Supplemental Information for

Dicer functions transcriptionally and post-transcriptionally in a multilayer antiviral defense

Ida Bagus Andika, Hideki Kondo, and Nobuhiro Suzuki‡

Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan

Corresponding Author: Nobuhiro Suzuki
Agrivirology Laboratory
Institute of Plant Science and Resources
Okayama University
Kurashiki, Okayama 710-0046, Japan
Tel. 81(86) 434-1230
Fax. 81(86) 434-1232
e-mail. <u>nsuzuki@okayama-u.ac.jp</u>

This PDF file includes:

Tables S1 and S2

Figures S1 to S13

Supplementary tables

Table S1. List of the virus-induced gene candidates.

Transcript/protoin ID	putative	RPKM		DK80 vs. DK80+CHV1dp69		RPKM	DK80 vs. dsgf73+dsgf73+CHV1dp69		Appotations	
Transcript/protein iD	gene name	DK80	DK80+CHV1dp69*	Fold change**	P-value	dsgf73+CHV1dp69	Fold change	P-value	Ainotations	
jgi Crypa2 65641	gtpch	5.332408582	1120.799266	194.9402722	0	21.02372269	3.136832771	0	GTP cyclohydrolase I	coenzyme transport and metabolism
jgi Crypa2 287505	aprt	4.161352251	451.4977753	100.7095053	0	7.70262467	1.47366059	3.0927E-05	adenine phosphoribosyl transferases	nucleotide transport and metabolism
jgi Crypa2 327914	hp1	14.42890657	1180.504224	75.91892189	0	133.0644753	7.339470286	0	hypothetical protein 1	unknown
jgi Crypa2 231469	*	2.714999582	209.9140978	71.70990903	0	3.466758459	1.016464982	0.90947014	D-3-phosphoglycerate dehydrogenase	amino acid transport and metabolism
jgi Crypa2 333449	*	3.731814731	236.1750779	58.73127293	0	21.70874288	4.630172349	0	LRR-containing protein	function unknown, protein binding (LRR_1, PNI-like)
jgi Crypa2 349858	uprt	32.81901896	1577.477377	44.62255222	0	231.0995153	5.606492658	0	uracil phosphoribosyltransferase ?	unknown (P-loop containing NTH, PRTase-like, HAD-like)
jgi Crypa2 16211	btb	2.433048838	103.3445266	39.36805506	0	8.4305625	8.4305625	0	SKP1/BTB/POZ_sf	protein binding (POZ)
jgi Crypa2 257472	hel	1.384241578	44.16869213	29.61160782	0	3.054498028	1.756555807	8.35E-08	Predicted helicase, DEAD-box superfamily	general function prediction only
jgi Crypa2 252931	*	3.056317516	88.45990338	26.85229	0	7.762717607	2.021432138	3.4344E-09	Cytochrome P450 subfamilies	secondary metabolites biosynthesis, transport and catabolism
jgi Crypa2 67680	*	4.820448367	127.8252821	24.60964099	0	22.92641285	3.78574851	0	hypothetical protein	unknown
jgi Crypa2 44705	*	6.321075402	116.1071998	17.04015267	0	12.40375556	1.561796097	0.00040877	GCN5-related N-acetyltransferase	metabolism
jgi Crypa2 355436	*	17.59281467	301.299682	15.89784129	0	7.369204131	0.333582595	0	Peptidase G1, eqolisin	proteolysis and peptidolysis
jgi Crypa2 356052	hp2	943.4194333	14518.12877	14.28688951	0	873.6288954	0.737317277	0.00012427	hypothetical protein 2	unknown
jgi Crypa2 354844	*	2.801971856	39.96910382	13.23442345	0	3.375650753	0.959120331	0.748103	S1/P1 nuclease	DNA catabolism
jgi Crypa2 358414	*	19.54377547	271.4143457	12.89089268	0	16.19007663	0.65961299	2.1849E-05	hypothetical protein	unknown
jgi Crypa2 327709	*	4.844512613	65.93782659	12.63175413	0	8.180847243	1.344350495	0.00508909	Cytochrome P450 subfamilies	secondary metabolites biosynthesis, transport and catabolism
jgi Crypa2 68851	ac	4.585334308	57.15889248	11.56470824	0	5.368636923	0.932128499	0.6004684	Adenylate cyclase	cAMP biosynthesis
jgi Crypa2 266713	*	14.59178473	174.3474755	11.08903326	0	93.62564504	5.107205576	0	GCN5-related N-acetyltransferase	metabolism
jgi Crypa2 219629	*	11.17087614	126.7156612	10.52832653	0	26.96888225	1.921908641	2.4649E-11	AAA+-type ATPase	posttranslational modification, protein turnover, chaperones
jgi Crypa2 348724	*	9.593154076	108.1374819	10.46345331	0	3.77794145	0.313652804	0	Purple acid phosphatase	carbohydrate transport and metabolism

*RPKM(Reads Per Killobases per Million)>30

Name	Sequence (5^{-3})	Direction	Used for
Name	Sequence (5 -5)	DITECTION	USEU IUI
CP-Actin (F)	CACCCACATCCTTCCACACC	Forward	PT-DCP actin
CD Actin (D)		Poiwaid	
CP-ACUIN (R)		Reverse	RT-PCR actin
		FOIWAIG	RI-PCK gtpH
GIPCyClO(I)		Reverse	RI-PCR gtpli
Adeninephospho(I)		Forward	RT-PCR aprt
Adeninephospho(r)		Reverse	RT-PCR aprt
Unk32/914(I)		Forward	RT-PCR 27914
UIR32/914(r)		Reverse	RT-PCR 27914
		Forward	RT-PCR D3
D3pnospno(r)	GTGTCGTTGTGGTGATAGCG	Reverse	RT-PCR D3
LRR(I)	TCGTTCCCGACCCAAGAAAT	Forward	RT-PCR Irr
LRR(r)	GGCGGATGTGGGTGTTGGAC	Reverse	RT-PCR ITT
P-100p(f)	GGTGCTCTCGCTCAACACCT	Forward	RT-PCR uprt
P-loop(r)	CCAGCACCGTCTCCAGGTCT	Reverse	RT-PCR uprt
BTB-POZ(1)	TCGTCAAAGCACCTTACTGT	Forward	RT-PCR btb
BTB-POZ (r)	GGTGTCCAAAATTCAATGAT	Reverse	RT-PCR btb
Helicase(f)	ACGCCAAGACCTTTGGCTCA	Forward	RT-PCR helicase
Helicase(r)	TCGAGACAGTGGCAATCTCC	Reverse	RT-PCR helica
Cytochrome252931(f)	CTGGTGGCAAGATGCGTCTA	Forward	RT-PCR 252931
Cytochrome252931(r)	CGCCCTTGAGGAGGTGGCTG	Reverse	RT-PCR 252931
Threonine-serine(f)	GGATCTGCACCGAAAAGACC	Forward	RT-PCR Threo\serine
Threonine-serine(r)	TCTCGACAGCAAGCACCTTG	Reverse	RT-PCR 252931
Unk-67680(f)	GCTCCCAATCAGAATCTTGG	Forward	RT-PCR 67680
Unk-67680(r)	TAGCACCCTTTCGTGAAAGT	Reverse	RT-PCR 67680
Purple(f)	TACACCCTCTTGGATATCCT	Forward	RT-PCR Purple
Purple(r)	GGCTGGCCATGTACACTTTG	Reverse	RT-PCR Purple
Unk-356052(f)	AGTGAGAGATGCTGGCCTGG	Forward	RT-PCR 356052
Unk-356052(r)	GCATCTGAAGCGGTCTCGTT	Reverse	RT-PCR 356052
S1-P1(f)	GCTTCATACCTGCTTCTGAC	Forward	RT-PCR S1-P1
S1-P1(r)	TGCAGACGTAGGCATTTGCA	Reverse	RT-PCR S1-P1
Unk-358414(f)	ACGGCCCCTGAGATGGACCT	Forward	RT-PCR 358414
Unk-358414(r)	CAAATGTCCGCAATAGACCG	Reverse	RT-PCR 358414
CytoP450-327709(f)	AGCAAGCCGCTAGATATCGT	Forward	RT-PCR 327709
CytoP450-327709(r)	CTCGGATCATGGCCGTTCCG	Reverse	RT-PCR 327709
Adenylate(f)	CCGTCGCCATCATATCCTAT	Forward	RT-PCR ac
Adenylate(r)	GTGTAGCAGCCTCAGCCTGA	Reverse	RT-PCR ac
AAA(f)	TATCAGCTGTTACGGGCGCG	Forward	RT-PCR AAA
AAA(r)	TGCGTCCGTCGCTAGACAAA	Reverse	RT-PCR AAA
GCN5-rel(f)	GGCTCCATCACCACCCACC	Forward	RT-PCR GCN5
GCN5-rel(r)	CAACGCCTTTACCATAATCC	Reverse	RT-PCR GCN5
Threo(f)	CGCGGCCGACAGGCACCTGC	Forward	RT-PCR 246505
Threo(r)	TGCTTCGACACCAAACTGCG	Reverse	RT-PCR 246505
LRR(f)	ACCACGGCGCCGCCGCATC	Forward	RT-PCR lrr
LRR(r)	GTCACCAGGCTGGCGAGGGC	Reverse	RT-PCR lrr
Peptidase(f)	AAGTACGCCACTGTCGTCGC	Forward	RT-PCR Peptidase G1
Peptidase(r)	CGGACGAGGTGGTGGCCTCG	Reverse	RT-PCR Peptidase G1
Dcl2-C. parasitica(f)	CCTGCCCTGTTCAGTATCA	Forward	RT-PCR CpDcl2
Dcl2-C. parasitica(r)	GTGGTAGCCCTCTCTTTGAC	Reverse	RT-PCR CpDcl2
Dc12-F.graminearum(f)	TCCTCAAGCGATAAGGTCATGG	Forward	RT-PCR FgDcl2
Dcl2-F.graminearum(r)	GAACTTCATCGAAGACGATAAG	Reverse	RT-PCR FgDcl2
Dcl2-R. necratix(f)	ACTACGAAAGGCTTGAATTCTT	Forward	RT-PCR RnDcl2
Dcl2-R. necratix(r)	ATCAAGGATGGGGTCACCAAGA	Reverse	RT-PCR RnDcl2
OL-327914-Neo(f)	GAATCATCAACGAATCAACCAGATACCCAGAGTTATCTCACCAT	Forward	Δ327914
OL-327914-Neo(r)	ACCCAATTCTTGCCGGCCCCTCATTCCCGGTGTAGGAAGCTGTT	Reverse	Δ327914
5arm-327914(f)	ATAACGACCGCTTCAAGGCTGT	Forward	Δ327914
5arm-327914(r)	TGAGATAACTCTGGGTATCTGGTTGATTCGTTGATGATTCGTAC	Reverse	Δ327914
3arm-327914(f)	GCTTCCTACACCGGGAATGAGGGGCCGGCAAGAATTGGGTCCCC	Forward	A327914
227014(x)		Reverse	A207014
Sarm=32/914(r)		INE VELSE	Δ32/914
OL-GTP-Neo(f)	ATCTCATTCCCGCCATAACAAGATACCCAGAGTTATCTCACCAT	Forward	∆gtpch
OL-GTP-Neo(r)	TGCGATAAAGCCGCACTCTATCATTCCCGGTGTAGGAAGCTGTT	Reverse	∆gtpch
5arm-GTP(f)	ACCAGTGCAAAGGGAAAGTTTA	Forward	Δatpch

Table S2. List of the primers used in this study

E +== ()		B	
5arm-GTP(r)	TGAGATAACTCTGGGTATCTTGTTATGGCGGGAATGAGATGAAA	Reverse	Δgtpch
Jarm-GTP(1)	GCTTCCTACACCGGGAATGATAGAGTGCGGCTTTATCGCATTTG	Forward	Δgtpch
3arm-GTP(r)	GAAGCCCGGTGAGCACCTCTGG	Reverse	Δgtpch
OL-Ploop-Neo(f)	TCTCTACCGATACTGAAGCCAGATACCCAGAGTTATCTCACCAT	Forward	Δuprt
OL-Ploop-Neo(r)	TGCCATCATTCTCCTCTCTCTCATTCCCGGTGTAGGAAGCTGTT	Reverse	Δuprt
5arm-Ploop(f)	GAGAGGGAAAGGGAATGGGTTG	Forward	∆uprt
5arm-Ploop(r)	TGAGATAACTCTGGGTATCTGGCTTCAGTATCGGTAGAGAGAG	Reverse	Δuprt
<pre>3arm-Ploop(f)</pre>	GCTTCCTACACCGGGAATGAGAGAGAGGAGAATGATGGCAAGAG	Forward	Δuprt
<pre>3arm-Ploop(r)</pre>	ACACCCCGGCTCTCCAACAAGC	Reverse	Δuprt
OL-BTB-Neo(f)	AGCCCGCAAACAGTTTCAGAAGATACCCAGAGTTATCTCACCAT	Forward	Δbtb
OL-BTB-Neo(r)	ATCTTGTTGCAGCAGCAGGTTCATTCCCGGTGTAGGAAGCTGTT	Reverse	Δbtb
5arm-BTB(f)	AAACAGAGAGTAAAAGGGATCT	Forward	Δbtb
5arm-BTB(r)	TGAGATAACTCTGGGTATCTTCTGAAACTGTTTGCGGGCTGCTG	Reverse	Δbtb
<pre>3arm-BTB(f)</pre>	GCTTCCTACACCGGGAATGAACCTGCTGCTGCAACAAGATGATA	Forward	Δbtb
3arm-BTB(r)	TAACTAGTCAGACTCATCTGCA	Reverse	Δbtb
OL-356052-Neo(f)	TCCCAATTGTCAGGGGGAACAGATACCCAGAGTTATCTCACCAT	Forward	Δ356052
OL-356052-Neo(r)	GGTAGTTTTGAGAGCTACTTTCATTCCCGGTGTAGGAAGCTGTT	Reverse	A356052
5arm-356052(f)	CTGTTCTTCTAAATTTCTTCGC	Forward	A356052
5arm-356052(r)	TGAGATAACTCTGGGTATCTGTTCCCCCCTGACAATTGGGATCAT	Reverse	A356052
3arm-356052(f)	GCTTCCTACACCGGGAATGAAAGTAGCTCTCAAAACTACCAAAA	Forward	A356052
3arm-356052(r)	AGGCTGACGAGCACCACGAATTT	Reverse	A356052
OL-Adenine-Neo(f)		Forward	Apprt
OL Adenine Neo (r)		Poverse	Apprt
52rm- Adonino (f)		Forward	
Saim- Adenine (1)		Polward	Aaprt
Saim- Adenine (f)		Forward	Aaprt
Sarm- Adenine (I)		FOIWAIG	Δaprt
Jarm- Adenine (r)	GTTGGCGGCGCATAGATTGGTG	Reverse	Δaprt
OL-Adenylate-Neo(I)	GGATCCGATCATTATCAGAAAGATACCCCAGAGTTATCTCACCAT	Forward	Δac
OL- Adenylate-Neo(r)	ACAAAGAAGCAGGTTTTTTTTTTTCATTCCCCGGTGTAGGAAGCTGTT	Reverse	Δac
5arm-Adenylate(f)	GTACCAGCGGCGGGCCCAGGTT	Forward	Δac
5arm-Adenylate(r)	TGAGATAACTCTGGGTATCTTTCTGATAATGATCGGATCCCGTT	Reverse	Δac
3arm-Adenylate(f)	GCTTCCTACACCGGGAATGAATAAAAACCTGCTTCTTTGTACCT	Forward	Δac
3arm-Adenylate(r)	TTGGTCATGCCCACGCCGAGGA	Reverse	Δac
OL-Hel-Neo(f)	AACAACAACCACTCACTATCAGATACCCAGAGTTATCTCACCAT	Forward	Δhelicase
OL-Hel-Neo(r)	AACCAACATGGATGGGCATCTCATTCCCGGTGTAGGAAGCTGTT	Reverse	Δ helicase
5arm-Hel(f)	GTACATAGAGTCCTTGGAGATG	Forward	Δhelicase
5arm-Hel(r)	TGAGATAACTCTGGGTATCTTGACAACCAACATGGATGGGCATC	Reverse	Δhelicase
<pre>3arm-Hel(f)</pre>	GCTTCCTACACCGGGAATGAGATGCCCATCCATGTTGGTTG	Forward	Δ helicase
3arm-Hel(r)	AGAAGGGCGGCGAGGCCAAGAA	Reverse	Δhelicase
HpaI-dcl2(f)	CGGCCGCAAGCTTGTTTGAGGATGGCGTACTATACCG	Forward	Pcrp:dcl2
HpaI-dcl2(r)	AGGTCAAGCATGCGTTAACCTATTTCCTCTTCAAAATCTCG	Reverse	Pcrp:dcl2
DEAH-mut(f)	GCTGCCGCAGCGCACTGCAACAAGAATCATGCCT	Forward	mutDEAD
DEAH-mut(r)		Reverse	mutDEAD
Hel2-mut(I)		Porward	muthel
RNA3a-mut(f)	GCTGCCGCAGCGGCTAGTATCCTCAAAACATGCATTA	Forward	mutRNAse-a
RNA3a-mut (r)	AGCCGCTGCGGCAGCGTCGCCTAGAAACTCAATCCTC	Reverse	mutRNAse-a
RNA3b-mut(f)	GCTGCCGCAGCGGCTGCCGCCATTCTCGACTACATCATCG	Forward	MutRNAse-b
RNA3b-mut(r)	AGCCGCTGCGGCAGCGCGGTCGTAGCACGCCACTGTT	Reverse	MutRNAse-b
DSRM-mut(f)	GCTGCCGCAGCGGCTGCCGGAAGGCTGGCGGGCAGGGAGA	Forward	mutDSRM
DSRM-mut(r)	AGCCGCTGCGGCAGCTAGCACATGCACCTGATCCCTC	Reverse	mutDSRM
HpaI-dcl2Rn(f)	CGGCCGCAAGCTTGTTGCCGAGATGTCGTCACTCATGG	Forward	Pcrp:Rn_dcl2
HpaI-dcl2Rn(r)	AGGTCAAGCATGCGTTAACTCATCCAGTCAGCATCTCATCC	Reverse	Pcrp:Rn_dcl2
Hpal-dcl2Fg(f)		Forward	Perp:Fg_dc12
npal-acizrg(r)	AGGTUAAGUATGUGTTUTAAATGAGTTUUATGGUAAUA	Keverse	FCTP:Fg_aC12

Supplementary figures

Fig. S1. RT-PCR analysis of the transcript accumulation of virus-induced gene candidates (listed in *SI Appendix*, Table S1). (A–E) Gene transcript accumulation in virus-free DK80, CHV1- Δ p69-infected DK80, and $\Delta sgf73$ strains. The transcriptional expression pattern of genes that are highly induced by CHV1- Δ p69 infection in DK80 but less induced in the $\Delta sgf73$ strain are shown in A, while the genes with another expression pattern or those undetected are shown in B–E. (F) Gene transcript accumulation in CHV1- Δ p69-infected EP155 and $\Delta dcl2$ strains. The sequences of all primers used are shown in Table S2.

Fig. S2. Mapping positions of the *gtpch* and *aprt* genes in the *Cryphonectria parasitica* genome. Sequence reads obtained from RNA-seq analysis of virus-free DK80, CHV1- Δ p69-infected DK80, and Δ sgf73 samples are shown below the map.

Fig. S3. Transcriptional induction of *dcl2*, *uprt*, and *hp2* by transgenic expression of inverted repeats (dsRNA). Total RNA prepared from fungal strains infected (CHV1- Δ p69) or -uninfected (Virus free) by CHV1- Δ p69 and expressing an inverted repeat derived from a mitogen activated kinase gene, *CpMK1* (CpMK1-IR) was subjected to Northern blotting as described in Fig. 1. Ethidium bromide-stained 28S rRNA was used as a loading control.

Fig. S4. Schematic representation of the selected virus-induced genes, *uprt*, *gtpch*, *aprt*, *hp1*, *hp2*, *btb*, *hel*, and *ac*. Their mapping positions in the *C. parasitica* genome (scaffold), exon/intron maps, protein ID number, protein motifs, and disrupted regions in the deletion mutants (black line with arrow head) are shown.

Fig. S5. Colony morphology of virus-free DK80 and the disruption mutants ($\Delta uprt$, $\Delta gtpch$, $\Delta aprt$, $\Delta hp1$, $\Delta hp2$, Δbtb , Δhel , and Δac) of *C. parasitica* on PDA plates. Fungal strains were grown on PDA for 5 days and photographed.

Fig. S6. Effect of oxidative and osmotic stresses on fungal growth and gene transcriptional induction. (A) Phenotype of the EP155 (EP) and DK80 disruption mutant strains ($\Delta uprt$, $\Delta gtpch$, $\Delta aprt$, $\Delta hp1$, $\Delta hp2$, Δbtb , Δhel , and Δac) on PDA medium containing 0.05% H₂O₂ or 0.5 M KCl. (B) RT-PCR analysis of gene transcriptional induction in fungal strains (EP155 and $\Delta dcl2$) with or without CHV1- $\Delta p69$ infection under oxidative (0.05% H₂O₂) or osmotic (0.5 M KCl) stress. The constitutive actin gene was used as an internal control.

0.05% H₂O₂

0.5 M

KCI

dcl2

hp2

hp1

hel

ас

aprt

uprt

btb

gtpch

actin

LA KS Pacis

Fig. S7. 5'-terminal nucleotide profile of CHV1- Δ p69-derived small RNAs from EP155, $\Delta dcl2$ (noncomplemented), and $\Delta dcl2$ expressing homologous (*Pcrp:dcl2*) or heterologous DCL2 proteins from *Rosellinia necatrix* (*Pcrp:Rn_dcl2*) and *Fusarium graminearum* (*Pcrp:Fg_dcl2*). Red, dark yellow, blue and green regions denote small RNAs with 5'-terminal nucleotides U, G, C, and A, respectively.

Fig. S8. Distribution of CHV1- Δ p69-derived small RNAs (18–30 nt) across the viral genome. (A) Distribution map of the full-length CHV1- Δ p69 genome. (B) Close-up view of small RNA distribution in a partial genome sequence (ranging 9,500–10,000 nt).

Fig. S9. Amino acid sequence alignment of DCL2 proteins from *C. parasitica* and different other selected fungi. See Fig. S11for their database accession numbers.

А

Fig. S10. Effect of mutations in protein motifs on *C. parasitica* DCL2 function. (A) Schematic diagrams showing alanine substitutions at conserved amino acid positions in helicase (DEAD-box and Helicase), ribonuclease III (RNase IIIa and IIIb, RIBOc), and dsRNA binding (DSRM) motifs in the *C. parasitica* DCL2 protein. Wild-type DCL2 is shown on the top and mutants are denoted below it. Amino acid changes in each mutant are indicated at the right. (B) Phenotype of $\Delta dcl2$ complemented with the *dcl2* wild-type

RT-PCR (23 cyc.)

CHV1-∆p69

uprt

rRNA

+CHV1-∆p69

dcl2

rRNA

dcl2

Actin

(DCL2) mutant constructs (mutDEAD, mutHEL, mutRNase-a, mutRNase-b and mutDSRM) described in A. The colonies were cultured for 7 days on PDA and photographed. (C) Northern blotting analysis of the CHV1- Δ p69 RNA genome and *uprt* gene transcript accumulation in the fungal strains shown in B. (D) Northern blotting and RT-PCR analyses of *dcl2* transcripts in the wild-type (DCL2) and $\Delta dcl2$ complemented with the *dcl2* mutant constructs. Northern blotting was carried out as described in the Material and Method, while RT-PCR was performed using a primer pair, Dcl2-C. parasitica(f) and Dcl2-C. parasitica(r), Table S2).

Fig. S11. Phylogenetic analysis of DCL2 proteins encoded by *C. parasitica* (order *Diaporthales*), *Rosellinia necratix* (order *Xylariales*), *F. graminearum* (order *Hypocreales*) and different other fungi genomes. Fungal species names and database accession numbers of DCL2 proteins are indicated in the tree. The numbers at the nodes are bootstrap values of >70%.

Fig. S12. RT-PCR of heterologous *dcl2* in *C. parasitica* $\Delta dcl2$. $\Delta dcl2$ complemented with the heterologous dcl2 genes from *F. graminearum* or *R. necatrix* are described in the Fig. S7 legend. Transgenic expression of the heterologous dcl2 was confirmed by RT-PCR using primer sets, Dcl2-F. graminearum(f) and Dcl2-F. graminearum(r), and Dcl2-R. necatrix(f) and Dcl2-R. necatrix(r). See Table S2 for the primers' sequences.

Fig. S13. Abundance (A) and size distribution (B) of CHV1- $\Delta p69$ -derived small RNAs in *C. parasitica* $\Delta dcl2$ complemented with DCL2 from *R. necratix* (+Pcrp:Rn_dcl2) or *F. graminearum* (+Pcrp:Fg_dcl2).