Ha
7.80	6Gly-NH	4.07	5Gly-Hab
8.97	5Gly-NH	3.94	4Val-Ha
8.34	4Val-NH	3.85	3Gly-Haa
8.34	4Val-NH	4.05	3Gly-Hab
8.96	5Gly-NH	7.80	6Gly-NH
8.33	1Val-NH	7.80	6Gly-NH
8.32	1Val-NH	8.03	2Val-NH
8.96	5Gly-NH	8.34	4Val-NH
8.29	3Gly-NH	8.03	2Val-NH
8.02	2Val-NH	3.91	6Gly-Haa

Table S8. J-coupling values and associated torsional restraints for P6, cyclo-(VVGVGG).

Residue	${}^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
\mathbf{V}_1	7.9	
V_2	9.5	-120 ± 30
G ₃	5.8	
V_4	6.5	
G ₅	6.8	
G ₆	-	

Table S9. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for P6, cyclo-(VVGVGG).

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) $3.5 \ 0.7 \ 0.7$ assign (resid 1 and name HN) (resid 1 and name HB) $3.2 \ 0.6 \ 0.6$ assign (resid 1 and name HN) (resid 1 and name HG2#) $3.0 \ 0.6 \ 0.6$ assign (resid 1 and name HA) (resid 1 and name HB) $2.9 \ 0.6 \ 0.6$ assign (resid 1 and name HA) (resid 1 and name HB) $2.9 \ 0.6 \ 0.6$ assign (resid 1 and name HA) (resid 1 and name HG2#) $2.6 \ 0.5 \ 0.5$ assign (resid 1 and name HN) (resid 6 and name HN) $4.2 \ 0.8 \ 0.8$ assign (resid 1 and name HN) (resid 2 and name HN) $3.3 \ 0.7 \ 0.7$ assign (resid 1 and name HN) (resid 6 and name HA1) $3.5 \ 0.7 \ 0.7$

assign (resid 2 and name HA) (resid 2 and name HB) $3.0\ 0.6\ 0.6$ assign (resid 2 and name HN) (resid 2 and name HA) $3.3\ 0.7\ 0.7$ assign (resid 2 and name HN) (resid 2 and name HB) $3.2\ 0.6\ 0.6$ assign (resid 2 and name HN) (resid 2 and name HG1#) $3.5\ 0.7\ 0.7$ assign (resid 2 and name HA) (resid 2 and name HG1#) $2.7\ 0.5\ 0.5$ assign (resid 2 and name HN) (resid 6 and name HA2) $4.3\ 0.9\ 0.9$ assign (resid 2 and name HN) (resid 1 and name HA) $3.6\ 0.7\ 0.7$

assign (resid 3 and name HN) (resid 3 and name HA1) $3.0\ 0.6\ 0.6$ assign (resid 3 and name HN) (resid 3 and name HA2) $3.4\ 0.7\ 0.7$ assign (resid 3 and name HN) (resid 2 and name HB) $3.9\ 0.8\ 0.8$ assign (resid 3 and name HN) (resid 2 and name HN) $3.7\ 0.7\ 0.7$ assign (resid 3 and name HN) (resid 2 and name HN) $3.7\ 0.7\ 0.7$

assign (resid 4 and name HN) (resid 4 and name HA) $3.2\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 4 and name HB) $3.1\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 4 and name HG1#) $3.9\ 0.8\ 0.8$ assign (resid 4 and name HA) (resid 4 and name HB) $3.1\ 0.6\ 0.6$ assign (resid 4 and name HA) (resid 4 and name HG2#) $2.8\ 0.6\ 0.6$ assign (resid 4 and name HA) (resid 4 and name HG2#) $2.8\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 3 and name HA1) $3.2\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 3 and name HA2) $2.9\ 0.6\ 0.6$

assign (resid 5 and name HN) (resid 5 and name HA1) 3.10.60.6assign (resid 5 and name HN) (resid 5 and name HA2) 3.60.70.7assign (resid 5 and name HN) (resid 6 and name HN) 3.50.70.7assign (resid 5 and name HN) (resid 4 and name HN) 4.10.80.8assign (resid 5 and name HN) (resid 4 and name HG1#) 4.00.80.8assign (resid 5 and name HN) (resid 4 and name HG1#) 4.00.80.8assign (resid 5 and name HN) (resid 4 and name HB) 4.91.01.0assign (resid 5 and name HN) (resid 4 and name HB) 4.91.01.0

assign (resid 6 and name HN) (resid 6 and name HA2) $3.0\ 0.6\ 0.6$ assign (resid 6 and name HN) (resid 6 and name HA1) $3.5\ 0.7\ 0.7$ assign (resid 6 and name HN) (resid 5 and name HA2) $3.7\ 0.7\ 0.7$

Phi dihedral angle constraints:

assign (resid 1 and name c) (resid 2 and name n) (resid 2 and name ca) (resid 2 and name c) 1.0-120.0 30.0 2

Table S10. NOEs for V1I, cyclo-(IVGGVG).

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
9.00	3Gly-NH	3.77	3Gly-Haa
8.92	6Gly-NH	3.73	6Gly-Haa
8.56	5Val-NH	4.14	5Val-Ha
8.14	4Gly-NH	3.68	4Gly-Haa
8.14	4Gly-NH	4.30	4Gly-Hab
7.45	1Ile-NH	4.47	1Ile-Ha
8.99	3Gly-NH	4.13	3Gly-Hab
8.26	2Val-NH	3.94	2Val-Ha
8.92	6Gly-NH	4.11	6Gly-Hab
8.56	5Val-NH	2.05	5Val-Hb
8.56	5Val-NH	0.96	5Val-Hga
8.27	2Val-NH	1.99	2Val-Hb
8.27	2Val-NH	1.00	2Val-Hgb
8.27	2Val-NH	0.93	2Val-Hga
7.46	1Ile-NH	0.86	1Ile-Hd1
7.45	1Ile-NH	0.96	1Ile-Hg2
7.45	1Ile-NH	1.91	1Ile-Hb
7.45	1Ile-NH	1.14	1Ile-Hg1a
4.46	1Ile-Ha	0.86	1Ile-Hd1
4.46	1Ile-Ha	1.91	1Ile-Hb
4.46	1Ile-Ha	1.14	1Ile-Hg1a
4.15	5Val-Ha	2.06	5Val-Hb
1.91	1Ile-Hb	1.14	1Ile-Hg1a
1.99	2Val-Hb	1.03	2Val-Hgb
0.97	1Ile-Hb	1.15	1Ile-Hg1a
0.85	1Ile-Hg2	1.15	1Ile-Hg1a
4.15	5Val-Ha	0.97	5Val-Hga
3.93	2Val-Ha	0.93	2Val-Hga
3.93	2Val-Ha	1.03	2Val-Hgb
3.94	2Val-Ha	2.00	2Val-Hb
9.00	3Gly-NH	3.94	2Val-Ha
8.56	5Val-NH	3.68	4Gly-Haa
8.56	5Val-NH	4.30	4Gly-Hab

8.26	2Val-NH	4.47	1Ile-Ha
8.14	4Gly-NH	3.77	3Gly-Haa
8.14	4Gly-NH	4.13	3Gly-Hab
7.45	1Ile-NH	3.74	6Gly-Haa
7.45	1Ile-NH	4.11	6Gly-Hab
8.92	6Gly-NH	4.14	5Val-Ha
9.00	3Gly-NH	1.98	2Val-Hb
8.92	6Gly-NH	2.05	5Vla-Hb
9.00	3Gly-NH	1.02	2ValHgb
9.00	3Gly-NH	0.93	2Val-Hga
8.27	2Val-NH	1.14	1Ile-Hg1a
8.26	2Val-NH	0.84	1Ile-Hd1
8.26	2Val-NH	1.91	1Ile-Hb
1.91	2Val-Hb	0.85	1Ile-Hb
2.01	1Ile-Hd1	0.93	2Val-Hga
8.27	2Val-NH	7.45	1Ile-NH
9.00	3Gly-NH	8.14	4Gly-NH
8.56	5Val-NH	8.14	4Gly-NH
8.92	6Gly-NH	7.47	1Ile-NH
8.14	4Gly-NH	3.95	2Val-Ha
8.14	4Gly-NH	1.14	1Ile-Hg1a
8.13	4Gly-NH	0.85	1Ile-Hd1
3.67	4Gly-Haa	1.14	1Ile-Hg1a
3.67	4Gly-Haa	0.95	5Val-Hga
3.67	4Gly-Haa	0.85	1Ile-Hd1
2.06	2Val-Hb	0.94	5Val-Hga

Table S11. J-coupling values and associated torsional restraints for V1I, cyclo-(IVGGVG).

Residue	$^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
I_1	8.0	-120 ± 30
V_2	5.1	
G ₃	6.4	
G_4	7.3	
V_5	9.0	-120 ± 30
G ₆	6.2	

Table S12. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for V1I, cyclo-(IVGGVG).

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) 4.60.90.9assign (resid 1 and name HN) (resid 6 and name HA2) 4.20.80.8assign (resid 1 and name HN) (resid 6 and name HA1) 3.50.70.7assign (resid 1 and name HN) (resid 1 and name HD1#) 3.60.70.7assign (resid 1 and name HN) (resid 1 and name HG2#) 3.60.70.7assign (resid 1 and name HN) (resid 1 and name HG2#) 3.60.70.7assign (resid 1 and name HN) (resid 1 and name HG13) 4.10.80.8assign (resid 1 and name HA) (resid 1 and name HG13) 4.10.80.8assign (resid 1 and name HA) (resid 1 and name HD1#) 3.70.70.7assign (resid 1 and name HA) (resid 1 and name HB) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HB) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HB) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HB) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HG13) 4.60.90.9assign (resid 1 and name HB) (resid 1 and name HG13) 3.20.60.6assign (resid 1 and name HB) (resid 1 and name HG13) 3.20.60.5 assign (resid 1 and name HD1#) (resid 1 and name HG13) 2.3 0.5 0.5

assign (resid 2 and name HN) (resid 2 and name HA) $3.2 \ 0.6 \ 0.6$ assign (resid 2 and name HN) (resid 1 and name HA) $2.8 \ 0.6 \ 0.6$ assign (resid 2 and name HN) (resid 2 and name HB) $2.9 \ 0.6 \ 0.6$ assign (resid 2 and name HN) (resid 2 and name HG2#) $2.9 \ 0.6 \ 0.6$ assign (resid 2 and name HN) (resid 2 and name HG1#) $3.6 \ 0.7 \ 0.7$ assign (resid 2 and name HN) (resid 1 and name HG13) $3.9 \ 0.8 \ 0.8$ assign (resid 2 and name HN) (resid 1 and name HD1#) $4.0 \ 0.8 \ 0.8$ assign (resid 2 and name HN) (resid 1 and name HD1#) $4.0 \ 0.8 \ 0.8$ assign (resid 2 and name HN) (resid 1 and name HB) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.2 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG2#) $3.0 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HA) (resid 2 and name HG1#) $3.1 \ 0.6 \ 0.6$ assign (resid 2 and name HB) (resid 2 and name HG2#) $2.9 \ 0.6 \ 0.6$ assign (resid 2 and name HB) (resid 2 and name HG2#) $3.0 \ 0.6 \ 0.6$

assign (resid 3 and name HN) (resid 3 and name HA2) 2.80.60.6assign (resid 3 and name HN) (resid 3 and name HA1) 4.50.90.9assign (resid 3 and name HN) (resid 2 and name HA) 2.50.50.5assign (resid 3 and name HN) (resid 2 and name HB) 4.40.90.9assign (resid 3 and name HN) (resid 2 and name HG2#) 4.10.80.8assign (resid 3 and name HN) (resid 2 and name HG2#) 4.10.80.8assign (resid 3 and name HN) (resid 2 and name HG1#) 3.50.70.7assign (resid 3 and name HN) (resid 4 and name HN) 3.20.60.6

assign (resid 4 and name HN) (resid 4 and name HA1) $3.2\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 4 and name HA2) $3.4\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 3 and name HA2) $3.8\ 0.8\ 0.8$ assign (resid 4 and name HN) (resid 2 and name HA) $4.2\ 0.8\ 0.8$ assign (resid 4 and name HN) (resid 5 and name HA) $3.6\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 1 and name HG13) $3.7\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 1 and name HG13) $5.1\ 0.7\ 0.7$ assign (resid 4 and name HA1) (resid 1 and name HG13) $5.1\ 1.0\ 1.0$ assign (resid 4 and name HA1) (resid 1 and name HG13) $5.1\ 1.0\ 1.0$ assign (resid 4 and name HA1) (resid 1 and name HG13) $5.1\ 1.3\ 1.3$ assign (resid 4 and name HA1) (resid 1 and name HG14) $4.6\ 0.9\ 0.9$

assign (resid 5 and name HN) (resid 5 and name HA) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HA1) $3.0\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HA2) $4.1\ 0.8\ 0.8$ assign (resid 5 and name HN) (resid 5 and name HB) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG1#) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HA) (resid 5 and name HG1#) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HA) (resid 5 and name HG1#) $3.3\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HB) $3.5\ 0.7\ 0.7$ assign (resid 5 and name HB) (resid 5 and name HG1#) $3.0\ 0.6\ 0.6$ assign (resid 5 and name HB) (resid 5 and name HG1#) $3.0\ 0.6\ 0.6$ assign (resid 5 and name HB) (resid 5 and name HG1#) $3.0\ 0.6\ 0.6$

assign (resid 6 and name HN) (resid 6 and name HA2) $2.8 \ 0.6 \ 0.6$ assign (resid 6 and name HN) (resid 6 and name HA1) $3.0 \ 0.6 \ 0.6$ assign (resid 6 and name HN) (resid 5 and name HB) $4.4 \ 0.9 \ 0.9$ assign (resid 6 and name HN) (resid 1 and name HN) $3.6 \ 0.7 \ 0.7$

Phi dihedral angle constraints:

assign (resid 6 and name c) (resid 1 and name n)

(resid 1 and name ca) (resid 1 and name c) 1.0 -120.0 30.0 2 assign (resid 4 and name c) (resid 5 and name n)

(resid 5 and name ca) (resid 5 and name c) 1.0 -120.0 30.0 2

1 able 515. NOI	\pm s loi v IL, cyclo-(I		
Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
8.81	3Gly-NH	3.08	3Gly-Haa
8.81	3Gly-NH	4.04	3Gly-Hab
8.71	6Gly-NH	3.75	6Gly-Haa
8.71	6Gly-NH	4.04	6Gly-Hab
8.42	4Gly-NH	3.97	4Gly-Haa
8.05	5Val-Ha	4.17	5Val-Ha
7.97	2Val-NH	4.16	2Val-Ha
8.32	1Leu-NH	4.34	1Leu-Ha
8.05	5Val-Ha	2.10	5Val-Hb
7.97	2Val-NH	2.03	2Val-Hb
8.32	1Leu-NH	1.65	1Leu-Hba
8.32	1Leu-NH	0.87	1Leu-Hda
7.97	2Val-NH	0.95	2Val-Hgb
8.05	5Val-Ha	0.91	5Val-Hga
4.33	1Leu-Ha	0.86	1Leu-Hda
4.34	1Leu-Ha	1.69	1Leu-Hba
4.18	5Val-Ha	2.11	5Val-Hb
4.16	2Val-Ha	2.04	2Val-Hb
2.04	2Val-Hb	0.93	2Val-Hgb
2.10	5Val-Hb	0.93	5Val-Hga
1.70	1Leu-Hba	0.87	1Leu-Hda
1.64	1Leu-Hbb	0.87	1Leu-Hda
7.97	2Val-NH	0.88	2Val-Hga
4.17	5Val-Ha	0.92	5Val-Hga
4.15	2Val-Ha	0.92	2Val-Hga
4.15	2Val-Ha	0.97	2Val-Hgb
8.81	3Gly-NH	4.16	2Val-Ha
8.71	6Gly-NH	4.17	5Val-Ha
8.42	4Gly-NH	3.80	3Gly-Haa
8.42	4Gly-NH	4.04	3Gly-Hab
8.31	1Leu-NH	3.75	6Gly-Haa
8.32	1Leu-NH	4.05	6Gly-Hab
7.97	2Val-NH	4.34	1Leu-Ha
8.05	5Val-NH	3.97	4Gly-Haa
7.97	2Val-NH	1.67	1Leu-Hba
8.81	3Gly-NH	2.03	2Val-Hb
8.72	6Gly-NH	2.10	5Val-Hb
8.81	3Gly-NH	0.92	2Val-Hgb
8.71	6Gly-NH	0.92	5Val-Hga
4.04	6Gly-Hab	0.92	5Val-Hga
3.97	4Gly-Haa	0.93	5Val-Hga
8.81	3Gly-NH	7.98	2Val-NH
8.71	6Gly-NH	8.05	5Val-NH
8.81	3Gly-NH	8.43	4Val-NH
8.71	6Glv-NH	8.32	1Leu-NH
8.43	4Glv-NH	8.06	5Val-NH
8.32	1Leu-NH	7.98	2Val-NH
8.42	4Glv-NH	0.89	2Val-Hga
3.96	4Glv-Haa	0.87	1Leu-Hda
		,	

Table S13. NOEs for V1L, cyclo-(LVGGVG).

Table S14. J-coupling values and associated torsional restraints for V1L, cyclo-(LVGGVG).

Residue	${}^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
L_1	7.0	
V_2	7.6	
G ₃	5.9	
G_4	5.6	
V_5	9.3	-120 ± 30
G ₆	6.1	

Table S15. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for V1L, cyclo-(LVGGVG).

Distance constraints:

- assign (resid 1 and name HN) (resid 1 and name HA) 3.70.70.7assign (resid 1 and name HN) (resid 6 and name HA1) 4.00.80.8assign (resid 1 and name HN) (resid 6 and name HA2) 2.80.60.6assign (resid 1 and name HN) (resid 2 and name HA2) 2.90.60.6assign (resid 1 and name HN) (resid 1 and name HB2) 2.90.60.6assign (resid 1 and name HN) (resid 1 and name HD1#) 3.70.70.7assign (resid 1 and name HN) (resid 2 and name HD1#) 3.30.70.7assign (resid 1 and name HN) (resid 1 and name HD1#) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HD1#) 3.60.70.7assign (resid 1 and name HA) (resid 1 and name HD1#) 3.00.60.6assign (resid 1 and name HB1) (resid 1 and name HD1#) 3.00.60.6assign (resid 1 and name HB2) (resid 1 and name HD1#) 3.00.60.6
- assign (resid 2 and name HN) (resid 2 and name HA) 3.40.70.7assign (resid 2 and name HN) (resid 1 and name HA) 3.10.60.6assign (resid 2 and name HN) (resid 3 and name HA2) 4.50.90.9assign (resid 2 and name HN) (resid 2 and name HB) 3.00.60.6assign (resid 2 and name HN) (resid 1 and name HB2) 3.40.70.7assign (resid 2 and name HN) (resid 2 and name HB2) 3.40.70.7assign (resid 2 and name HN) (resid 2 and name HG2#) 3.00.60.6assign (resid 2 and name HA) (resid 2 and name HG2#) 2.90.60.6assign (resid 2 and name HB) (resid 2 and name HG2#) 2.90.60.6assign (resid 2 and name HN) (resid 2 and name HG1#) 4.00.80.8assign (resid 2 and name HA) (resid 2 and name HG1#) 2.90.60.6assign (resid 2 and name HA) (resid 2 and name HG1#) 2.90.60.6
- assign (resid 3 and name HN) (resid 3 and name HA1) 2.80.60.6assign (resid 3 and name HN) (resid 3 and name HA2) 3.40.70.7assign (resid 3 and name HN) (resid 2 and name HA) 2.60.50.5assign (resid 3 and name HN) (resid 2 and name HG2#) 3.50.70.7assign (resid 3 and name HN) (resid 2 and name HG2#) 4.20.80.8assign (resid 3 and name HN) (resid 4 and name HN) 3.30.70.7assign (resid 3 and name HN) (resid 2 and name HN) 3.30.70.7assign (resid 3 and name HN) (resid 4 and name HN) 3.30.70.7

```
assign (resid 4 and name HN) (resid 4 and name HA1) 2.60.50.5
assign (resid 4 and name HN) (resid 3 and name HA1) 3.50.70.7
assign (resid 4 and name HN) (resid 3 and name HA2) 3.20.60.6
assign (resid 4 and name HN) (resid 5 and name HA2) 4.20.80.8
assign (resid 4 and name HN) (resid 2 and name HG1#) 4.50.90.9
assign (resid 4 and name HN) (resid 5 and name HG1#) 3.40.70.7
assign (resid 4 and name HA1) (resid 5 and name HG2#) 4.40.90.9
assign (resid 4 and name HA1) (resid 5 and name HG2#) 4.40.90.9
```

```
assign ( resid 5 and name HN ) ( resid 5 and name HA ) 4.10.80.8 assign ( resid 5 and name HN ) ( resid 4 and name HA1 ) 2.90.60.6 assign ( resid 5 and name HN ) ( resid 6 and name HA2 ) 4.30.90.9
```

assign (resid 5 and name HN) (resid 5 and name HB) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG2#) $3.1\ 0.6\ 0.6$ assign (resid 5 and name HA) (resid 5 and name HB) $3.6\ 0.7\ 0.7$ assign (resid 5 and name HB) (resid 5 and name HG2#) $3.0\ 0.6\ 0.6$ assign (resid 5 and name HA) (resid 5 and name HG2#) $3.1\ 0.6\ 0.6$

assign (resid 6 and name HN) (resid 6 and name HA1) 2.8 0.6 0.6 assign (resid 6 and name HN) (resid 6 and name HA2) 3.3 0.7 0.7 assign (resid 6 and name HN) (resid 5 and name HA) 2.6 0.5 0.5 assign (resid 6 and name HN) (resid 5 and name HB) 4.2 0.8 0.8 assign (resid 6 and name HN) (resid 5 and name HG2#) 3.6 0.7 0.7 assign (resid 6 and name HN) (resid 5 and name HG2#) 3.6 0.7 0.7 assign (resid 6 and name HN) (resid 5 and name HG2#) 3.7 0.7 0.7 assign (resid 6 and name HN) (resid 1 and name HN) 3.7 0.7 0.7 assign (resid 6 and name HA2) (resid 5 and name HG2#) 8.0 1.6 0.0

Phi dihedral angle constraints:

assign (resid 4 and name c) (resid 5 and name n) (resid 5 and name ca) (resid 5 and name c) 1.0-120.0 30.0 2

Table S16. NOEs for V1T, cyclo-(TVGGVG).

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
8.97	6Gly-NH	3.80	6Gly-Haa
8.97	6Gly-NH	4.10	6Gly-Hab
8.90	3Gly-NH	3.87	3GLy-Haa
8.90	3Gly-NH	4.03	3GLy-Hab
8.42	5Val-NH	4.07	5Val-Ha
8.14	2Val-NH	4.01	2Val-Ha
7.96	4Gly-NH	3.74	4GLy-Haa
7.96	4Gly-NH	4.22	4GLy-Hab
7.74	1Thr-NH	4.52	1Thr-Ha
7.74	1Thr-NH	4.26	1THr-Hb
8.14	2Val-NH	2.03	2Val-Hb
8.43	5Val-NH	2.04	5Val-Hb
7.74	1Thr-NH	1.06	1Thr-Hg1
8.15	2Val-NH	1.01	2Val-Hgb
8.15	2Val-NH	0.93	2Val-Hga
8.43	5Val-NH	0.97	5Val-Hgb
8.43	5Val-NH	0.92	5Val-Hga
4.51	1Thr-Ha	1.06	1Thr-Hg1
4.25	1Thr-Hb	1.06	1Thr-Hg1
4.07	5Val-Ha	0.98	5Val-Hgb
4.07	5Val-Ha	0.93	5Val-Hga
4.02	2Val-Ha	1.01	2Val-Hgb
4.02	2Val-Ha	0.93	2Val-Hga
4.03	2Val-Ha	2.02	2Val-Ha
4.07	5Val-Ha	2.04	5Val-Hb
4.21	4Gly-Hab	3.74	4Gly-Haa
4.51	1Thr-Ha	4.26	1Thr-Hb
4.10	6Gly-Hab	3.80	6Gly-Haa
8.43	5Val-NH	3.74	4Gly-Haa
8.43	5Val-NH	4.23	4Gly-Hab
8.14	2Val-NH	4.26	1Thr-Hb
8.14	2Val-NH	4.51	1Thr-Ha
7.96	4Gly-NH	3.87	3Gly-Haa

7.96	4Gly-NH	4.04	3GLy-Hab
7.74	1Thr-NH	3.80	6Gly-Haa
7.75	1Thr-NH	4.10	6Gly-Hab
8.96	6Gly-NH	4.06	5Val-Ha
8.90	3Gly-NH	2.03	2Val-Hb
8.97	6Gly-NH	2.04	5Val-Hb
8.97	6Gly-NH	0.92	5Val-Hga
8.90	3Gly-NH	0.94	2Val-Hga
8.90	3Gly-NH	1.00	2Val-Hgb
3.74	4Gly-Haa	0.95	5Val-Hga
3.87	3Gly-Haa	0.93	2Val-Hga
8.97	6Gly-NH	7.75	1Thr-NH
8.90	3Gly-NH	7.96	4Gly-NH
8.90	3Gly-NH	8.15	2Val-NH
8.97	6Gly-NH	8.44	5Val-NH
8.42	5Val-NH	7.96	4Gly-NH
8.15	2Val-NH	7.74	1Thr-NH
3.74	4Gly-Haa	1.06	1Thr-Hg1

Table S17. J-coupling values and associated torsional restraints for V1T, cyclo-(TVGGVG).

Residue	$^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
T_1	8.1	-120 ± 30
V_2	6.1	
G ₃	6.1	
G_4	6.8	
V_5	8.0	-120 ± 30
G ₆	6.4	

Table S18. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for V1T, cyclo-(TVGGVG).

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) 3.2 0.6 0.6 assign (resid 1 and name HN) (resid 1 and name HB) 4.0 0.8 0.8 assign (resid 1 and name HN) (resid 6 and name HA2) 3.9 0.8 0.8 assign (resid 1 and name HN) (resid 6 and name HA1) 3.3 0.7 0.7 assign (resid 1 and name HN) (resid 1 and name HG1) 3.4 0.7 0.7 assign (resid 1 and name HA) (resid 1 and name HG1) 4.1 0.8 0.8 assign (resid 1 and name HB) (resid 1 and name HG1) 4.4 0.9 0.9 assign (resid 1 and name HA) (resid 1 and name HB) 3.9 0.8 0.8 assign (resid 2 and name HN) (resid 2 and name HA) 3.5 0.7 0.7 assign (resid 2 and name HN) (resid 1 and name HB) 3.0 0.6 0.6 assign (resid 2 and name HN) (resid 1 and name HA) 2.9 0.6 0.6 assign (resid 2 and name HN) (resid 2 and name HB) 2.9 0.6 0.6 assign (resid 2 and name HN) (resid 2 and name HG1#) 3.0 0.6 0.6 assign (resid 2 and name HN) (resid 2 and name HG2#) 3.4 0.7 0.7 assign (resid 2 and name HA) (resid 2 and name HG1#) 3.2 0.6 0.6 assign (resid 2 and name HA) (resid 2 and name HG2#) 3.2 0.6 0.6 assign (resid 2 and name HA) (resid 2 and name HB) 3.3 0.7 0.7 assign (resid 2 and name HN) (resid 1 and name HN) 3.8 0.8 0.8

assign (resid 3 and name HN) (resid 3 and name HA2) 2.90.60.6 assign (resid 3 and name HN) (resid 3 and name HN) 2.60.50.5 assign (resid 3 and name HN) (resid 2 and name HB) 4.10.80.8

assign (resid 3 and name HN) (resid 2 and name HG2#) 3.5 0.7 0.7 assign (resid 3 and name HN) (resid 2 and name HG1#) 4.1 0.8 0.8 assign (resid 3 and name HN) (resid 4 and name HN) 3.2 0.6 0.6 assign (resid 3 and name HN) (resid 2 and name HN) 4.1 0.8 0.8

assign (resid 4 and name HN) (resid 4 and name HA1) $3.3\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 4 and name HA2) $3.4\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 3 and name HA2) $3.8\ 0.8\ 0.8$ assign (resid 4 and name HN) (resid 3 and name HA1) $3.5\ 0.7\ 0.7$ assign (resid 4 and name HA1) (resid 1 and name HA1) $4.7\ 0.9\ 0.9$ assign (resid 4 and name HA2) (resid 4 and name HA1) $2.3\ 0.5\ 0.5$

assign (resid 5 and name HN) (resid 5 and name HA) $3.2\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HA1) $2.9\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 4 and name HA2) $3.6\ 0.7\ 0.7$ assign (resid 5 and name HN) (resid 5 and name HB) $3.1\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG1#) $3.1\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG1#) $3.1\ 0.6\ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG1#) $3.7\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HG2#) $3.7\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HG1#) $3.3\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HG2#) $3.4\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HG2#) $3.4\ 0.7\ 0.7$ assign (resid 5 and name HA) (resid 5 and name HB) $3.3\ 0.7\ 0.7$

assign (resid 6 and name HN) (resid 6 and name HA2) 2.90.60.6assign (resid 6 and name HN) (resid 6 and name HA1) 3.20.60.6assign (resid 6 and name HN) (resid 5 and name HA) 2.80.60.6assign (resid 6 and name HN) (resid 5 and name HB) 4.20.80.8assign (resid 6 and name HN) (resid 5 and name HG2#) 3.80.80.8assign (resid 6 and name HA1) (resid 6 and name HG2#) 3.00.60.6assign (resid 6 and name HA1) (resid 6 and name HA2) 3.00.60.6assign (resid 6 and name HN) (resid 1 and name HN) 3.30.70.7assign (resid 6 and name HN) (resid 5 and name HN) 4.00.80.8

Phi dihedral angle constraints:

assign (resid 6 and name c) (resid 1 and name n)

(resid 1 and name ca) (resid 1 and name c) 1.0 -120.0 30.0 2 assign (resid 4 and name c) (resid 5 and name n)

(resid 5 and name ca) (resid 5 and name c) 1.0 -120.0 30.0 2

Table S19. NOEs for V1S, cyclo-(SVGGVG).

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
8.93	6Gly-NH	3.82	6Gly-Haa
8.93	6Gly-NH	4.08	6Gly-Hab
8.83	3Gly-NH	3.88	3Gly-Haa
8.83	3Gly-NH	4.01	3Gly-Hab
8.29	5Val-NH	4.10	5Val-Ha
8.19	2Val-NH	4.08	2Val-NH
8.09	4Gly-NH	3.84	4Gly-Haa
8.10	1Ser-NH	4.54	1Ser-Ha
8.09	4Gly-NH	4.13	4Gly-Hab
8.10	1Ser-NH	3.92	1Ser-Hbb
8.29	5Val-NH	2.05	5Val-Hb
8.19	2Val-NH	2.05	2Val-Hgb
8.19	2Val-NH	0.99	2Val-Hgb
8.19	2Val-NH	0.93	2Val-Hga
8.29	5Val-NH	0.97	5Val-Hgb

8.29	5Val-NH	0.93	5Val-Hgb
2.05	5Val-Hb	0.95	5Val-Hga
4.08	2Val-Ha	0.98	2Val-Hgb
4.10	5Val-Ha	2.06	5Val-Hb
4.08	2Val-Ha	0.93	2Val-Hga
4.10	5Val-Ha	0.93	5Val-Hga
3.93	1Ser-Hbb	4.54	1Ser-Ha
3.83	1Ser-Hba	4.54	1Ser-Hba
2.04	2Val-Hb	1.00	2Val-Hb
8.83	3Gly-NH	4.08	2Val-Ha
8.29	5Val-NH	3.84	4Gly-Haa
8.09	1Ser-NH	4.08	6Gly-Hab
8.09	4Gly-NH	4.00	3Gly-Hab
8.19	2Val-NH	4.53	1Ser-Ha
8.19	2Val-NH	3.88	3Gly-Haa
8.19	2Val-NH	3.92	1Ser-Hbb
8.82	3Gly-NH	0.92	2Val-Hga
8.83	3Gly-NH	0.98	2Val-Hgb
8.93	6Gly-NH	0.92	5Val-Hga
8.83	3Gly-NH	2.04	2Val-Hga
8.93	6Gly-NH	2.06	5Val-Hb
8.93	6Gly-NH	8.10	1Ser-NH
8.82	3Gly-NH	8.09	4Gly-NH
8.82	3Gly-NH	8.20	2Val-NH
8.93	6Gly-NH	8.30	5Val-NH
8.28	5Val-NH	8.09	4Gly-NH
8.19	2Val-NH	8.09	1Ser-NH

Table S20. J-coupling values and associated torsional restraints for V1S, cyclo-(SVGGVG).

Residue	${}^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
S_1	_	
V_2	6.2	
G ₃	6.3	
G_4	_	
V_5	8.3	-120 ± 30
G ₆	6.0	

Table S21. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for V1S, cyclo-(SVGGVG).

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) $3.2\ 0.6\ 0.6$ assign (resid 1 and name HN) (resid 1 and name HB1) $3.7\ 0.7\ 0.7$ assign (resid 1 and name HN) (resid 6 and name HA2) $3.0\ 0.6\ 0.6$ assign (resid 1 and name HB1) (resid 1 and name HA) $3.4\ 0.7\ 0.7$ assign (resid 1 and name HB2) (resid 1 and name HA) $3.6\ 0.7\ 0.7$

assign (resid 2 and name HN) (resid 2 and name HA) 3.40.70.7assign (resid 2 and name HN) (resid 1 and name HB1) 3.10.60.6assign (resid 2 and name HN) (resid 1 and name HA) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HB) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HB) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HG2#) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HG2#) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HG2#) 3.20.60.6 assign (resid 2 and name HA) (resid 2 and name HG1#) $3.0\ 0.6\ 0.6$ assign (resid 2 and name HN) (resid 1 and name HN) $3.4\ 0.7\ 0.7$ assign (resid 2 and name HB) (resid 2 and name HG2#) $3.3\ 0.7\ 0.7$

assign (resid 3 and name HN) (resid 3 and name HA1) 2.90.60.6assign (resid 3 and name HN) (resid 3 and name HA2) 3.60.70.7assign (resid 3 and name HN) (resid 2 and name HA) 2.70.50.5assign (resid 3 and name HN) (resid 2 and name HB) 4.00.80.8assign (resid 3 and name HN) (resid 2 and name HG1#) 3.50.70.7assign (resid 3 and name HN) (resid 2 and name HG1#) 3.50.70.7assign (resid 3 and name HN) (resid 2 and name HG2#) 3.90.80.8assign (resid 3 and name HN) (resid 2 and name HG2#) 3.20.60.6assign (resid 3 and name HN) (resid 2 and name HN) 3.20.60.6assign (resid 3 and name HN) (resid 2 and name HN) 3.80.80.8

assign (resid 4 and name HN) (resid 4 and name HA2) $2.9\ 0.6\ 0.6$ assign (resid 4 and name HN) (resid 4 and name HA1) $3.3\ 0.7\ 0.7$ assign (resid 4 and name HN) (resid 3 and name HA2) $3.6\ 0.7\ 0.7$

assign (resid 5 and name HN) (resid 5 and name HA) $3.3 \ 0.7 \ 0.7$ assign (resid 5 and name HN) (resid 4 and name HA2) $3.0 \ 0.6 \ 0.6$ assign (resid 5 and name HN) (resid 5 and name HB) $3.1 \ 0.6 \ 0.6$ assign (resid 5 and name HN) (resid 5 and name HG2#) $3.3 \ 0.7 \ 0.7$ assign (resid 5 and name HN) (resid 5 and name HG2#) $3.2 \ 0.6 \ 0.6$ assign (resid 5 and name HB) (resid 5 and name HG1#) $3.2 \ 0.6 \ 0.6$ assign (resid 5 and name HA) (resid 5 and name HG1#) $2.8 \ 0.6 \ 0.6$ assign (resid 5 and name HA) (resid 5 and name HB) $3.2 \ 0.6 \ 0.6$ assign (resid 5 and name HA) (resid 5 and name HB) $3.2 \ 0.6 \ 0.6$ assign (resid 5 and name HA) (resid 5 and name HB) $3.2 \ 0.6 \ 0.6$ assign (resid 5 and name HA) (resid 5 and name HB) $3.1 \ 0.6 \ 0.6$

assign (resid 6 and name HN) (resid 6 and name HA2) 2.90.60.6assign (resid 6 and name HN) (resid 6 and name HA1) 2.60.50.5assign (resid 6 and name HN) (resid 5 and name HB) 4.20.80.8assign (resid 6 and name HN) (resid 5 and name HG1#) 3.50.70.7assign (resid 6 and name HN) (resid 1 and name HN) 3.30.70.7assign (resid 6 and name HN) (resid 5 and name HN) 3.80.80.8

Phi dihedral angle constraints:

assign (resid 4 and name c) (resid 5 and name n) (resid 5 and name ca) (resid 5 and name c) 1.0 -120.0 30.0 2

Table S22. NOEs for V1A, cyclo-(AVGGVG).

Coordinate 1	Assignment 1	Coordinate 2	Assignment 2
8.85	3Gly-NH	4.05	3Gly-Hab
8.85	3Gly-NH	3.81	3Gly-Haa
8.78	6Gly-NH	3.78	6Gly-Haa
8.78	6Gly-NH	3.99	6Gly-Hab
8.31	4Gly-NH	3.95	4Gly-Haa
8.31	4Gly-NH	4.04	4Gly-Hab
8.15	5Val-NH	4.13	5Val-Ha
8.05	2Val-NH	4.10	2Val-Ha
8.20	1Ala-NH	4.36	1Ala-Ha
8.15	5Val-NH	2.07	5Val-Hb
8.05	2Val-NH	2.02	2Val-Hb
8.20	1Ala-NH	1.37	1Ala-Hb
8.05	2Val-NH	0.97	2Val-Hgb
8.15	5Val-NH	0.93	5Val-Hga
8.05	2Val-NH	0.93	2Val-Hga

4.36	1Ala-Ha	1.38	1Ala-Hb
4.13	5Val-Ha	0.93	5Val-Hga
4.10	2Val-Ha	0.93	2Val-Hga
4.09	2Val-Ha	0.97	2Val-Hgb
4.14	5Val-Ha	2.08	5Val-Hb
4.11	2Val-Ha	2.03	2Val-Hb
2.07	5Val-Hb	0.91	5Val-Hga
2.00	2Val-Hb	0.92	2Val-Hga
2.00	2Val-Hb	0.97	2Val-Hgb
8.85	3Gly-NH	4.10	2Val-Ha
8.79	6Gly-NH	4.13	5Val-Ha
8.05	2Val-NH	4.36	1Ala-Ha
8.15	5Val-NH	3.95	4Gly-Haa
8.21	1Ala-NH	3.99	6Gly-Hab
8.31	4Gly-NH	3.82	3Gly-Haa
8.21	1Ala-NH	3.79	6Gly-Haa
8.15	5Val-NH	4.03	4Gly-Hab
8.05	2Val-NH	1.38	1Ala-Hb
8.78	6Gly-NH	0.92	5Val-Hga
8.85	3Gly-NH	0.93	2Val-Hga
8.85	3Gly-NH	8.31	4Gly-NH
8.78	6Gly-NH	8.20	1Ala-NH
8.31	4Gly-NH	8.16	5Val-NH
8.20	1Ala-NH	8.06	2Val-NH
8.85	3Gly-NH	8.05	2Val-NH
8.78	6Gly-NH	8.15	5Val-NH

Table S23. J-coupling values and associated torsional restraints for V1A, cyclo-(AVGGVG).

Residue	${}^{3}J_{\rm NHCH\alpha}$ (Hz)	φ restraints (°)
A_1	6.4	
V_2	7.0	
G ₃	5.8	
G_4	5.4	
V_5	8.8	-120 ± 30
G ₆	5.8	

Table S24. List of NOE-derived distance restraints and *J*-coupling-derived dihedral angle restraints for V1A, cyclo-(AVGGVG).

Distance constraints:

assign (resid 1 and name HN) (resid 1 and name HA) 3.60.70.7assign (resid 1 and name HN) (resid 1 and name HB#) 3.00.60.6assign (resid 1 and name HN) (resid 6 and name HA1) 3.00.60.6assign (resid 1 and name HN) (resid 6 and name HA2) 3.90.80.8assign (resid 1 and name HA) (resid 1 and name HB#) 3.20.60.6assign (resid 1 and name HA) (resid 2 and name HB#) 3.20.60.6assign (resid 1 and name HN) (resid 2 and name HN) 3.60.70.7

assign (resid 2 and name HN) (resid 2 and name HA) 3.60.70.7assign (resid 2 and name HN) (resid 2 and name HB) 3.10.60.6assign (resid 2 and name HN) (resid 2 and name HG1#) 3.10.60.6assign (resid 2 and name HN) (resid 1 and name HA) 3.20.60.6assign (resid 2 and name HN) (resid 2 and name HG2#) 3.40.70.7assign (resid 2 and name HA) (resid 2 and name HG2#) 3.30.70.7assign (resid 2 and name HA) (resid 2 and name HG2#) 3.30.70.7 assign (resid 2 and name HA) (resid 2 and name HB) 3.40.70.7assign (resid 2 and name HB) (resid 2 and name HG2#) 3.00.60.6assign (resid 2 and name HB) (resid 2 and name HG1#) 3.30.70.7assign (resid 2 and name HN) (resid 1 and name HB#) 3.40.70.7

assign (resid 3 and name HN) (resid 3 and name HA2) 3.60.70.7assign (resid 3 and name HN) (resid 3 and name HA1) 2.90.60.6assign (resid 3 and name HN) (resid 2 and name HA) 2.70.50.5assign (resid 3 and name HN) (resid 2 and name HG2#) 3.60.70.7assign (resid 3 and name HN) (resid 4 and name HN) 3.40.70.7

assign (resid 4 and name HN) (resid 4 and name HA2) $4.5 \ 0.9 \ 0.9$ assign (resid 4 and name HN) (resid 4 and name HA1) $2.7 \ 0.5 \ 0.5$ assign (resid 4 and name HN) (resid 3 and name HA1) $3.6 \ 0.7 \ 0.7$ assign (resid 4 and name HN) (resid 5 and name HN) $3.6 \ 0.7 \ 0.7$

assign (resid 5 and name HN) (resid 5 and name HA) 4.00.80.8assign (resid 5 and name HN) (resid 5 and name HB) 3.30.70.7assign (resid 5 and name HN) (resid 5 and name HG1#) 3.10.60.6assign (resid 5 and name HN) (resid 4 and name HA2) 3.20.60.6assign (resid 5 and name HN) (resid 4 and name HA1) 3.60.70.7assign (resid 5 and name HA) (resid 5 and name HG1#) 3.00.60.6assign (resid 5 and name HA) (resid 5 and name HG1#) 3.50.70.7assign (resid 5 and name HA) (resid 5 and name HG1#) 3.50.70.7assign (resid 5 and name HA) (resid 5 and name HB) 3.50.70.7

assign (resid 6 and name HN) (resid 6 and name HA2) 2.90.60.6assign (resid 6 and name HN) (resid 6 and name HA1) 3.60.70.7assign (resid 6 and name HN) (resid 5 and name HA) 2.70.50.5assign (resid 6 and name HN) (resid 5 and name HG1#) 3.60.70.7assign (resid 6 and name HN) (resid 1 and name HN) 3.50.70.7

Phi dihedral angle constraints:

assign (resid 4 and name c) (resid 5 and name n) (resid 5 and name ca) (resid 5 and name c) 1.0-120.0 30.0 2

Figure S4. 2D-NMR data for peptide V1A (cyclo-AVGGVG) in water. (A) Visual depiction of the strong (black) and weak (grey) NOEs from the ROESY spectra for V1A. (B) Amide-to-amide proton region of the TOCSY and ROESY spectra for V1A. NOE cross-peaks are expected for positions at which beta-turns predominate in the solution ensemble. (C) Alpha-to-methyl proton region of the TOCSY and ROESY spectra for V1A. (D) Temperature dependence of amide proton chemical shifts. Stacked spectra show the amide regions of ¹H NMR experiments at the indicated temperature. Solvent-exposed amide protons typically have chemical shifts that shift upfield with temperature by more than 4.5 ppb/K (temperature coefficient between -4.5 and -16 ppb/K). Temperature coefficients between 2.0 and -4.5 ppb/K indicate protection from solvent, as occurs when an amide proton is involved in a hydrogen bond. Despite apparent > 99 % purity via HPLC and LC-MS, unidentified resonances were observed at 1.33 ppm and 7.93 ppm (visible in panels C and D, respectively). This did not interfere with analysis of the structural ensemble of V1A.

Figure S5. Complete ¹H NMR spectrum of P7 in 90:10 H₂O:D₂O at 288 K.

Figure S6. Complete ¹H NMR spectrum of P6 in 90:10 H₂O:D₂O at 288 K.

Figure S7. Complete ¹H NMR spectrum of V1I in 90:10 H₂O:D₂O at 288 K.

Figure S8. Complete ¹H NMR spectrum of V1L in 90:10 H₂O:D₂O at 288 K..

Figure S9. Complete ¹H NMR spectrum of V1T in 90:10 H₂O:D₂O at 288 K.

Figure S10. Complete ¹H NMR spectrum of V1S in 90:10 H₂O:D₂O at 288 K.

Figure S11. Complete ¹H NMR spectrum of V1A in 90:10 H₂O:D₂O at 288 K. Despite apparent > 99 % purity via HPLC and LC-MS, unidentified resonances were observed at 1.33 ppm and 7.93 ppm. This did not interfere with analysis of the structural ensemble of V1A.

Figure S12. Fingerprint region of the 2D spectra for P7 at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S13. Fingerprint region of the 2D spectra for P6 at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S14. Fingerprint region of the 2D spectra for V1I at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S15. Fingerprint region of the 2D spectra for V1L at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S16. Fingerprint region of the 2D spectra for V1T at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S17. Fingerprint region of the 2D spectra for V1S at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S18. Fingerprint region of the 2D spectra for V1A at 288K, with TOCSY peaks shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (top) and the H_α region (side). The peptide was dissolved in 90:10 H₂O:D₂O at a concentration of roughly 3.0 mM.

Figure S19. Complete ¹H–¹H TOCSY NMR spectrum of P7 in 90:10 H₂O:D₂O at 288 K.

Figure S20. Complete ¹H–¹H TOCSY NMR spectrum of P6 in 90:10 H₂O:D₂O at 288 K.

Figure S21. Complete ¹H–¹H TOCSY NMR spectrum of V1I in 90:10 H₂O:D₂O at 288 K.

Figure S22. Complete ¹H–¹H TOCSY NMR spectrum of V1L in 90:10 H₂O:D₂O at 288 K.

Figure S23. Complete ¹H–¹H TOCSY NMR spectrum of V1T in 90:10 H₂O:D₂O at 288 K.

Figure S24. Complete ¹H–¹H TOCSY NMR spectrum of V1S in 90:10 H₂O:D₂O at 288 K.

Figure S25. Complete ¹H–¹H TOCSY NMR spectrum of V1A in 90:10 H₂O:D₂O at 288 K.

Figure S26. Complete ¹H-¹H ROESY NMR spectrum of P7 in 90:10 H₂O:D₂O at 288 K.

Figure S27. Complete ¹H-¹H ROESY NMR spectrum of P6 in 90:10 H₂O:D₂O at 288 K.

Figure S28. Complete ¹H–¹H ROESY NMR spectrum of V1I in 90:10 H₂O:D₂O at 288 K.

Figure S29. Complete ¹H–¹H ROESY NMR spectrum of V1L in 90:10 H₂O:D₂O at 288 K.

Figure S30. Complete ¹H–¹H ROESY NMR spectrum of V1T in 90:10 H₂O:D₂O at 288 K.

Figure S31. Complete ¹H–¹H ROESY NMR spectrum of V1S in 90:10 H₂O:D₂O at 288 K.

Figure S32. Complete ¹H–¹H ROESY NMR spectrum of V1A in 90:10 H₂O:D₂O at 288 K.

References

- Brünger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, G. L. Warren. 1998. A new software suite for macromolecular structure determination. *Acta Cryst. D* 54:905-921.
- 2. Brunger, A. T. 2007. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2:2728-2733.