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Supporting Information Text11

Solving for partial velocities and tip probabilities. Following ref. (1), the partial velocities can also be expressed as

vx = ψ+
xrvr

ψ−xr + vr

+ ψ+
xwvw

ψ−xw + vw

, [1]

for x = r, w. This gives a pair of simultaneous equations that can be solved for the partial velocities in terms of the
propensities. In turn, the velocities and propensities determine tip and conditional probabilities µ(ml) and µ(ml−1|ml), with
ml,ml−1 ∈ {r, w}, via

µ(x) = ψ+
rx

ψ−rx + vx

µ(r) + ψ+
wx

ψ−wx + vx

µ(w), [2]

µ(x|y) =
ψ+

xy

ψ−xy + vy

µ(x)
µ(y) .

[3]

Difference between the tip probabilities and the final sequence. It might not be immediately obvious why the properties of the12

growing chain described by µ(ml) and µ(ml,ml−1) should be different from those of the final chain described by ε, εr and εw,13

but the difference can be illustrated with a simple example. Consider a system in which incorrect monomers could be added to14

the end of the chain, but where nothing can be added after an incorrect match. In this case while the tip probability for an15

incorrect match µ(w) would be finite, the error of the final chain ε would be vanishingly small, as all incorrect matches would16

have to be removed in order for the polymer to grow further.17

Demonstrating that the sequence of the final chain is Markovian. Let M∞n be the monomer at the nth site in the final chain.18

Let a polymer be represented by M∞1 , ...,M∞n . The probability of a given chain existing is then P∞(m1, ...,mn). In order for19

the sequence of monomers moving along the chain (increasing n) to be able to be represented by a Markov chain, the condition20

P∞(mn|mn−1, ...,m1) = P∞(mn|mn−1) [4]21

must hold.22

In order to demonstrate that eq. 4 holds, we rewrite the final chain probability in terms of properties of the growing chain.23

Specifically we state that the probability of the sequence m1, ...,mn existing in the final chain is the product of the probability24

Q(m1, ...,mn−1, t) that the chain is in the state m1, ...,mn−1 at a time t during the growth process, and the propensity25

ν(mn;m1, ...,mn−1) with which mn is added to a chain m1, ...,mn−1 and never removed, integrated over all time. It should be26

noted that r(mn;m1, ...,mn−1) is time-independent.27

P∞(m1, ...,mn) =
∫
Q(m1, ...,mn−1, t)ν(mn;m1, ...,mn−1)dt [5]28

29

P∞(m1, ...,mn) = ν(mn;m1, ...,mn−1)
∫
Q(m1, ...,mn−1, t)dt [6]30

Setting the integral equal to I(m1, ...,mn−1) gives31

P∞(m1, ...,mn) = ν(mn;m1, ...,mn−1)I(m1, ...,mn−1) [7]32

Let’s consider the probabilities of two sub-sequences, identical except for the final monomer. We call the two final monomers33

mn and m′n and we can denote the ratios of the probabilities of these two chains as follows.34

P∞(m1, ...,mn)
P∞(m1, ...,m′n) = ν(mn;m1, ...,mn−1)I(m1, ...,mn−1)

ν(m′n;m1, ...,mn−1)I(m1, ...,mn−1) [8]35

The I terms are independent of this final monomer and so cancel. Thus36

P∞(m1, ...,mn)
P∞(m1, ...,m′n) = ν(mn;m1, ...,mn−1)

ν(m′n;m1, ...,mn−1) [9]37

The same relationship holds for the conditional probabilities38

P∞(mn|m1, ...,mn−1)
P∞(m′n|m1, ...,mn−1) = r(mn;m1, ...,mn−1)

r(m′n;m1, ...,mn−1) [10]39

For our system, the propensity with which a monomer mn is added and never removed, ν(mn;m1, ...,mn−1), is dependent on40

only on the final two monomers in the sequence fragment, mn and mn−1. To see why, note that this propensity is determined41

by addition and removal of monomers at sites i ≥ n. The identities of monomers at positions j < n− 1, however, only influence42

addition and removal propensities at sites k < n (eq. 1-4 main text). Thus we convert ν(mn;m1, ...,mn−1) to f(mn,mn−1).43

P∞(mn|m1, ...,mn−1)
P∞(m′n|m1, ...,mn−1) = f(mn,mn−1)

f(m′n,mn−1) [11]44
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Multiplying both sides by P∞(m1, ...,mn−2) and summing over all values of m1, ...mn−2 (recall
∑

c,d
P (a|b, c, d)P (c, d) =45

P (a|b) and
∑

c,d
P (c, d) = 1) gives46

P (mn|mn−1)
P (m′n|mn−1) = f(mn,mn−1)

f(m′n,mn−1) . [12]47

Comparing equations 11 and 12 yields:48

P∞(mn|mn−1, ...,m1)
P (m′n|mn−1, ...,m1) = P∞(mn|mn−1)

P∞(m′n|mn−1). [13]49

Summing over the possible values of m′n and recalling that P∞(r|mn−1) + P∞(w|mn−1) = 1 and P∞(r|mn−1, ...,m1) +50

P∞(w|mn−1, ...,m1) = 1 yields:51

P∞(mn|mn−1, ...,m1) = P∞(mn|mn−1), [14]52

thereby proving that the sequence of the final chain is Markovian.53

Overall error probability of the final chain. The final sequence is described by the Markov chain illustrated in figure S1. The
transition matrix for this process is

T =
[

1− εr 1− εw

εr εw

]
, [15]

The eigenvector of this transition matrix with eigenvalue equal to unity gives the steady state of the Markov chain. The second
component of this eigenvector corresponds to the overall probability of incorrect matches, ε:

ε = εr/(1 + εr − εw). [16]

Corroboration with simulation. To check the analytical methods used to solve the system we also simulated the growth of a54

polymer. We used a Gillespie simulation (2), with transition rates given by ψ±xy. Simulations were initialised with a randomly55

determined two monomer sequence, and truncated as soon as the polymer reached 1000 monomers. We found that such a56

length rendered edge effects negligible in all but the most extreme cases for the calculation of ε. Polymer error probabilities57

were inferred directly from the 100 simulations, and are compared to analytical results in fig. S2.58

We note in passing that the calculation of H, Hss, and particularly the efficiency’s η and ηss, are more vulnerable to random59

fluctuations in a simulation of finite length, and peculiar edge effects, than ε. Gaspard’s solution is therefore invaluable in60

reaching robust conclusions for these quantities.61
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Fig. S1. The transition diagram for the Markov process describing the sequence of monomers found by stepping forward along a completed chain.
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Fig. S2. Errors obtained from Gillespie simulations are indistinguishable from the analytical results obtained using Gaspard’s method for all three mechanisms.
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