A Metal-Catalyzed New Approach for α-Alkynylation of Cyclic Amines

Yifan Cui, *a, b*[‡] Weilong Lin, *a,b*[‡] and Shengming Ma^{*a,c}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R.

China

[‡] These two authors contributed equally.

General information	S1
Experimental details and analytical data	S1
References	S35

General Information. All reactions have been carried out in oven-dried Schlenk tubes. CdBr₂ (98%) was purchased from Alfa and kept in a glove box; ZnI₂ (99%) was purchased from Sinopharm Chemical Reagent Co., Ltd and kept in a glove box. MTBE and 1,4-dioxane were dried over sodium wire with benzophenone as the indicator and distilled freshly before use. Other reagents were used as received without further treatment. All the temperatures are referred to the oil baths used. *N*-internal 2-alkynylic amine $\mathbf{1c}$,^[1] $\mathbf{1d}$,^[1] $\mathbf{1e}$,^[2] $\mathbf{1g}$ ^[1] and deuterated phenylacetylene *d*-2a^[3] were prepared according to literature methods.

1. Synthesis of *N*-propargylic amines

(1) 1-(2-Undecynyl)pyrrolidine (1a) (lwl-7-51)

To a flame-dried Schlenk bottle were added CuBr (218.5 mg, 1.5 mmol), 4 Å molecular sieves (3.0125 g), pyrrolidine (855.0 mg, 12 mmol), toluene (10 mL), paraformaldehyde (361.2 mg, 12 mmol), toluene (10 mL), 1-decyne (1.3720 g, 10 mmol), and toluene (10 mL) sequentially under Ar atmosphere. The resulting mixture was then stirred at 80 °C for 12.5 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford 1a (1.7821 g, 80%) (eluent: petroleum ether/ ethyl acetate = 1/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.36 (s, 2 H, NCH₂), 2.60 (s, 4 H, $2 \times \text{NCH}_2$), 2.18 (t, J = 7.0 Hz, 2 H, CH₂), 1.85-1.73 (m, 4 H, $2 \times \text{CH}_2$), 1.54-1.44 (m, 2 H, CH₂), 1.43-1.17 (m, 10 H, $5 \times CH_2$), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 84.4, 75.6, 52.5, 43.4, 31.8, 29.1, 29.0, 28.81, 28.80, 23.7. 22.6, 18.6, 14.1, 14.0; MS (ESI) m/z 222 ([M+H]⁺); IR (neat) v = 2927, 2855,2807, 1459, 1433, 1375, 1349, 1324, 1135 cm⁻¹; HRMS calcd for $C_{15}H_{28}N$ ([M+H]⁺): 222.2216. Found: 222.2219.

(2) 1-(3-Cyclohexylprop-2-ynyl)pyrrolidine (1b) (lwl-8-38)

To a flame-dried Schlenk bottle were added CuBr (219.2 mg, 1.5 mmol), 4 Å molecular sieves (3.0020 g), paraformaldehyde (302.1 mg, 10 mmol), toluene (10 mL), pyrrolidine (711.5 mg, 10 mmol), toluene (10 mL), 1-cyclohexylacetylene (1.0751 g, 10 mmol), and toluene (10 mL) sequentially under Ar atmosphere. The resulting mixture was then stirred at 80 °C for 12 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with EtOAc (100 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **1b** (1.7405 g, 91%) (eluent: petroleum ether/ ethyl acetate = 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.37 (s, 2 H, NCH₂), 2.60 (s, 4 H, 2×NCH₂), 2.38 (s, 1 H, CH), 1.86-1.62 (m, 8 H, 4×CH₂), 1.56-1.22 (m, 6 H, 3×CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 88.6, 75.3, 52.4, 43.4, 32.8, 29.0, 25.8, 24.8, 23.7; MS (ESI) *m/z* 192 ([M+H]⁺); IR (neat) *v* = 2926, 2852, 2780, 2727, 1628, 1447, 1371, 1346, 1322, 1294, 1258, 1235, 1198, 1159, 1124, 1030 cm⁻¹; HRMS calcd for C₁₃H₂₂N ([M+H]⁺): 192.1747. Found: 192.1748.

(3) 2-(2-Undecynyl)-1,2,3,4-tetrahydroisoquinoline (1f) (cyf-1-103)

To a flame-dried Schlenk bottle were added CuBr (110.5 mg, 0.75 mmol), 4 Å molecular sieves (1.5 g), paraformaldehyde (191.6 mg, 6.0 mmol), 1,2,3,4-tetrahydroisoquinoline (817.5 mg, 6.0 mmol), toluene (7.5 mL), 1-decyne (726.2 mg, 5.0 mmol), and toluene (7.5 mL) sequentially under Ar atmosphere. The

resulting mixture was then stirred at 80 °C for 12 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with DCM (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **1f** (867.2 mg, 50%) (eluent: petroleum ether/ acetone = 100/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.07 (m, 3 H, ArH), 7.07-7.01 (m, 1 H, ArH), 3.75 (s, 2 H, NCH₂), 3.46 (s, 2 H, NCH₂), 2.94 (t, *J* = 5.6 Hz, 2 H, CH₂), 2.81 (t, *J* = 6.0 Hz, 2 H, CH₂), 2.20 (t, *J* = 6.8 Hz, 2 H, CH₂), 1.50 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.43-1.17 (m, 10 H, 5×CH₂), 0.87 (t, *J* = 6.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 133.9, 128.6, 126.6, 126.0, 125.5, 85.7, 74.6, 54.5, 49.8, 47.2, 31.8, 29.3, 29.2, 28.89, 28.86, 22.6, 18.7, 14.1; MS (EI) *m/z* (%) 283 (M⁺, 36.97), 282 (100); IR (neat) *v* = 3022, 2923, 1585, 1497, 1456, 1429, 1381, 1364, 1328, 1277, 1230, 1192, 1132, 1089, 1056, 1039, 1006 cm⁻¹; HRMS calcd for C₂₀H₂₉N (M⁺): 283.2300. Found: 283.2294.

(4) 1-(2-Undecynyl) piperidine (1h) (cyf-2-94)

To a flame-dried Schlenk bottle were added CuBr (146.8 mg, 1.0 mmol), 4 Å molecular sieves (3.0113 g), paraformaldehyde (384.2 mg, 12.0 mmol), piperidine (1.0256 g, 12.0 mmol), toluene (15 mL), 1-decyne (1.4535 g, 10.0 mmol), and toluene (15 mL) sequentially under Ar atmosphere. The resulting mixture was then stirred at room temperature for 18 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with ethyl ether (100 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **1h** (1.6009 g, 68%) (eluent: petroleum ether/ ethyl acetate = 5/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.21 (s, 2 H, NCH₂),

2.48 (s, 4 H, 2×NCH₂), 2.19 (t, J = 7.0 Hz, 2 H, CH₂), 1.62 (quint, J = 5.5 Hz, 4 H, 2×CH₂), 1.55-1.20 (m, 14 H, 7×CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 85.1, 75.1, 53.2, 48.0, 31.7, 29.1, 29.0, 28.79, 28.77, 25.8, 23.9, 22.6, 18.6, 14.0; MS (ESI) m/z 236 ([M+H]⁺); IR (neat) v = 2927, 2854, 2794, 2752, 2681, 1466, 1453, 1379, 1367, 1340, 1324, 1308, 1298, 1275, 1252, 1203, 1188, 1156, 1105, 1067, 1039 cm⁻¹; HRMS calcd for C₁₆H₃₀N ([M+H]⁺): 236.2373. Found: 236.2376.

(5) N-(2-undecynyl)-diisopropylamine (1i) (cyf-2-88)

To a flame-dried Schlenk bottle were added CuBr (147.0 mg, 1.0 mmol), 4 Å molecular sieves (3.0117 g), paraformaldehyde (383.7 mg, 12.0 mmol), diisopropylamine (1.2301 g, 12.0 mmol), toluene (15 mL), 1-decyne (1.4551 g, 10.0 mmol), and toluene (15 mL) sequentially under Ar atmosphere. The resulting mixture was then stirred at room temperature for 12 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with EtOAc (100 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford 1i (822.4 mg, 33%) (eluent: petroleum ether/ ethyl acetate = 100/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.39 (t, J = 2.0 Hz, 2 H, NCH₂), 3.19 (heptet, J = 6.5 Hz, 2 H, 2×NCH), 2.18-2.12 (m, 2 H, CH₂), 1.48 (quint, J = 7.1 Hz, 2 H, CH₂), 1.42-1.21 (m, 10 H, 5×CH₂), 1.09 (d, J = 6.4 Hz, 12 H, 4×CH₃), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 83.5, 78.7, 48.20, 48.18, 34.3, 31.8, 29.2, 29.1, 28.9, 28.8, 22.6, 20.5, 18.8, 14.1; MS (ESI) m/z 252 ([M+H]⁺); IR (neat) v = 2961, 2926, 2855, 1463, 1434, 1379, 1362, 1324,1204, 1176, 1139, 1118, 1025 cm⁻¹; HRMS calcd for $C_{17}H_{34}N$ ([M+H]⁺): 252.2686. Found: 252.2686.

2. The CdBr₂-catalyzed reaction of propargylic amines with terminal alkynes

63%

2 equiv.

(1) (E)-2-(Phenylethynyl)-1-(2-undecenyl)pyrrolidine (**3aa**) (lwl-7-195, lwl-7-93)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.6 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. After cooling to room temperature, 1a (221.7 mg, 1.0 mmol), MTBE (3 mL), phenylacetylene 2a (205.1 mg, 2.0 mmol), and MTBE (3 mL) were added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 36 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of Al₂O₃ eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on Al_2O_3 to afford **3aa** (203.3 mg, 63%) (eluent: petroleum ether/ ethyl acetate = 100/1) as a liquid: ¹H NMR (400 MHz, $CDCl_3$) δ 7.50-7.37 (m, 2 H, ArH), 7.34-7.21 (m, 3 H, ArH), 5.67 (dt, J = 15.2, 6.4 Hz, 1 H, =CH), 5.58 (dt, J = 15.2, 6.0 Hz, 1 H, =CH), 3.57 (dd, J = 7.3, 5.5 Hz, 1 H, NCH), 3.49 (dd, J = 12.8, 5.9 Hz, 1 H, one proton of NCH₂), 3.01 (dd, J = 12.5, 7.5 Hz, 1 H, one proton of NCH₂), 2.84 (td, J = 8.8, 4.9 Hz, 1 H, one proton of NCH₂), 2.50 (td, J = 8.9, 6.5 Hz, 1 H, one proton of NCH₂), 2.23-2.12 (m, 1 H, one proton of CH₂), 2.06-1.75 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.41-1.17 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 131.6, 128.1, 127.8, 126.8, 123.4, 88.7, 84.5, 55.3, 54.5, 51.6, 32.3, 31.8, 31.7, 29.4, 29.24, 29.18, 29.1, 22.6, 22.0, 14.1; MS (EI) m/z (%) 323 (M⁺, 19.57), 170 (100); IR (neat) v =2955, 2923, 2853, 2807, 1695, 1599, 1489, 1460, 1443, 1354, 1178 cm⁻¹; HRMS calcd for C₂₃H₃₃N (M⁺): 323.2613. Found: 323.2610.

(2) (E)-2-(4-tolyethynyl)-1-(2-undecenyl)pyrrolidine (**3ab**) (cyf-2-62)

Typical Procedure I: To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.7 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. 1a (221.1 mg, 1.0 mmol), MTBE (3 mL), 4-tolyacetylene 2b (238.5 mg, 2.0 mmol), and MTBE (3 mL) were then added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 36 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of Al₂O₃ eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **3ab** (172.0 mg, 51%) (eluent: petroleum ether/ acetone = 100/1 (300 mL) to 50/1 (200 mL)) as a liquid: δ 7.32 (d, J = 7.6 Hz, 2 H, ArH), 7.09 (d, J = 8.0 Hz, 2 H, ArH), 5.66 (dt, J = 15.2, 6.4 Hz, 1 H, =CH), 5.57 (dt, J = 15.2, 6.6 Hz, 1 H, =CH), 3.55 (t, J = 6.2 Hz, 1 H, NCH), 3.48 (dd, J = 13.0, 5.8 Hz, 1 H, one proton of NCH₂), 3.00 (dd, J = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.84 (td, J = 8.5, 5.2 Hz, 1 H, one proton of NCH₂), 2.53-2.44 (m, 1 H, one proton of NCH₂), 2.33 (s, 3 H, CH₃), 2.22-2.12 (m, 1 H, one proton of CH₂), 2.07-1.74 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.42-1.17 (m, 12 H, 6×CH₂), 0.88 $(t, J = 6.6 \text{ Hz}, 3 \text{ H}, \text{CH}_3);$ ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 133.9, 131.5, 128.8, 126.8, 120.2, 87.8, 84.5, 55.3, 54.5, 51.5, 32.3, 31.8, 31.7, 29.4, 29.2, 29.12, 29.06, 22.6, 21.9, 21.3, 14.0; MS (ESI) m/z 338 ([M+H]⁺); IR (neat) v = 2954, 2922, 2852, 2805, 1668, 1509, 1456, 1376, 1319, 1277, 1257, 1212, 1139, 1107, 1049, 1020 cm⁻¹; HRMS calcd for $C_{24}H_{36}N([M+H]^+)$: 338.2842. Found: 338.2838.

(3) (E)-2-((4-Methoxyphenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (**3ac**) (cyf-2-60)

Following Typical Procedure I, the reaction of CdBr₂ (27.7 mg, 0.1 mmol), 1a (221.6 mg, 1.0 mmol), 4-methoxyphenylacetylene 2c (270.2 mg, 2.0 mmol), and MTBE (6.0 mL) afforded 3ac (159.1 mg, 45%) (22% recovery of 1a as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ acetone = 100/1 (300 mL) to 50/1 (200 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.8 Hz, 2 H, ArH), 6.82 (d, J = 8.8 Hz, 2 H, ArH), 5.66 (dt, J = 14.8, 6.4 Hz, 1 H, =CH), 5.58 (dt, J = 15.2, 6.6 Hz, 1 H, =CH), 3.80 (s, 3 H, OCH₃), 3.57-3.46 (m, 2 H, NCH and one proton of NCH₂), 2.99 (dd, J = 12.8, 7.2Hz, 1 H, one proton of NCH₂), 2.85 (td, J = 8.7, 4.9 Hz, 1 H, one proton of NCH₂), 2.52-2.44 (m, 1 H, one proton of NCH₂), 2.23-2.12 (m, 1 H, one proton of CH₂), 2.08-1.74 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.42-1.18 (m, 12 H, 6×CH₂), 0.88 $(t, J = 6.8 \text{ Hz}, 3 \text{ H}, \text{CH}_3)$; ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 134.0, 133.0, 126.7, 115.4, 113.7, 87.0, 84.3, 55.3, 55.1, 54.6, 51.5, 32.3, 31.8, 31.7, 29.4, 29.2, 29.15, 29.08, 22.6, 21.9, 14.0; MS (ESI) m/z 354 ([M+H]⁺); IR (neat) v = 2954, 2922, 2852, 2806, 1606, 1570, 1508, 1461, 1441, 1376, 1354, 1319, 1288, 1245, 1171, 1105, 1033 cm^{-1} ; HRMS calcd for C₂₄H₃₆NO ([M+H]⁺): 354.2791. Found: 354.2785.

Following **Typical Procedure I**, the reaction of CdBr₂ (27.7 mg, 0.1 mmol), **1a** (222.0 mg, 1.0 mmol), 4-fluorophenylacetylene **2d** (245.3 mg, 2.0 mmol), and MTBE

(6.0 mL) afforded **3ad** (187.8 mg, 55%) (eluent: petroleum ether/ acetone = 100/1 (300 mL) to 50/1 (200 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 8.0, 6.0 Hz, 2 H, ArH), 6.98 (t, *J* = 8.8 Hz, 2 H, ArH), 5.66 (dt, *J* = 15.6, 6.4 Hz, 1 H, =CH), 5.57 (dt, *J* = 15.2, 6.6 Hz, 1 H, =CH), 3.57-3.43 (m, 2 H, NCH and one proton of NCH₂), 2.99 (dd, *J* = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.85 (td, *J* = 8.4, 5.1 Hz, 1 H, one proton of NCH₂), 2.99 (dd, *J* = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.23-2.12 (m, 1 H, one proton of CH₂), 2.07-1.74 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.42-1.20 (m, 12 H, 6×CH₂, 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (*J* = 247.1 Hz), 134.1, 133.5 (*J* = 8.5 Hz), 126.7, 119.4 (*J* = 3.6 Hz), 115.4 (*J* = 21.8 Hz), 88.5, 83.4, 55.4, 54.5, 51.6, 32.3, 31.9, 31.8, 29.4, 29.3, 29.25, 29.17, 22.6, 22.0, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.1- -112.3 (m); MS (EI) *m/z* (%) 341 (M⁺, 8.03), 83 (100); IR (neat) ν = 2955, 2924, 2853, 2806, 1601, 1505, 1462, 1354, 1320, 1228, 1154, 1112, 1091 cm⁻¹; Raman: ν = 2231 cm⁻¹; HRMS calcd for C₂₃H₃₂NF (M⁺): 341.2519. Found: 341.2514.

(5) (*E*)-2-((4-Chlorophenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (**3ae**) (lwl-7-198)

Following **Typical Procedure I**, the reaction of CdBr₂ (27.6 mg, 0.1 mmol), **1a** (220.5 mg, 1.0 mmol), 4-chlorophenylacetylene **2e** (273.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3ae** (238.9 mg, 67%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane/ aqueous ammonia = 20/1/1/0.08) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.3 Hz, 2 H, ArH), 7.26 (d, *J* = 8.5 Hz, 2 H, ArH), 5.66 (dt, *J* = 15.3, 6.4 Hz, 1 H, =CH), 5.57 (dt, *J* = 15.5, 6.3 Hz, 1 H, =CH), 3.54 (t, *J* = 6.4 Hz, 1 H, NCH), 3.47 (dd, *J* = 12.7, 5.5 Hz, 1 H, one proton of NCH₂), 2.99 (dd, *J* = 12.9, 7.3 Hz, 1 H, one proton of NCH₂), 2.85 (td, *J* = 8.7, 4.9 Hz, 1 H, one proton of NCH₂), 2.53-2.41 (m, 1 H, one proton of NCH₂), 2.23-2.11 (m, 1 H, one proton of CH₂),

2.07-1.74 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.42-1.15 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.7 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 133.8, 132.9, 128.5, 126.7, 121.8, 89.9, 83.4, 55.4, 54.5, 51.2, 32.3, 31.8, 31.7, 29.4, 29.25, 29.2, 29.1, 22.6, 22.0, 14.1; MS (EI) m/z (%) 359 (M⁺(Cl³⁷), 2.11), 357 (M⁺(Cl³⁵), 6.13), 83 (100); IR (neat) v = 2955, 2923, 2853, 2807, 1488, 1462, 1374, 1353, 1319, 1256, 1139, 1092, 1014 cm⁻¹; HRMS calcd for C₂₃H₃₂NCl (M⁺(Cl³⁵)): 357.2223. Found: 357.2225.

(6) (E)-2-((3-Chlorophenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (3af) (lwl-8-57)

Following **Typical Procedure I**, the reaction of CdBr₂ (27.2 mg, 0.1 mmol), **1a** (221.5 mg, 1.0 mmol), 3-chlorophenylacetylene **2f** (273.2 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3af** (235.1 mg, 66%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane/ aqueous ammonia = 20/1/1/0.08) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1 H, ArH), 7.32-7.17 (m, 3 H, ArH), 5.67 (dt, *J* = 15.3, 6.4 Hz, 1 H, =CH), 5.56 (dt, *J* = 15.4, 6.1 Hz, 1 H, =CH), 3.56 (dd, *J* = 7.3, 5.3 Hz, 1 H, NCH), 3.46 (dd, *J* = 12.7, 5.7 Hz, 1 H, one proton of NCH₂), 3.00 (dd, *J* = 12.8, 7.3 Hz, 1 H, one proton of NCH₂), 2.83 (td, *J* = 8.8, 5.2 Hz, 1 H, one proton of NCH₂), 2.51 (td, *J* = 8.9, 6.4 Hz, 1 H, one proton of CH₂), 2.23-2.12 (m, 1 H, one proton of CH₂), 2.07-1.87 (m, 4 H, CH₂ and 2×one proton of CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂), 1.43-1.16 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 133.9, 131.5, 129.7, 129.3, 128.1, 126.6 125.0, 90.2, 83.1, 55.3, 54.4, 51.6, 32.3, 31.8, 31.6, 29.4, 29.24, 29.15, 29.1, 22.6, 22.0, 14.1; MS (EI) *m/z* (%) 359 (M⁺(Cl³⁷), 9.85), 357 (M⁺(Cl³⁵), 31.73), 204 (100); IR (neat) *v* = 3066, 2925, 2854, 2807, 1695, 1593, 1562, 1474, 1406, 1377, 1354, 1318, 1246, 1139, 1112, 1093,

1078 cm⁻¹; HRMS calcd for C₂₃H₃₂NCl (M⁺(Cl³⁵)): 357.2223. Found: 357.2231.

(7) (E)-2-((4-Nitrophenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (3ag) (lwl-8-10)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.4 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. After cooling 1.0 mmol), to room temperature, 1a (221.5 mg, MTBE (3 mL), 4-nitrophenylacetylene 2g (295.1 mg, 2.0 mmol), and MTBE (3 mL) were added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 36 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of Al₂O₃ eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on Al₂O₃ to afford **3ag** (222.2 mg, 60%) (eluent: petroleum ether/ dichloromethane / ethyl acetate = 200/20/1 to 100/10/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 2 H, ArH), 7.56 (d, J = 8.6 Hz, 2 H, ArH), 5.68 (dt, J = 15.1, 6.6 Hz, 1 H, =CH), 5.57 (dt, J = 15.4, 6.1 Hz, 1 H, =CH), 3.62 (dd, J = 7.2, 5.5 Hz, 1 H, NCH), 3.48 (dd, J = 12.7, 5.7 Hz, 1 H, one proton of NCH₂), 3.03 (dd, J = 12.7, 7.2 Hz, 1 H, one proton of NCH_2), 2.87 (td, J = 8.8, 5.2 Hz, 1 H, one proton of NCH_2), 2.56-2.48 (m, 1 H, one proton of NCH₂), 2.28-2.16 (m, 1 H, one proton of CH₂), 2.10-1.79 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.43-1.17 (m, 12 H, $6 \times CH_2$), 0.87 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 134.5, 132.3, 130.3, 126.3, 123.4, 94.9, 82.9, 55.4, 54.5, 51.7, 32.3, 31.8, 31.5, 29.4, 29.2, 29.14, 29.10, 22.6, 22.1, 14.1; MS (ESI) m/z 369 ([M+H]⁺); IR (neat) v = 2924, 2854, 2805, 2224, 1594, 1520, 1491, 1461, 1377, 1344, 1318, 1285, 1256, 1175, 1139, 1108, 1013 cm⁻¹; HRMS calcd for $C_{23}H_{33}N_2O_2([M+H]^+)$: 369.2537. Found: 369.2538.

(8) (E)-2-((4-Ethoxycarbonylphenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (3ah)

Following Typical Procedure I, the reaction of CdBr₂ (27.7 mg, 0.1 mmol), 1a (222.0 mg, 1.0 mmol), 4-ethoxycarbonylphenylacetylene **2h** (356.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3ah** (237.2 mg, 60%) (eluent: petroleum ether/ acetone = 100/1 (300 mL) to 50/1 (300 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2 H, ArH), 7.47 (d, J = 8.0 Hz, 2 H, ArH), 5.67 (dt, J = 15.2, 6.4 Hz, 1 H, =CH), 5.57 (dt, J = 15.2, 6.4 Hz, 1 H, =CH), 4.37 (q, J = 7.1 Hz, 2 H, OCH₂), 3.58 (dd, J = 7.4, 5.4 Hz, 1 H, NCH), 3.47 (dd, J = 12.6, 5.8 Hz, 1 H, one proton of NCH₂),3.02 (dd, J = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.85 (td, J = 8.7, 5.1 Hz, 1 H, one proton of NCH₂), 2.56-2.47 (m, 1 H, one proton of NCH₂), 2.25-2.14 (m, 1 H, one proton of CH₂), 2.08-1.76 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.44-1.17 (m, 15 H, $6 \times CH_2$ and CH_3), 0.87 (t, J = 6.6 Hz, 3 H, CH_3); ¹³C NMR (100 MHz, $CDCl_3$) δ 165.9, 134.1, 131.4, 129.4, 129.2, 127.9, 126.6, 92.0, 83.9, 60.9, 55.3, 54.4, 51.6, 32.2, 31.8, 31.6, 29.3, 29.2, 29.1, 29.0, 22.6, 22.0, 14.2, 14.0; MS (EI) m/z (%) 395 (M⁺, 9.22), 256 (100); IR (neat) v = 2956, 2924, 2853, 2805, 2224, 1720, 1605, 1462, 1404, 1367, 1269, 1174, 1102, 1021 cm⁻¹; Raman: v = 2228 cm⁻¹; HRMS calcd for C₂₆H₃₇NO₂ (M⁺): 395.2824. Found: 395.2819.

(9) (E)-2-((4-cyanophenyl)ethynyl)-1-(2-undecenyl)pyrrolidine (3ai) (lwl-8-58)

Following Typical Procedure I, the reaction of CdBr₂ (27.5 mg, 0.1 mmol), 1a (222.0 mg, 1.0 mmol), 4-cyanophenylacetylene 2i (254.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded 3ai (213.1 mg, 61%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane/ aqueous ammonia = 250/25/12.5/1) as a liquid: ¹H NMR (400 MHz, $CDCl_3$) δ 7.58 (d, J = 8.2 Hz, 2 H, ArH), 7.50 (d, J = 8.2 Hz, 2 H, ArH), 5.66 (dt, J =15.3, 6.5 Hz, 1 H, =CH), 5.56 (dt, J = 15.4, 6.4 Hz, 1 H, =CH), 3.58 (dd, J = 7.5, 5.7 Hz, 1 H, NCH), 3.46 (dd, J = 12.8, 5.8 Hz, 1 H, one proton of NCH₂), 3.01 (dd, J =12.7, 7.3 Hz, 1 H, one proton of NCH₂), 2.86 (td, J = 8.6, 4.8 Hz, 1 H, one proton of NCH₂), 2.55-2.46 (m, 1 H, one proton of NCH₂), 2.26-2.15 (m, 1 H, one proton of CH₂), 2.07-1.89 (m, 4 H, CH₂ and 2×one proton of CH₂), 1.89-1.77 (m, 1 H, one proton of CH₂), 1.41-1.18 (m, 12 H, $6 \times CH_2$), 0.88 (t, J = 6.9 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) & 134.3, 132.1, 131.9, 128.3, 126.5, 118.5, 111.1, 94.0, 83.0, 55.4, 54.4, 51.7, 32.3, 31.8, 31.6, 29.4, 29.2, 29.14, 29.10, 22.6, 22.1, 14.1; MS (ESI) m/z $349 ([M+H]^+); IR (neat) v = 2964, 2926, 2854, 2806, 2228, 1604, 1500, 1461, 1406,$ 1377, 1354, 1319, 1270, 1256, 1178, 1139, 1107 cm⁻¹; HRMS calcd for C₂₄H₃₃N₂ ([M+H]⁺): 349.2638. Found: 349.2640.

Following **Typical Procedure I**, the reaction of CdBr₂ (27.5 mg, 0.1 mmol), **1a** (221.5 mg, 1.0 mmol), 4-acetylphenylacetylene **2j** (288.7 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3aj** (215.7 mg, 59%) (eluent: petroleum ether/ acetone = 40/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2 H, ArH), 7.50 (d, *J* = 7.6 Hz, 2 H, ArH), 5.67 (dt, *J* = 15.2, 6.6 Hz, 1 H, =CH), 5.58 (dt, *J* = 15.2, 6.8 Hz, 1 H, =CH), 3.59 (t, *J* = 6.2 Hz, 1 H, NCH), 3.48 (dd, *J* = 12.8, 5.6 Hz, 1 H, one proton of NCH₂), 3.02 (dd, *J* = 12.6, 7.4 Hz, 1 H, one proton of NCH₂), 2.90-2.81 (m, 1 H, one

proton of NCH₂), 2.59 (s, 3 H, CH₃), 2.51 (q, J = 7.9 Hz, 1 H, one proton of NCH₂), 2.26-2.14 (m, 1 H, one proton of CH₂), 2.08-1.75 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.43-1.15 (m, 12 H, 6×CH₂), 0.87 (t, J = 6.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 135.9, 134.2, 131.7, 128.3, 128.1, 126.6, 92.7, 83.8, 55.4, 54.5, 51.7, 32.3, 31.8, 31.6, 29.4, 29.2, 29.15, 29.08, 26.5, 22.6, 22.0, 14.0; MS (EI) m/z (%) 365 (M⁺, 16.03), 83 (100); IR (neat) v = 2955, 2922, 2853, 2804, 1685, 1600, 1460, 1440, 1403, 1356, 1318, 1283, 1260, 1178, 1138, 1109, 1015 cm⁻¹; HRMS calcd for C₂₅H₃₆ON⁺ (M+H⁺): 366.2791. Found: 366.2790.

(11) (E)-2-(Decynyl)-1-(2-undecenyl)pyrrolidine (**3ak**) (lwl-8-1)

Following **Typical Procedure I**, the reaction of CdBr₂ (54.5 mg, 0.2 mmol) **1a** (220.5 mg, 1.0 mmol), 1-decyne **2k** (278.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3ak** (111.4 mg, 31%) (27% recovery of **1a** as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ ethyl acetate/ dichloromethane/ aqueous ammonia = 20/1/1/0.08) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.63 (dt, *J* = 15.2, 6.4 Hz, 1 H, =CH), 5.54 (dt, *J* = 15.6, 6.0 Hz, 1 H, =CH), 3.44 (dd, *J* = 12.8, 5.6 Hz, 1 H, one proton of NCH₂), 3.30-3.21 (m, 1 H, NCH), 2.87 (dd, *J* = 14.8, 7.6 Hz, 1 H, one proton of NCH₂), 2.79 (td, *J* = 8.5, 4.8 Hz, 1 H, one proton of NCH₂), 2.37 (td, *J* = 8.9, 6.1 Hz, 1 H, one proton of NCH₂), 2.19 (td, *J* = 7.2, 2.0 Hz, 2 H, CH₂), 2.11-1.96 (m, 3 H, CH₂ and one proton of CH₂), 1.91-1.79 (m, 2 H, CH₂), 1.79-1.67 (m, 1 H, one proton of CH₂), 1.55-1.45 (m, 2 H, CH₂), 1.43-1.18 (m, 22 H, CH₂×11), 0.88 (t, *J* = 6.6 Hz, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 126.9, 84.6, 79.0, 55.2, 54.3, 51.4, 32.3, 31.84, 31.80, 29.4, 29.3, 29.2, 29.12, 29.06, 28.9, 28.8, 22.63, 22.62, 21.8, 18.7, 14.1; MS (EI) *m/z* (%)

359 (M⁺, 55.37), 246 (100); IR (neat) v = 2925, 2854, 2809, 1494, 1443, 1377, 1354, 1320, 1184, 1143, 1107 cm⁻¹; HRMS calcd for C₂₅H₄₅N (M⁺): 359.3552. Found: 359.3546.

(12) (E)-2-(Cyclohexylethynyl)-1-(2-undecenyl)pyrrolidine (3al) (lwl-7-200)

Following Typical Procedure I, the reaction of CdBr₂ (27.5 mg, 0.1 mmol), 1a (221.5 mg, 1.0 mmol), cyclohexylacetylene 2l (216.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3al** (131.5 mg, 40%) (50% recovery of **1a** as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ ethyl acetate/ dichloromethane/ aqueous ammonia = 20/1/1/0.08) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.63 (dt, J = 15.3, 6.4 Hz, 1 H,=CH), 5.54 (dt, J = 15.3, 6.4 Hz, 1 H, =CH), 3.43 (dd, J = 12.5, 5.5 Hz, 1 H, one proton of NCH₂), 3.29 (t, J =5.4 Hz, 1 H, NCH), 2.88 (dd, J = 12.7, 7.2 Hz, 1 H, one proton of NCH₂), 2.78 (td, J =8.8, 4.9 Hz, 1 H, one proton of NCH₂), 2.44-2.33 (m, 2 H, CH and one proton of NCH₂), 2.11-1.96 (m, 3 H, CH₂ and one proton of CH₂), 1.91-1.64 (m, 7 H, 3×CH₂) and one proton of CH₂), 1.54-1.14 (m, 18 H, $9 \times CH_2$), 0.88 (t, J = 6.7 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.8, 126.9, 88.9, 78.8, 55.1, 54.2, 51.4, 32.91, 32.87, 32.3, 31.9, 31.8, 29.4, 29.3, 29.2, 29.1, 29.0, 25.9, 24.8, 22.6, 21.7, 14.1; MS (EI) m/z (%) 329 (M⁺, 45.69), 176 (100); IR (neat) v = 2927, 2853, 2809, 1448, 1377, 1362,1351, 1319, 1298, 1234, 1184, 1141, 1111 cm⁻¹; HRMS calcd for C₂₃H₃₉N (M⁺): 329.3083. Found: 329.3080.

Typical Procedure II: To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.6 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. 1a (222.0 mg, 1.0 mmol), MTBE (3 mL), trimethylsilylacetylene 2m (201.6 mg, 2.0 mmol), and MTBE (3 mL) were then added sequentially under Ar atmosphere. The resulting mixture was stirred at 130 °C for 36 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **3am** (242.4 mg, 76%) (3% recovery of 1a as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ ethyl acetate = 100/1 (300 mL) to petroleum ether/ acetone = 100/1 (400 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.63 (dt, J = 15.2, 6.4 Hz, 1 H, =CH), 5.54 (dt, J = 15.2, 6.6 Hz, 1 H, =CH), 3.41 $(dd, J = 12.8, 5.4 Hz, 1 H, one proton of NCH_2), 3.33 (dd, J = 7.0, 5.4 Hz, 1 H, NCH)$, 2.92 (dd, J = 12.4, 7.6 Hz, 1 H, one proton of NCH₂), 2.82-2.70 (m, 1 H, one proton of NCH₂), 2.43 (dd, J = 14.6, 7.8 Hz, 1 H, one proton of NCH₂), 2.15-1.97 (m, 3 H, CH_2 and one proton of CH_2), 1.96-1.66 (m, 3 H, CH_2 and one proton of CH_2), 1.46-1.16 (m, 12 H, $6 \times CH_2$), 0.88 (t, J = 6.8 Hz, 3 H, CH_3), 0.16 (s, 9 H, $3 \times SiCH_3$); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 126.7, 105.4, 88.6, 55.1, 54.5, 51.4, 32.3, 31.8, 31.6, 29.4, 29.3, 29.2, 29.1, 22.6, 21.9, 14.1, 0.1; MS (EI) m/z (%) 319 (M⁺, 16.60), 139 (100); IR (neat) v = 2957, 2923, 2853, 2811, 2158, 1460, 1376, 1350, 1317, 1249,1182, 1138, 1117, 1090 cm⁻¹; HRMS calcd for C₂₀H₃₇NSi (M⁺): 319.2695. Found: 319.2690.

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.5 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. 1b (191.2 mg, 1.0 mmol), MTBE (3 mL), phenylacetylene 2a (204.3 mg, 2.0 mmol), and MTBE (3 mL) were then added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 36 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of Al₂O₃ eluted with EtOAc (50 mL). After evaporation, the residue was purified by column chromatography on neutral Al₂O₃ to afford **3ba** (190.2 mg, 65%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane = 100/1/5) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.38 (m, 2 H, ArH), 7.33-7.23 (m, 3 H, ArH), 5.63 (dd, J = 15.4, 6.2 Hz, 1 H, =CH), 5.54 (dt, J = 15.3, 6.4 Hz, 1 H, =CH), 3.58 (dd, J = 7.4, 5.5 Hz, 1 H, NCH), 3.49 (dd, J = 12.8, 5.8 Hz, 1 H, one proton of NCH₂), 3.01 (dd, J = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.85 (td, J = 8.8, 5.2 Hz, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of CH₂), 2.07-1.86 (m, 3 H, CH₂ and one proton of CH₂), 1.86-1.58 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.33-1.00 (m, 5 H, 2×CH₂ and one proton of CH₂), 0.91-0.78 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 131.6, 128.1, 127.8, 124.0, 123.3, 88.6, 84.5, 55.4, 54.5, 51.5, 40.4, 32.8, 32.8, 31.6, 26.1, 26.0, 21.9; MS (EI) m/z (%) 293 (M⁺, 32.37), 210 (100); IR (neat) 2922, 2850, 2807, 1598, 1489, 1445, 1377, 1356, 1319, 1257, 1138, 1115, 1069 cm⁻¹; HRMS calcd for $C_{21}H_{27}N$ (M⁺): 293.2144. Found: 293.2138.

(15) (E)-1-(2-Heptenyl)-2-(phenylethynyl)pyrrolidine (**3ca**) (cyf-1-012)

Following **Typical Procedure II**, the reaction of CdBr₂ (41.5 mg, 0.15 mmol), **1c** (165.0 mg, 1.0 mmol), phenylacetylene **2a** (210.5 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3ca** (152.2 mg, 57%) (eluent: petroleum ether/ acetone = 200/1 (450 mL) to 50/1 (250 mL)) as a liquit: ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.37 (m, 2 H, ArH), 7.32-7.23 (m, 3 H, ArH), 5.72-5.52 (m, 2 H, 2×=CH), 3.56 (t, *J* = 6.4 Hz, 1 H, NCH), 3.48 (dd, *J* = 12.4, 5.2 Hz, 1 H, one proton of NCH₂), 3.01 (dd, *J* = 12.6, 7.0 Hz, 1 H, one proton of NCH₂), 2.88-2.79 (m, 1 H, one proton of NCH₂), 2.50 (dd, *J* = 15.4, 8.2 Hz, 1 H, one proton of NCH₂), 2.24-2.11 (m, 1 H, one proton of CH₂), 2.08-1.87 (m, 4 H, CH₂ and 2×one proton of CH₂), 1.85-1.73 (m, 1 H, one proton of CH₂), 1.41-1.19 (m, 4 H, 2×CH₂), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.9, 131.6, 128.1, 127.8, 126.8, 123.3, 88.7, 84.5, 55.3, 54.5, 51.5, 31.9, 31.7, 31.3, 22.1, 22.0, 13.8; MS (EI) *m*/*z* (%) 267 (M⁺, 14.93), 83 (100); IR (neat) *v* = 2955, 2923, 2871, 2804, 1598, 1489, 1459, 1442, 1355, 1320, 1255, 1138, 1109, 1069 cm⁻¹; HRMS calcd for C₁₉H₂₅N (M⁺): 267.1987. Found: 267.1990.

(16) (*E*)-1-(4-methyl-4-hydroxyl-2-pentenyl)-2-(phenylethynyl)pyrrolidine (3da) (lwl-9-70)

Following Typical Procedure I, the reaction of CdBr₂ (27.2 mg, 0.1 mmol), 1d

(167.0 mg, 1.0 mmol), phenylacetylene **2a** (204.5 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3da** (166.8 mg, 62%) (4% recovery of **1d** as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ acetone = 20/1 to 10/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.39 (m, 2 H, ArH), 7.34-7.26 (m, 3 H, ArH), 5.91-5.74 (m, 2 H, 2×=CH), 3.62-3.46 (m, 2 H, NCH and one proton of CH₂), 3.08 (dd, *J* = 13.0, 6.6 Hz, 1 H, one proton of NCH₂), 2.87 (dd, *J* = 13.6, 8.4 Hz, 1 H, one proton of NCH₂), 2.51 (dd, *J* = 16.0, 8.0 Hz, 1 H, one proton of NCH₂), 2.26-2.12 (m, 1 H, one proton of CH₂), 2.09-1.75 (m, 4 H, OH and 3×one proton of CH₂), 1.32 (s, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 131.6, 128.2, 127.9, 123.9, 123.2, 88.6, 54.7, 70.5, 54.9, 54.7, 51.8, 31.7, 29.61, 29.59, 22.0; MS (ESI) *m*/z 270 ([M+H]⁺); IR (neat) *v* = 3371, 2970, 2876, 2805, 1598, 1489, 1460, 1443, 1358, 1326, 1233, 1148, 1070 cm⁻¹; HRMS calcd for C₁₈H₂₄ON ([M+H]⁺): 270.1852. Found: 270.1851.

(17) (E)-1-cinnamyl-2-(phenylethynyl)pyrrolidine (**3ga**) (cyf-2-103)

Following **Typical Procedure I**, the reaction of CdBr₂ (27.7 mg, 0.1 mmol), **1g** (185.4 mg, 1.0 mmol), phenylacetylene **2a** (211.9 mg, 2.0 mmol), and toluene (6.0 mL) afforded **3ga** (115.0 mg, 40%) (25% recovery of **1g** as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ acetone = 40/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.40 (m, 2 H, ArH), 7.40-7.34 (m, 2 H, ArH), 7.32-7.23 (m, 5 H, ArH), 7.23-7.16 (m, 1 H, ArH), 6.59 (d, *J* = 16.0 Hz, 1 H, =CH), 6.38 (ddd, *J* = 16.0, 7.4, 6.2 Hz, 1 H, =CH), 3.69 (ddd, *J* = 13.6, 6.4, 1.1 Hz, 1 H, NCH), 3.62 (dd, *J* = 7.4, 5.8 Hz, 1 H, one proton of NCH₂), 3.24 (dd, *J* = 13.4, 7.4 Hz, 1 H, one proton of NCH₂), 2.91 (td, *J* = 8.8, 4.9 Hz, CH)

1 H, one proton of NCH₂), 2.55 (td, J = 8.8, 6.4 Hz, 1 H, one proton of NCH₂), 2.25-2.13 (m, 1 H, one proton of CH₂), 2.09-1.88 (m, 2 H, 2×one proton of CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 132.4, 131.8, 128.6, 128.3, 128.0, 127.41, 127.39, 126.4, 123.4, 88.7, 84.8, 55.6, 54.9, 52.0, 31.9, 22.2; MS (ESI) *m*/*z* 288 ([M+H]⁺); IR (neat) *v* = 3081, 3058, 3025, 2953, 2909, 2875, 2798, 1598, 1574, 1489, 1443, 1354, 1320, 1264, 1213, 1179, 1113, 1069, 1027 cm⁻¹; HRMS calcd for C₂₁H₂₂N ([M+H]⁺): 288.1747. Found: 288.1745.

3. The ZnI₂-catalyzed reaction of propargylic amines with terminal alkynes

Typical Procedure III: To a dry Schlenk tube with a polytetrafluoroethylene plug was added ZnI₂ (95.8 mg, 0.3 mmol). Then the catalyst was heated under vacuum until sublimation of ZnI₂. After cooling to room temperature, **1e** (109.2 mg, 1.0 mmol), dioxane (3 mL), phenylacetylene **2a** (204.3 mg, 2.0 mmol), and dioxane (3 mL) were added sequentially under Ar atmosphere. Then the Schenk tube was stirred at 110 °C for 10 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was transferred with EtOAc (50 mL). After evaporation, the residue was purified by columm chromatography on basic Al₂O₃ to afford **3ea** (101.1 mg, 47%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane = 100/1/5) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.38 (m, 2 H, ArH), 7.35-7.25 (m, 3 H, ArH), 6.05-5.90 (m, 1 H, =CH), 5.26 (d, *J* = 17.2 Hz, 1 H, one proton of =CH₂), 5.13 (d, *J* = 10.0 Hz, 1 H, one proton of =CH₂), 3.67-3.52 (m, 2 H, NCH and one proton of NCH₂), 2.61 (td, *J* = 8.8, 6.4 Hz, 1 H, one proton of NCH₂), 2.26-2.12

(m, 1 H, one proton of CH₂), 2.09-1.88 (m, 2 H, CH₂), 1.88-1.75 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 131.6, 128.1, 127.9, 123.2, 117.2, 88.5, 84.6, 56.2, 54.7, 51.6, 31.7, 22.0; MS (EI) *m/z* (%) 211 (M⁺, 42.03), 210 (100); IR (neat) *v* = 3078, 3008, 2976, 2911, 2876, 2806, 1643, 1598, 1489, 1459, 1443, 1419, 1357, 1320, 1182, 1141, 1110, 1070 cm⁻¹; HRMS calcd for C₁₅H₁₇N (M⁺): 211.1361. Found: 211.1359.

Following **Typical Procedure III**, the reaction of ZnI₂ (95.8 mg, 0.3 mmol), **1e** (109.2 mg, 1.0 mmol), 4-methoxyphenylacetylene **2c** (264.3 mg, 2.0 mmol), and dioxane (6.0 mL) afforded **3ec** (108.7.0 mg, 45%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane = 100/1/5) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dt, J = 8.8, 2.5 Hz, 2 H, ArH), 7.35 (dt, J = 8.8, 2.4 Hz, 2 H, ArH), 6.03-5.91 (m, 1 H, =CH), 5.25 (dd, J = 17.2, 1.2 Hz, 1 H, one proton of =CH₂), 5.13 (d, J = 10.0 Hz, 1 H, one proton of =CH₂), 3.04 (dd, J = 13.1, 7.7 Hz, 1 H, one proton of NCH₂), 2.87 (td, J = 8.8, 4.8 Hz, 1 H, one proton of NCH₂), 2.3-2.12 (m, 1 H, one proton of CH₂), 2.06-1.88 (m, 2 H, CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 135.7, 133.0, 117.2, 115.4, 113.7, 87.0, 84.3, 56.3, 55.2, 54.8, 51.7, 31.7, 22.0; MS (EI) m/z (%) 241 (M⁺, 47.36), 240 (100); IR (neat) v = 3075, 2956, 2910, 2876, 2835, 2805, 1643, 1606, 1570, 1509, 1463, 1442, 1418, 1357, 1320, 1290, 1248, 1172, 1142, 1106, 1033 cm⁻¹; HRMS calcd for C₁₆H₁₉NO (M⁺): 241.1467. Found:241.1461.

(3) 1-Allyl-2-((4-fluorophenyl)ethynyl)pyrrolidine (3ed) (lwl-8-55)

Following Typical Procedure III, the reaction of ZnI₂ (95.8 mg, 0.3 mmol), 1e (109.2 mg, 1.0 mmol), 4-fluorophenylacetylene 2d (240.2 mg, 2.0 mmol), and dioxane (6.0 mL) afforded 3ed (110.6 mg, 48%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane = 100/1/5) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.36 (m, 2 H, ArH), 6.98 (t, J = 8.6 Hz, 2 H, ArH), 6.03-5.90 (m, 1 H, =CH), 5.25 (dd, J = 16.8, 1.2 Hz, 1 H, one proton of =CH₂), 5.13 (d, J = 10.0 Hz, 1 H, one proton of =CH₂), 3.60-3.50 (m, 2 H, NCH and one proton of NCH₂), 3.04 (dd, J =12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.86 (td, J = 8.9, 4.9 Hz, 1 H, one proton of NCH_2), 2.49 (td, J = 8.8, 6.4 Hz, 1 H, one proton of NCH_2), 2.24-2.12 (m, 1 H, one proton of CH₂), 2.07-1.87 (m, 2 H, CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂); 13 C NMR (100 MHz, CDCl₃) δ 162.2 (d, J = 247.6 Hz), 135.6, 133.5 (d, J = 8.2 Hz), 119.3 (d, J = 2.9 Hz), 117.2, 115.4 (d, J = 21.6 Hz), 88.3 (d, J = 1.5 Hz), 83.4, 56.3, 54.7, 51.7, 31.7, 22.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.1; MS (EI) *m/z* (%) 229 $(M^+, 43.68), 228 (100); IR (neat) v = 3077, 2977, 2912, 2877, 2806, 1643, 1601, 1506, 16000, 1600, 1600, 1600, 1600,$ 1460, 1444, 1419, 1357, 1321, 1231, 1156, 1110, 1092 cm⁻¹; HRMS calcd for C₁₅H₁₆NF (M⁺): 229.1267. Found: 229.1266.

Following Typical Procedure III, the reaction of ZnI_2 (95.8 mg, 0.3 mmol), 1e (109.2 mg, 1.0 mmol), 4-chlorophenylacetylene 2e (273.2 mg, 2.0 mmol), and

dioxane (6.0 mL) afforded **3ee** (113.2 mg, 46%) (eluent: petroleum ether/ ethyl acetate/ dichloromethane = 100/1/5) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2 H, ArH), 7.26 (d, *J* = 8.4 Hz, 2 H, ArH), 6.03-5.90 (m, 1 H, =CH), 5.25 (dd, *J* = 17.2, 1.2 Hz, 1 H, one proton of =CH₂), 5.13 (d, *J* = 10.0 Hz, 1 H, one proton of =CH₂), 3.61-3.50 (m, 2 H, NCH and one proton of NCH₂), 3.04 (dd, *J* = 13.2, 7.6 Hz, 1 H, one proton of NCH₂), 2.86 (td, *J* = 8.7, 4.9 Hz, 1 H, one proton of NCH₂), 2.49 (td, *J* = 8.8, 6.4 Hz, 1 H, one proton of NCH₂), 2.24-2.13 (m, 1 H, one proton of NCH₂), 2.07-1.87 (m, 2 H, CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 133.8, 132.8, 128.5, 121.7, 117.3, 89.7, 83.4, 56.3, 54.7, 51.7, 31.6, 22.0; MS (EI) *m*/*z* (%) 247 (M⁺(Cl³⁷), 13.82), 245 (M⁺(Cl³⁵), 42.31), 244 (100); IR (neat) *v* = 3078, 2977, 2957, 2914, 2876, 2805, 1643, 1490, 1460, 1443, 1419, 1398, 1356, 1319, 1255, 1181, 1141, 1092, 1014 cm⁻¹; HRMS calcd for C₁₅H₁₆NCl (M⁺(Cl³⁵)): 245.0971. Found: 245.0979.

4. The ZnI₂-catalyzed reaction of 1-propargylic 1,2,3,4-tetrahydroisoquinoline with terminal alkynes

(1) (*E*)-1-(phenylethynyl)-2-(2-undecenyl)-1,2,3,4-tetrahydroisoquinoline (**3fa**) (cvf-1-136)

Typical Procedure IV: To a dry Schlenk tube with a polytetrafluoroethylene plug was added ZnI_2 (32.3 mg, 0.1 mmol). Then the catalyst was dried with heating under vacuum. After cooling to room temperature, **2a** (211.0 mg, 2.0 mmol), dioxane (3 mL), **1f** (283.0 mg, 1.0 mmol), and dioxane (3 mL) were added sequentially under Ar atmosphere. Then the Schenk tube was stirred at 110 °C for 5 hours. After the completion of the reaction as monitored by TLC, the crude reaction mixture was

diluted with 5 mL of dichloromethane and filtered through a short column of silica gel (eluent: 50 mL of Et₂O). After evaporation, the residue was purified by column chromatography on silica gel to afford **3fa** (301.4 mg, 78%) (eluent: petroleum ether/ diethyl ether/ dicholoromethane = 40/1/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.37 (m, 2 H, ArH), 7.34-7.23 (m, 4 H, ArH), 7.21-7.09 (m, 3 H, ArH), 5.76 (dt, J = 15.2, 6.8 Hz, 1 H, =CH), 5.57 (td, J = 15.2, 6.8 Hz, 1 H, =CH), 4.88 (s, 1 H, NCH), 3.40-3.29 (m, 2 H, CH₂), 3.08-2.96 (m, 2 H, CH₂), 2.89-2.77 (m, 2 H, CH₂), 2.08 (q, J = 6.8 Hz, 2 H, CH₂), 1.46-1.20 (m, 12 H, 6×CH₂), 0.88, (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 135.40, 135.33, 134.0, 131.7, 129.0, 128.1, 127.9, 127.8, 126.9, 126.2, 125.8, 123.2, 87.4, 86.6, 57.6, 54.3, 45.4, 32.4, 31.9, 29.5, 29.3, 29.22, 29.17, 28.8, 22.7, 14.1; MS (EI) m/z (%) 385 (M⁺, 9.93), 145 (100); IR (neat) v = 2954, 2922, 2852, 2820, 1598, 1489, 1454, 1356, 1321, 1286, 1261, 1189, 1133, 1099, 1070, 1050, 1028, 1007 cm⁻¹; HRMS calcd for C₂₈H₃₅N (M⁺): 385.2770. Found: 385.2772.

(2) (*E*)-1-((trimethylsilyl)ethynyl)-2-(2-undecenyl)-1,2,3,4-tetrahydroisoquinoline(3fm) (cyf-1-137B)

Following **Typical Procedure IV**, the reaction of ZnI₂ (32.4 mg, 0.1 mmol), trimethylsilylacetylene **2m** (200.9 mg, 2.0 mmol), **1f** (283.7 mg, 1.0 mmol), and dioxane (6.0 mL) afforded **3fm** (277.3 mg, 73%) (eluent: petroleum ether/ diethyl ether/ dicholoromethane = 30/1/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.19 (m, 1 H, ArH), 7.19-7.04 (m, 3 H, ArH), 5.72 (td, J = 15.8, 6.8 Hz, 1 H, =CH), 5.53 (td, J = 15.2, 6.8 Hz, 1 H, =CH), 4.65 (s, 1 H, NCH), 3.33-3.19 (m, 2 H, CH₂), 3.02-2.88 (m, 2 H, CH₂), 2.83-2.70 (m, 2 H, CH₂), 2.07 (q, J = 7.1 Hz, 2 H, CH₂), 1.46-1.18 (m, 12 H, $6 \times$ CH₂), 0.89 (t, J = 6.8 Hz, 3 H, CH₃), 0.15 (m, 9 H,

 $3 \times \text{SiCH}_3$); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 135.1, 133.9, 128.9, 127.8, 126.8, 126.1, 125.7, 103.4, 90.6, 57.4, 54.4, 45.3, 32.4, 31.9, 29.5, 29.3, 29.22, 29.15, 28.7, 22.7, 14.1, 0.2; MS (EI) *m*/*z* (%) 381 ([M]⁺, 29.89), 228 (100); IR (neat) *v* = 2956, 2922, 2853, 2821, 2156, 1494, 1454, 1356, 1321, 1286, 1261, 1189, 1133, 1099, 1076, 1070 cm⁻¹; HRMS calcd for C₂₅H₃₉NSi (M⁺): 381.2852. Found: 381.2844.

(3) (*E*)-1-(1-hexynyl)-2-(2-undecenyl)-1,2,3,4-tetrahydroisoquinoline (**3fn**) (cyf-1-137A)

Following **Typical Procedure IV**, the reaction of ZnI_2 (32.2 mg, 0.1 mmol), 1-hexyne **2n** (169.8 mg, 2.0 mmol), **1f** (283.3 mg, 1.0 mmol), and dioxane (6.0 mL) afforded **3fn** (208.8 mg, 57%) (eluent: petroleum ether/ diethyl ether/ dicholoromethane = 40/1/1) as a liquid: ¹H NMR (400 MHz, CDCI₃) δ 7.28-7.19 (m, 1 H, ArH), 7.17-7.04 (m, 3 H, ArH), 5.71 (td, J = 15.2, 6.8 Hz, 1 H, =CH), 5.54 (td, J= 16.0, 6.8 Hz, 1 H, =CH), 4.62 (s, 1 H, NCH), 3.25 (qd, J = 13.5, 6.7 Hz, 2 H, CH₂), 3.01-2.88 (m, 2 H, CH₂), 2.85-2.69 (m, 2 H, CH₂), 2.20 (td, J = 6.8, 1.6 Hz, 2 H, CH₂), 2.06 (q, J = 6.8 Hz, 2 H, CH₂), 1.53-1.20 (m, 16 H, 8×CH₂), 0.93-0.83 (m, 6 H, 2×CH₃); ¹³C NMR (100 MHz, CDCI₃) δ 136.2, 135.0, 133.7, 128.9, 127.6, 126.6, 126.3, 125.6, 86.8, 77.6, 57.4, 54.0, 45.2, 32.4, 31.9, 31.0, 29.5, 29.3, 29.23, 29.16, 28.8, 22.7, 22.0, 18.5, 14.1, 13.6; MS (EI) m/z (%) 365 ([M]⁺, 22.97), 212 (100); IR (neat) v = 2955, 2923, 2853, 1658, 1493, 1456, 1357, 1323, 1288, 1260, 1192, 1132, 1113, 1075, 1050 cm⁻¹; HRMS calcd for C₂₆H₃₉N (M⁺): 365.3083. Found: 365.3081.

5. The CdBr₂-catalyzed reaction of 1-(2-Undecynyl) piperidine with phenylacetylene. (E)-2-(Phenylethynyl)-1-(2-undecenyl)piperidine (3ha) (cyf-2-112)

Following **Typical Procedure I**, the reaction of CdBr₂ (55.4 mg, 0.2 mmol), **1h** (235.2 mg, 1.0 mmol), phenylacetylene **2a** (212.6 mg, 2.0 mmol), and toluene (6.0 mL) afforded **3ha** (168.8 mg, 50%) (30% recovery of **1h** as determined by ¹H NMR analysis of the crude product using CH₂Br₂ as internal standard) (eluent: petroleum ether/ ethyl acetate = 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.41 (m, 2 H, ArH), 7.34-7.27 (m, 3 H, ArH), 5.66 (dt, *J* = 15.6, 7.4 Hz, 1 H, =CH), 5.49 (dt, *J* = 15.2, 6.8 Hz, 1 H, =CH), 3.82 (s, 1 H, NCH), 3.17 (dd, *J* = 12.8, 5.8 Hz, 1 H, one proton of NCH₂), 2.03 (dd, *J* = 13.2, 7.4 Hz, 1 H, one proton of NCH₂), 2.62-2.46 (m, 2 H, NCH₂), 1.44-1.18 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.9, 131.7, 128.2, 127.8, 126.2, 123.5, 87.2, 86.4, 58.6, 51.7, 49.1, 32.4, 31.8, 31.4, 29.4, 29.3, 29.2, 29.1, 25.7, 22.6, 20.9, 14.1; MS (EI) *m/z* (%) 337 (M⁺, 8.77), 184 (100); IR (neat) *v* = 2922, 2852, 2814, 1598, 1489, 1441, 1377, 1351, 1319, 1292, 1260, 1201, 1123, 1068, 1041, 1027 cm⁻¹; HRMS calcd for C₂₄H₃₅N (M⁺): 337.2770. Found: 337.2760.

6. The CdBr₂-catalyzed reaction of propargylic amine li with terminal alkyne.

1,2-Undecadiene (**3ia**) $(cyf-2-92)^4$

Following Typical Procedure I, the reaction of CdBr₂ (27.6 mg, 0.1 mmol), 1i

(251.7 mg, 1.0 mmol), phenylacetylene **2a** (208.1 mg, 2.0 mmol), and MTBE (6.0 mL) afforded **3ia** (83.8 mg, 55%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.01 (quint, J = 6.8 Hz, 1 H, =CH), 4.64 (dt, J = 6.4, 3.2 Hz, 2 H, =CH₂), 2.03-1.94 (m, 2 H, CH₂), 1.45-1.19 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 90.1, 74.5, 31.9, 29.4, 29.3, 29.14, 29.10, 28.3, 22.7, 14.1; MS (EI) *m*/*z* (%) 152 (M⁺, 1.0), 54 (100); IR (neat) *v* = 2957, 2923, 2854, 1957, 1463, 1378, 1260, 1096, 1016 cm⁻¹.

7. Mechanistic studies

(1) 1-(2-Undecynyl)pyrrolidine-2,2,5,5-*d*₄ (*d*₄-1a) (cyf-1-060)

To a flame-dried Schlenk tube were added LiAlD₄ (168.5 mg, 4.0 mmol) and 4 mL of THF under Ar atmosphere. The reaction mixture was cooled to 0 °C with an ice bath and 1-(2-undecynyl)pyrrolidine-2,5-dione (249.5 mg, 1.0 mmol) was then added. After being stirred for 7.5 hours at room temperature, the reaction mixture was stirred at 80 °C with a pre-heated oil bath for 24 hours. After being cooled to room temperature, 6 mL of a saturated aqueous solution of Na₂SO₄ was added. After filtration, extraction with EtOAc (3×10 mL), and evaporation, the residue was purified by chromatography on silica gel to afford *d*₄-1a (100.6 mg, 45%, 97% deuteration) (eluent: petroleum ether/ acetone = 30/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 3.39-3.33 (m, 2 H, CH₂), 2.22-2.14 (m, 2 H, CH₂), 1.78 (s, 4 H, 2×CH₂), 1.49 (quint, *J* = 7.1 Hz, 2 H, CH₂), 1.43-1.18 (m, 10 H, 5×CH₂), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 84.3, 75.5, 51.6 (quint, *J*_{C-D} = 20.3 Hz), 43.3, 31.7, 29.1, 29.0, 28.8, 28.76, 28.73, 23.4, 22.5, 18.6, 13.9; MS (EI) *m/z* (%) 225 ([M]⁺, 34.66), 224 (100); IR (neat) ν = 2955, 2924, 2873, 2854 , 2771, 2199, 2056, 1464, 1433, 1359, 1326, 1260, 1214, 1125, 1068, 1017 cm⁻¹; HRMS calcd for C₁₅NH₂₃D₄

(M⁺): 225.2395. Found: 225.2393.

The following signals are discernible for **1a**: ¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, 4 H, 2×CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 52.2.

(2) (E)-2-(Phenylethynyl)-1-(3-deuterio-2-undecenyl)-2,5,5-trideuteriopyrrolidine
(d₄-3aa) (cyf-1-089)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (8.3 mg, 0.03 mmol). Then the catalyst was dried under vacuum with heating. d_4 -1a (67.8 mg, 0.3 mmol), MTBE (1 mL), phenylacetylene 2a (63.4 mg, 0.6 mmol), and MTBE (1 mL) were then added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 40.5 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with Et₂O (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford d_4 -3aa (46.9 mg, 48%, greater than 95% of incorporation) (eluent: petroleum ether/ acetone = 100/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2 H, ArH), 7.36-7.25 (m, 3 H, ArH), 5.57 (t, J = 6.6 Hz, 1 H, =CH), 3.47 (dd, J = 12.6, 6.2 Hz, 1 H, one proton of NCH₂), 3.03 (dd, J = 12.8, 7.6 Hz, 1 H, one proton of NCH₂), 2.23-2.12 (m, 1 H, one proton of CH₂), 2.07-1.86 (m, 4 H, CH₂ and $2\times$ one proton of CH₂), 1.86-1.75 (m, 1 H, one proton of CH₂), 1.41-1.20 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.8 (t, J_{C-D} = 22.6 Hz), 131.7, 128.2, 127.8, 126.6, 123.4, 88.7, 84.6, 55.2, 54.1 (t, $J_{C-D} = 21.8 \text{ Hz}$), 50.8 (quint, $J_{C-D} = 20.9 \text{ Hz}$), 32.2, 31.9, 31.6, 29.4, 29.3, 29.2, 29.1, 22.7, 21.8, 14.1; MS (EI) m/z (%) 327 ([M]⁺, 5.10), 213 (100); IR (neat) v =3056, 2954, 2853, 2195, 2060, 1598, 1573, 1489, 1463, 1443, 1363, 1311, 1285, 1259, 1203, 1117, 1068, 1027 cm⁻¹; HRMS calcd for C₂₃H₂₉D₄N (M⁺): 327.2864. Found:

327.2858.

The following signals are discernible for (**3aa**):¹H NMR (400 MHz, CDCl₃) δ 5.65 (dt, J = 15.6, 6.4 Hz, 1 H, =CH), 3.58 (dd, J = 7.4, 5.8 Hz, 1 H, NCH), 2.85 (dd, J = 9.2, 6.0 Hz, 1 H, one proton of NCH₂), 2.49 (dd, J = 8.2, 6.6 Hz, 1 H, one proton of NCH₂). ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 54.5.

(3) (E)-2-(phenylethynyl)-1-(2-deuterio-2-undecenyl)-3-deuteriopyrrolidine (d₂-3aa)
(cyf-1-075)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (27.7 mg, 0.1 mmol). Then the catalyst was dried under vacuum with heating. 1a (222.0 mg, 1.0 mmol), MTBE (3 mL), deuterated phenylacetylene d-2a (207.0 mg, 2.0 mmol), and MTBE (3 mL) were then added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 38 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short column of silica gel eluted with Et₂O (50 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford d_2 -3aa (198.0 mg, 61%, D-incorporation: =CD: $(1-0.76) \times 100\% = 24\%$, CHD: $(1-0.64) \times 100\% = 36\%$) (eluent: petroleum ether/ acetone = 200/1 (200 mL) to 100/1 (600 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.39 (m, 2 H, ArH), 7.34-7.24 (m, 3 H, ArH), 5.67 (dt, J = 15.2, 6.2 Hz, 1 H, = CH), 3.61-3.54 (m, 1 H, NCH), 3.52-3.45 (m, 1 H, one)proton of NCH₂), 3.02 (dd, J = 12.6, 7.0 Hz, 1 H, one proton of NCH₂), 2.88-2.80 (m, 1 H, one proton of NCH₂), 2.51 (dd, J = 15.4, 8.6 Hz, 1 H, one proton of NCH₂), 2.09-1.87 (m, 4 H, CH₂ and 2×one proton of CH₂), 1.86-1.74 (m, 1 H, one proton of CH₂), 1.46-1.14 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100

MHz, CDCl₃) δ 134.0, 131.6, 128.1, 127.8, 126.4 (t, $J_{C-D} = 23.5$ Hz), 123.4, 88.7, 84.5, 55.2, 54.45, 51.6, 32.27, 31.8, 31.2 (t, $J_{C-D} = 19.9$ Hz), 29.4, 29.25, 29.19, 29.1, 22.6, 21.9, 14.1; MS (EI) m/z (%) 325 ([M(C₂₃H₃₁D₂N)]⁺, 13.27), 324 ([M(C₂₃H₃₂DN)]⁺, 32.36), 323 ([M(C₂₃H₃₃N)]⁺, 44.31), 211 (100); IR (neat) v = 3058, 3021, 2955, 2922, 2853, 2807, 1598, 1573, 1489, 1459, 1443, 1375, 1321, 1267, 1158, 1116, 1070, 1028 cm⁻¹; HRMS calcd for C₂₃H₃₁D₂N (M⁺): 325.2739. Found: 325.2747.

The following signals are discernible for (**3aa**): ¹H NMR (400 MHz, CDCl₃) δ 5.58 (dt, J = 15.2, 6.6 Hz, 1 H, =CH), 1.86-1.74 (m, 1 H, one proton of CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 126.7, 55.3, 54.51, 32.33, 31.7, 22.0.

To a dry Schlenk tube with a polytetrafluoroethylene plug was added CdBr₂ (11.2 mg, 0.04 mmol). Then the catalyst was dried under vacuum with heating. After cooling to room temperature, deuterated phenylacetylene *d*-2a (83.5 mg, 0.8 mmol), MTBE (1.2 mL), **3aa** (128.9 mg, 0.4 mmol), and MTBE (1.2 mL) were added sequentially under Ar atmosphere. The resulting mixture was stirred at 120 °C for 36 h. The crude reaction mixture was diluted with 5 mL of DCM and filtrated through a short pad of silica gel eluted with DCM (30 mL). After evaporation, the residue was purified by chromatography on silica gel to afford **3aa** (101.3 mg, 78%) (eluent: petroleum ether/ acetone = 100/1 (200 mL) to 50/1 (200 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2 H, ArH), 7.33-7.25 (m, 3 H, ArH), 5.67 (dt, *J* = 15.2, 6.2 Hz, 1 H, =CH), 5.58 (dt, *J* = 15.2, 6.4 Hz, 1 H, =CH), 3.56 (dd, *J* = 6.8, 5.6 Hz, 1 H, NCH), 3.49 (dd, *J* = 12.6, 5.4 Hz, 1 H, one proton of NCH₂), 2.00 (dd, *J* = 12.8, 7.2 Hz, 1 H, one proton of NCH₂), 2.85 (td, *J* = 8.7, 5.2 Hz, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.12 (m, 1 H, one proton of NCH₂), 2.55-2.45 (m, 1 H, one

CH₂), 2.08-1.87 (m, 4 H, CH₂ and 2×one proton of CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂), 1.42-1.18 (m, 12 H, 6×CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 131.6, 128.1, 127.8, 126.7, 123.4, 88.7, 84.5, 55.3, 54.5, 51.6, 32.3, 31.8, 31.7, 29.4, 29.24, 29.18, 29.1, 22.6, 22.0, 14.1.

8. Gram-scale synthesis.

(1) 1-Allyl-2-((4-chlorophenyl)ethynyl)pyrrolidine (3ee) (cyf-1-051)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added ZnI_2 (967.0 mg, 3.0 mmol). Then the catalyst was heated under vacuum until sublimation of ZnI₂. After cooling to room temperature, 4-chlorophenylacetylene 2e (2.7890 g, 20.0 mmol), 1e (1.0920 g, 10.0 mmol) and dioxane (50 mL) were added sequentially under Ar atmosphere. Then the Schlenk tube was stirred at 110 °C for 13 h. After the completion of the reaction as monitored by TLC, the crude reaction mixture was filtrated through a short columm of silica gel eluted with DCM (60 mL) and EtOAc (100 mL). After evaporation, the residue was purified by column chromatography on silica gel to afford **3ee** (1.1364 g, 46%) (eluent: petroleum ether/ acetone = 200/1 (500 mL) to 50/1 (1000 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2 H, ArH), 7.29-7.23 (m, 2 H, ArH), 6.03-5.89 (m, 1 H, =CH), 5.25 (d, J = 17.2 Hz, 1 H, one proton of =CH₂), 5.13 (d, J = 10.0 Hz, 1 H, one proton of =CH₂), 3.59-3.51 (m, 2 H, NCH and one proton of NCH₂), 3.04 (dd, J = 13.2, 7.6 Hz, 1 H, one proton of NCH₂), 2.85 (td, J = 8.7, 4.9 Hz, 1 H, one proton of NCH₂), 2.54-2.45 (m, 1 H, one proton of NCH₂), 2.24-2.13 (m, 1 H, one proton of CH₂), 2.07-1.87 (m, 2 H, 2×one proton of CH₂), 1.87-1.75 (m, 1 H, one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 133.8, 132.8, 128.4, 121.7, 117.3, 89.6, 83.5, 56.2, 54.6, 51.6, 31.6, 22.0.

(2) (E)-2-((trimethylsilyl)ethynyl)-1-(2-undecenyl)pyrrolidine (3am) (cyf-1-069)

Following **Typical Procedure II**, the reaction of CdBr₂ (138.6 mg, 0.5 mmol), **1a** (1.1067 g, 5.0 mmol), trimethylsilylacetylene **2m** (1.0025 g, 10.0 mmol), and MTBE (30 mL) afforded **3am** (1.2437 g, 78%) (eluent: petroleum ether/ acetone = 200/1 to 100/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.63 (dt, *J* = 15.2, 6.4 Hz, 1 H, =CH), 5.54 (dt, *J* = 16.0, 6.6 Hz, 1 H, =CH), 3.42 (dd, *J* = 12.4, 6.0 Hz, 1 H, one proton of NCH₂), 3.32 (dd, *J* = 7.4, 5.4 Hz, 1 H, NCH) , 2.91 (dd, *J* = 12.6, 7.4 Hz, 1 H, one proton of NCH₂), 2.82-2.72 (m, 1 H, one proton of NCH₂), 2.48-2.38 (m, 1 H, one proton of NCH₂), 2.15-1.97 (m, 3 H, CH₂ and one proton of CH₂), 1.96-1.67 (m, 3 H, CH₂ and one proton of CH₂), 1.43-1.15 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃), 0.16 (s, 9 H, 3×SiCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.0, 126.7, 105.4, 88.6, 55.2, 54.5, 51.5, 32.3, 31.9, 31.6, 29.4, 29.3, 29.2, 29.1, 22.6, 21.9, 14.1, 0.1.

9. Synthetic applications

 $Pd(OAc)_{2} (5 \text{ mol}\%)$ LB-Phos•HBF₄ (10 mol%) K₃PO₄ (3.5 equiv.) H₂O (3.0 equiv.) dioxane, Ar, 130 °C, 3 h 3ee 4 5 2 equiv. 81%

(1) 2-(4-phenylphenylethynyl)-1-allylpyrrolidine (5) (cyf-1-081)

To a dry Schlenk tube with a polytetrafluoroethylene plug was added K_3PO_4 (383.3 mg, 1.75 mmol). Then it was dried under vacuum with a heating gun. $Pd(OAc)_2$ (5.8 mg, 0.025 mmol), LB-Phos·HBF₄ (23.2 mg, 0.05 mmol), phenylboronic acid **4** (124.4 mg, 1 mmol), and dioxane (0.5 mL) were added

sequentially under Ar atmosphere. After being stirred for 5 min at room temperature, 1-allyl-2-((4-chlorophenyl)ethynyl)pyrrolidine 3ee (123.0 mg, 0.5 mmol), dioxane (0.5 mL) and 27.0 µL of H₂O (27.0 mg, 1.5 mmol) were added. The resulting mixture was heated at 130 °C with a preheated oil bath. After 3 hours, it was allowed to cool to room temperature. The reaction mixture was diluted with 5 mL of dichloromethane and filtered through a short column of silica gel (eluent: 50 mL of Et₂O). After evaporation, the residue was purified by column chromatography on silica gel to afford 5 (116.8 mg, 81%) (eluent: petroleum ether/ acetone = 200:1 (400 mL) to 100:1 (300 mL)) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.29 (m, 9 H, ArH), $6.07-5.90 \text{ (m, 1 H, =CH)}, 5.27 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, \text{ one proton of =CH}_2 \text{)}, 5.14 \text{ (d, } J = 16.8 \text{ Hz}, 1 \text{ H}, 1 \text$ 10.0 Hz, 1 H, one proton of =CH₂), 3.67-3.52 (m, 2 H, NCH and one proton of NCH₂), 3.08 (dd, J = 12.8, 7.6 Hz, 1 H, one proton of NCH₂), 2.94-2.82 (m, 1 H, one proton of NCH₂), 2.52 (q, J = 8.0 Hz, 1 H, one proton of NCH₂), 2.29-2.14 (m, 1 H, one proton of CH₂), 2.11-1.76 (m, 3 H, 3×one proton of CH₂); ¹³C NMR (100 MHz, CDCl₃) § 140.6, 140.3, 135.6, 132.1, 128.8, 127.5, 126.94, 126.85, 122.2, 117.3, 89.2, 84.5, 56.3, 54.8, 51.7, 31.7, 22.0; MS (EI) m/z (%) 287 (M⁺, 61.40) 286 (100); IR (neat) v = 3076, 3030, 2975, 2955, 2910, 2875, 1643, 1600, 1518, 1485, 1459, 1444,1418, 1403, 1354, 1318, 1284, 1259, 1180, 1159, 1140, 1108, 1077, 1007 cm⁻¹; HRMS calcd for $C_{21}H_{21}N$ (M⁺): 287.1674. Found: 287.1676.

(2) (E)-2-ethynyl-1-(2-undecenyl)pyrrolidine (6) (cyf-1-087)

To a round-bottom flask were added (E)-2-((trimethylsilyl)ethynyl)-1-(2-undecenyl)-pyrrolidine **3am** (63.9 mg, 0.2 mmol), MeOH (3 mL), and K₂CO₃ (55.7 mg, 0.4 mmol) sequentially. The resulting mixture was allowed to stir at room temperature for 12 h. MeOH was then evaporated under

vacuum and the residue was diluted with 5 mL of dichloromethane and filtrated through a short column of silica gel (eluent: 25 mL of Et₂O). After evaporation, the residue was purified by chromatography on silica gel to afford **6** (50.2 mg, 100%) (eluent: petroleum ether/ acetone = 50:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.64 (dt, *J* = 15.6, 6.8 Hz, 1 H, =CH), 5.53 (dt, *J* = 15.2, 6.8 Hz, 1 H, =CH), 3.44-3.36 (m, 2 H, NCH and one proton of NCH₂), 2.96 (dd, *J* = 13.0, 7.4 Hz, 1 H, one proton of NCH₂), 2.79-2.71 (m, 1 H, one proton of NCH₂), 2.54-2.45 (m, 1 H, one proton of NCH₂), 2.29-2.25 (m, 1 H, =CH), 2.18-2.06 (m, 1 H, one proton of CH₂), 2.06-1.66 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.41-1.16 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 126.6, 83.1, 72.2, 54.9, 53.6, 51.3, 32.3, 31.8, 31.6, 29.4, 29.3, 29.2, 29.1, 22.6, 21.9, 14.1; MS (EI) *m/z* (%) 247 (M⁺, 24.18) 134 (100); IR (neat) *v* = 3309, 2955, 2922, 2872, 2853, 2812, 1460, 1376, 1351, 1319, 1115, 1088 cm⁻¹; HRMS calcd for C₁₇H₂₉N (M⁺): 247.2300. Found: 247.2302.

(3) (*E*)-2-(4-trimethylsilylbuta-1,3-diynyl)-1-(2-undecenyl)pyrrolidine (7)(cyf-1-120B)

To a flame-dried Schlenk tube were added $Pd(PPh_3)_2Cl_2$ (6.9 mg, 0.01 mmol), CuI (5.9 mg, 0.03 mmol), (iodoethynyl)trimethylsilane (122.0 mg, 0.5 mmol), THF (1 mL), diisopropylamine (84.0 µL, d = 0.718 g/cm³, 60.3 mg, 0.6 mmol), (*E*)-2-ethynyl-1-(2-undecenyl)pyrrolidine **6** (49.4 mg, 0.2 mmol), and THF (0.5 mL) under Ar atmosphere. The resulting mixture was heated at 35 °C with a preheated oil bath. After the completion of the reaction as monitored by TLC, the crude reaction mixture was diluted with 5 mL of dichloromethane and filtrated through a short

column of silica gel (eluent: 25 mL of Et₂O). After evaporation, the residue was purified by chromatography on silica gel to afford 7 (40.2 mg, 59%) (eluent: petroleum ether/ dichloromethane/ ethyl ether = 20:1:1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.66 (dt, *J* = 15.2, 6.8 Hz, 1 H, =CH), 5.50 (dt, *J* = 15.6, 7.0 Hz, 1 H, =CH), 3.57 (dd, *J* = 7.4, 3.8 Hz, 1 H, NCH), 3.32 (dd, *J* = 12.6, 6.2 Hz, 1 H, one proton of NCH₂), 3.02 (dd, *J* = 12.6, 7.4 Hz, 1 H, one proton of NCH₂), 2.72-2.56 (m, 2 H, NCH₂), 2.17-1.72 (m, 6 H, 3×CH₂), 1.42-1.20 (m, 12 H, 6×CH₂), 0.88 (t, *J* = 6.8 Hz, 3 H, CH₃), 0.20 (s, 9 H, 3×SiCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.4, 126.4, 87.8, 85.3, 78.1, 69.7, 54.8, 54.0, 51.2, 32.3, 31.9, 31.4, 29.4, 29.3, 29.15, 29.1, 22.7, 22.0, 14.1, -0.4; MS (ESI) *m/z* 344 ([M+H]⁺); IR (neat) *v* = 2957, 2923, 2853, 2811, 2226, 2207, 2175, 2101, 1461, 1375, 1315, 1250, 1151, 1108, 1074, 1022 cm⁻¹; HRMS calcd for C₂₂H₃₈NSi ([M+H]⁺): 344.2768. Found: 344.2752.

(5) (5a*R**,6*R**,8b*S**)-6-octyl-1,2,3,5a,6,8b-hexahydrocyclopenta[*a*]pyrrolizin-7(5*H*)-o ne (8) (cyf-1-165)

To a flame-dried Schlenk tube were added $Co_2(CO)_8$ (82.7 mg, 0.24 mmol), dicholoromethane (3 mL), (*E*)-2-ethynyl-1-(2-undecenyl)pyrrolidine **6** (49.5 mg, 0.2 mmol), and dicholoromethane (3 mL) sequentially under Ar atmosphere. The resulting mixture was stirred at room temperature for 1 hour. After evaporation of the solvent, the Schlenk tube was added dry toluene (4 mL) and DMSO (140 μ L, d = 1.10 g/cm³, 2.0 mmol). The reaction mixture was then heated at 80 °C with a preheated oil bath. After 12 hours the crude reaction mixture was quenched with 5 mL of H₂O and 1 mL of NH₃ aqueous solution. After separation of organic phase, extraction with DCM (3×10 mL), the combined organic phase was dried over anhydrous Na₂SO₄, After filtration and evaporation, the residue was purified by preparative thin layer chromatography on silica gel (20 × 20 cm) (dichloromethane/

30:1 15:1) afford methanol = to to $(5aR^*, 6R^*, 8bS^*)$ -6-octyl-1,2,3,5a,6,8b-hexahydrocyclopenta[a]pyrrolizin-7(5H)-on e 8 (24.9 mg, 45%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 1 H, =CH), 4.17 (t, J = 8.0 Hz, 1 H, NCH), 3.33 (t, J = 6.6 Hz, 1 H, one proton of NCH₂), 3.20 $(dd, J = 11.6, 8.0 Hz, 1 H, one proton of NCH_2), 2.98-2.88 (m, 1 H, CH), 2.78-2.63$ (m, 2 H, 2×one proton of CH₂), 2.32-2.21 (m, 1 H, one proton of CH₂), 2.10-1.83 (m, 4 H, CH_2 , CH and one proton of CH_2), 1.65-1.52 (m, 1 H, one proton of CH_2), 1.46-1.19 (m, 13 H, $6 \times CH_2$ and one proton of CH_2), 0.88 (t, J = 6.6 Hz, 3 H, CH_3); ¹³C NMR (100 MHz, CDCl₃) δ 211.6, 187.8, 123.3, 57.6, 62.1, 56.5, 53.3, 47.9, 32.2, 31.8, 29.5, 29.4, 29.2, 28.7, 28.0, 27.8, 22.6, 14.1; MS (ESI) m/z 276 $([M+H]^+)$; IR (neat) v = 2923, 2855, 1700, 1457, 1373, 1258, 1084, 1017 cm⁻¹; HRMS calcd for $C_{18}H_{30}NO([M+H]^+)$: 276.2322. Found: 276.2318.

References:

- 1. Bieber, L. W.; Da Silva, M. F. Tetrahedron Lett. 2004, 45, 8281.
- 2. Biel, J. H.; DiPierro, F. J. Am. Chem. Soc. 1958, 80, 4609.
- 3. Bew, S. P.; Hiatt-Gipson, G. D.; Lovell, J. A.; Poullain, C. Org. Lett. 2012, 14, 456.
- 4. Kuang J.; Ma, S. J. Org. Chem. 2009, 74, 1763.