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Supplementary Text 

COASST demographics 
Complete demographic information is known for 54% (N=1,270) of regular COASST 
participants, including: 

1. Gender - male, female 
2. Age at training - categorized for this analysis into 3 levels: <40, 40-60 and >60 
3. Self-reported bird identification expertise - no experience, beginner, intermediate, 

advanced, and expert; categorized for this analysis as one of three levels: 1: no 
experience/beginner, 2: intermediate, or 3: expert/advanced 

4. Membership in other conservation, environmental or citizen science groups; 
categorized for this analysis into a binomial factor: yes, no. 

 
COASST retention 
Retention curves were generated from duration information on participant involvement 
(extracted on 3 May 2018) generated from first and last survey date.  We restricted the 
participant set by excluding all currently active participants (defined as completing a 
survey within the last year), as calculation of participant-specific retention was only 
possible for individuals with a firm end point.  
 

We generated project-wide retention curves out to 10 years, bootstrapping 95% 
confidence intervals by sampling 70% of the population (1,000 permutations).  Retention 
curves were also calculated as a function of demographic and participant experience 
categories (gender, age class, birding expertise, previous citizen science involvement, 
sociality).  
 

For long-term participants (5+ years, and including currently active participants; N = 
491), we examined the relationship between effort (defined as total number of surveys, 
and carcasses found, respectively) and persistence by fitting a generalized linear model 
(GLM; negative binomial, identity link function) modeling number of surveys or 
carcasses as a linear function of persistence. Correlations were determined with pseudo-
R2 values as a measure of explanatory power: 
 

!" = 1 − &'()*+,'-./01234
&'()*+,'5244

       (eq. S1) 
 

COASST data collection accuracy 
For this analysis, accuracy was defined as the percent of carcasses identified correctly to 
species plus the percent identified correctly as “species unknown.” The latter category is 
operationally defined as carcasses for which a species-level identification is impossible 
(according to the verifier) but a larger taxonomic grouping is possible (e.g., murres, large 
grebes, true puffins).  All accuracy analyses are based on carcass finds from 2013 
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onwards, and exclude unusual mortality events (surveys with >30 carcasses), when 
carcass abundance dictated an alternate, abbreviated protocol. 
 

We examined accuracy at three different levels: cumulative participant accuracy, carcass-
specific accuracy and survey-specific accuracy. Cumulative participant accuracy is 
participant-specific accuracy over all birds encountered by that individual, regardless of 
participant team size, and was assessed for N = 774 participants who began surveying 
after 1-Jan-2013.  
 

Carcass-specific accuracy was used to generate population-level learning curves by 
fitting a negative exponential curve describing the probability of successful identification 
to species (binomial: yes/no) as a function of previous COASST experience, proxied as 
cumulative carcasses found by the most experienced member of the relevant team. The 
probability of correctly identifying a bird, 6, was modelled as a function of previous bird 
finds, 7′, according to: 
 

6 7′ = 69 + ; 1 − <=>?@         (eq. S2) 
 

where 69 models initial accuracy, ; is the difference between initial and asymptotic 
accuracy and A models learning rate. All birds were binned according to previous bird 
finds, b’ expressed in integer increments (i.e. b’ = 0, 1, 2, 3 … ) and eq. S2 was fitted to 
the binned data assuming that carcass-specific accuracy varied according to a binomial 
distribution, with probability of correct identification equal to A(b’), with ntrials = bin-
specific number of carcasses, and nsuccesses = number of carcasses correctly identified in 
that bin.  
 

Learning curve models were estimated using STAN in R (1) assuming non-
informative/flat priors for all three parameters (69, ;, A) of the negative exponential 
model. Parameter estimates were obtained from 4 MCMC chains, with a burn-in period 
of 5,000 iterations, or until model convergence as determined by visual examination of 
cross-chain mixing of parameter estimates. Upon convergence, chains were run for a 
further 5,000 iterations to estimate model parameters.  
 

We also fitted learning curves to each of the demographic factor categories using the 
modeling approach above. Carcasses were assigned to demographic categories (e.g., all 
participants >60 years of age at training), according to the demographics expressed by the 
most experienced member of the survey team, judged based on previous number of 
carcass finds.  When team members had equivalent experience, carcass finds were only 
assigned demographic information if those participants were also in the same 
demographic class, and otherwise excluded from the demographic specific analyses.  
 

At the survey-level we examined the influence that three factors: carcass abundance, 
number of species found, and previous experience (proxied by the participant-specific 
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maximum of cumulative carcass finds) on within-survey learning.  As for carcass-specific 
accuracy, each survey was assigned to the most experienced participant on that survey.  
We fit generalized additive models (GAM) using the mgcv package in R (2), assuming 
that the number of carcasses correctly identified in a survey, ncorrect, varied according to a 
binomial distribution with ntrials equal to the survey-specific bird abundance, and survey-
specific probability of success informed by smooth functions of survey-specific bird 
abundance and diversity as well as previous beached bird experience. GAMs consisting 
of all possible combinations of these factors were fitted and ranked according to AIC, 
with the best model selected as the one that minimized AIC. Predictor importance was 
determined by examination of model ranks and by comparing AIC values of reduced 
models (i.e. best model, with one factor excluded) to the overall best model. A bootstrap 
resampling routine (1,000 models, each constructed on 70% of the full dataset selected at 
random) was used to calculate the mean and 95% CI of the fitted relationships resulting 
from the best model, and to visualize the relationship between accuracy and each of the 
model predictors. 
 

Accuracy-retention trade-offs 
We examined trade-offs in retention and accuracy in two ways. At the project scale we 
generated a trade-off frontier, or the line describing estimated retention at a given level of 
accuracy.  Conversions between these values were made by selecting a region with a non-
zero carcass encounter rate, allowing previous experience (i.e. carcasses found) at a given 
accuracy level to be converted to months, assuming 12 surveys annually. For this 
example we use the Pacific Northwest outer coast where on average 32 carcasses are 
typically found annually (assuming one survey per calendar month) with 50% of beaches 
recording between 14 and 43 carcasses. Representative of this region we assumed that 
each individual survey represented 3 new carcass finds, with 30 days between surveys. 
 

To examine trade-offs specific to particular demographics, we extracted short-term (one 
survey) and long-term (one year) measures of retention and accuracy from the 
demographic-specific accuracy and retention curves (i.e., Fig. S4) as follows: short-term 
retention = participants completing 2+ surveys (i.e. percent repeaters); long-term 
retention =  participants persisting for 1+ year; short-term accuracy = fitted carcass-
specific accuracy for the first carcass encountered; long-term accuracy = fitted carcass-
specific accuracy at 30 birds. The latter threshold was selected to be representative of 
expected participant accuracy after one year of surveying Pacific Northwest outer coast 
beaches, where typically ~ 30 carcasses are encountered per year (see above). 
 

Uncertainty was calculated as the model-fitted 95% confidence interval of the predicted 
mean accuracy at 1 and 30 birds, respectively, and uncertainty in retention at these two 
points in time calculated via resampling (1,000 permutations each sampling 70% of the 
participants belonging to that demographic class). 
 



 

 

5 

 

 

Social and network analysis 
We created an adjacency matrix, with matrix values Mi,j corresponding to the number of 
surveys in common between individuals i and j, and used this to visualize the COASST 
social network using the R package igraph (3).  We used these networks to understand the 
distribution of network sizes, participant abundance at size, and the relative occurrence of 
nexus people.  Finally, we used the networks to estimate the number of new individuals 
recruited by existing participants by attributing all novice (first survey) partners to all 
more experienced survey team members (and where multiple assignations were possible 
for team sizes >2) as a "recruit."   
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Fig S1. Growth in the number of citizen science projects on the clearinghouse platform SciStarter 
and/or on the online platform Zooniverse, as a function of project type.  For Scistarter, only 
projects that are vetted against harm, crowdfunding, junk science, or are strictly 
education/outreach are accepted.  (A) Hands-on projects defined by some-to-all of the project 
requires a participant to conduct a task(s) other than online (SciStarter).  (B) Projects conducted 
entirely online (Zooniverse). (C) One-off events, including but not limited to blitzes, trainings, 
meet-ups and in-person transcription events (SciStarter).  (D) Annual growth as a function of 
project type.   
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Fig. S2. The relationship between participant effort and persistence (mean and 95%CI) for long-
term participants (duration >5 years; N = 491) modeled as linear relationship. (A) Effort 
measured as the number of (monthly) surveys performed, with fitted model (Nsurveys ~ 
14.6*Duration in years) overlaid.  (B) Effort measured as the number of carcasses found, with 
fitted model (Nbirds ~ 35.2*Duration in years) overlaid.  (C) Number of carcasses found as a 
function of the number of surveys performed for all participants (N=3,286).  Dots are 
participants.   
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Fig. S3. Survey-specific accuracy (mean and 95% CI) modeled using generalized additive models 
(GAMs) with smooth terms of (A) previous beached bird experience, (B) survey-specific carcass 
abundance, and (C) survey-specific species richness.   
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Fig. S4. Retention (A-E) and accuracy (F-J) modeled as in Figure 2A and 2C, as a function of demographic and interest categories: (A, F) gender; 
(B, G) age at training; (C, H) bird identification expertise; (D, I) previous experience in citizen science; (E, J) sociality.    
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Fig. S5. Frequency distribution of network size (black), cumulative participants at size (grey), 
and distribution of nexus people (N = 39) across COASST social networks (red).   
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Table S1. List of citizen science projects and data sources for all information in the retention 
landscape (Fig. 1) ordered alphabetically by source within project category (e.g., hands-on 
deductive data).  We used Google Scholar and Web of Science to find program retention statistics 
with search terms “retention, or turnover, or contribution, or engagement" and "citizen scien*, or 
public participation in scientific research" or "*blitz."  Because this effort predominantly returned 
articles featuring online programs, we also contacted select hands-on citizen science project 
coordinators for project statistics (indicated in parentheses).  See acknowledgements for direct 
data sources (e.g., without references).  
 

Project Name Citation 

Hands-on deductive data 
University of Minnesota Extension Forest Pest First Detector  (4) 
River Herring Monitoring program (5) 
Virginia Master Naturalist (6) 
FreshWater Watch - Adopt a River (7) 
Great Pollinator Project (8) 
Reef Check Foundation’s California Program (RCCA) (9) 
Invaders of Texas (10) 
Plants of Concern (11) 
Pollination Investigators (12) 
Tucson Bird Count (13) 
Wabash Sampling Blitz (14) 
Monarch Larvae Monitoring Project (15) 
BTO/JNCC/RSPB Breeding Bird Survey 

(16) Waterways Breeding Bird Survey 
Garden Birdwatch 
Living with Mammals 
BeeWatch (17) 
Washington Sea Grant Crab Team (CT; dabblers: 3.3%, 1y+: 86.2%)  
Great Sunflower Project (GSP; dabblers: 29%, 1y+:71%)  
Puget Sound Seabird Survey (PSSS; dabblers: 0%, 1y+: 65.2%)  
Reef Environmental Education Foundation (REEF; dabblers: 38.4%, 1y+: 20.8%)  
Nature's Notebook (NN; dabblers: 27.3%, 1y+: 12.9%)  
FeederWatch (FW; dabblers: 5%)  
COASST (this study)  

Hands-on sampling 
Greenspace Information for Greater London Community Interest Company (GiGL) 

(18) iRecord 
iSpot 
Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) (19) 

Online classification 
Season Spotter (20) 
Happy Match (21) 
Galaxy Zoo Hubble 

(22) 
 

Galaxy Zoo Supernovae 
Old Weather 
Moon Zoo 
Solar Stormwatch 
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Bat Detective 

(23) 

Condor Watch 
Cyclone center 
Disk Detective 
Galaxy Zoo 
Milky Way Project  
Notes from Nature 
Operation War Diary 
Planet Four 
Planet Hunters 
Plankton portal 
Radio Galaxy Zoo 
Seafloor Explorer 
Snapshot Serengeti 
Sunspotter 
Worm Watch Lab 

Online gaming 
Phylo (24) 
Forgotten Island (21) 
Fraxinus (25) 
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Table S2. Summary of Generalised Additive Models fitted to survey-specific accuracy data. 
Presented statistics are akaike information criterion (AIC), % of deviance explained D2, ΔAIC = 
AIC – min(AIC) and akaike weight, ! = #$∆&'( ). 
 

Rank Predictors AIC D2 ΔAIC wAIC 

1 s(Nbird) + s(Nspecies) + s(Experience) 8972.8 10.1 0 1 

2 s(Nbird) + s(Nspecies)  9063.6 8.8 90.8 <1e-16 

3 s(Nbird) + s(Experience) 9340.2 4.9 367.4 <1e-16 

4 s(Nbird)  9411.5 3.8 438.7 <1e-16 

5 s(Nspecies) + s(Experience) 9525.9 2.5 553.1 <1e-16 

6 s(Experience) 9556.9 1.9 584.1 <1e-16 

7 s(Nspecies)  9653.6 0.6 680.8 <1e-16 

8 Null 9688.3 0 715.5 <1e-16 
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