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1. The agent-based modeling framework.  

The basic agent-based computational model is described in words in the main text. To 

complement this description, we provide a schematic representation of the basic 

assumptions underlying the model in Figure S1.  

 

 

 

 

 

 

 

Additional notes about mutant generation in the agent-based model: In the agent-

based model, mutation is coupled to the virus replication / infection process. During an 

infection event, an offspring virus particle is picked for transfer to a new target cell. Let 

us assume that all viruses in the infected cell are wild-type. With a certain probability, 

the chosen offspring virus can be mutated, and the mutated virus is then placed into a 

randomly chosen target cell. When running simulations to determine the mutant fixation 

Figure	S1:	Schematic	representation	of	the	assumptions	underlying	the	basic	agent-based	computational	
modeling	framework.	For	description,	see	main	text.		
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probability, we explored a scenario where one mutant was initially placed randomly into 

any cell in the system (uninfected or already infected), to imitate a setting where the 

mutant virus was just generated by mutation from wild-type.  We can think of two 

different categories of viral life cycle, and this formulation should apply to both, which is 

explained as follows.  

(i) An example of the first scenario is the retrovirus HIV. Most mutations occur upon 

reverse transcription, which happens at the very beginning of the life-cycle, following 

infection. Hence, the mutation is generated during the infection process. In terms of our 

model algorithm, an offspring virus (wild-type) in the original infected cell is transferred 

to a new target cell. With a probability (1-µ), the virus remains wild-type. With a 

probability µ, a mutation occurs and the virus is turned into a mutant in the target cell. If 

the target cell is uninfected, then the mutant will be the only virus in the newly infected 

cell. If the target cell is already infected, the mutant virus will be added to that cell. 

Therefore, it makes sense that a mutant can appear in any of the cells, either uninfected 

or infected.  

(ii) Let us now consider a different virus life-cycle, where the mutant is produced upon 

virus replication in the original infected cell. In our algorithm, we pick a single offspring 

virus particle for infection. Now, with a probability (1-µ), this will have remained a wild-

type virus during replication. With a probability µ, a mutation event occurred during 

replication and the offspring virus particle under consideration will be a mutant. The 

offspring virus (mutant or wild-type) is transferred to a randomly chosen target cell, 

which might be uninfected or already infected. Hence, the same algorithm applies. 
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Again, it makes sense to assume that the mutant can appear in any of the cells, 

including uninfected cells. 

 

2. ODE descriptions of the agent-based model 

The average dynamics of the stochastic agent-based model can be captured by 

ordinary differential equations. Denoting uninfected cells by y0 and cells infected by i 

viruses by yi, the equations are given as follows: 

 

  

dy0

dt
= λ(1− x + v

k
)− dy0 −

β y0v
k

,

dyi

dt
=
β yi−1v

k
− ayi −

β yiv
k

, i > 0, (1)

where v = yi
i=1

∞
∑ .

 

The variable v denotes the sum of all infected cells, which is proportional to the number 

of free viruses if free virus is in a quasi-steady state (Nowak and May, 2000). Uninfected 

target cells are produced with a rate λ, and this process is density-dependent, as in the 

agent-based model. These cells die with a rate d and become infected with a rate β. 

Infected cells die with a rate a, and can be further infected with a rate β. For numerical 

integration, this ODE formulation requires truncation at a maximum multiplicity, n, which 

needs to be large enough in computer simulations such that the population yn remains 

negligible (Phan and Wodarz, 2015). The virus establishes a persistent infection if its 
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basic reproductive ratio, 
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In the agent-based model, the populations will fluctuate around this equilibrium, due to 

the stochastic nature of the system, and the population of cells will be characterized by 

a given average infection multiplicity (Figure S2 A & B).  

 

 

 

Next, we consider both a mutant and a wild-type virus. Denoting uninfected cells 

by y00 and cells infected with i copies of the wild-type virus and j copies of the mutant 

virus by yij, the equations are given as follows:   
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Fig 1

Figure	S2:	Simulations	of	wild-type	dynamics	in	the	agent-based	model.	(A)	Over	time,	the	number	of	
infected	cells	converges	towards	and	equilibrium	value,	around	which	the	population	fluctuates	
stochastically.	A	single	typical	run	of	the	simulation	is	shown.	(B)	The	average	infection	multiplicity	across	
all	infected	cells	also	fluctuates	around	a	steady	state.	Again,	single	typical	simulation	run	is	shown.	
B=0.025,	A=0.02,	L=1,	D=0.01,	N=900.		
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dy00

dt
= λ(1−

y00v1 + v2

k
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where v1 =
i

i + ji+ j>0
∑ yij , v2 =

j
i + ji+ j>0

∑ yij .

 

The variables v1 and v2 represent the sum of the fractions of the respective virus strains 

in the cell. This is proportional to the free virus populations if the rate of virus production 

is independent of multiplicity and if the virus is assumed to be in a quasi-steady state. 

The relative fitness of the two virus strains is determined by differences in the infection 

rates, β1 and β2. If these two rates are identical, the two virus strains are competitively 

neutral.  For numerical integration, the system is truncated by only retaining the 

equations with i+j≤n, where n is sufficiently large.    

 

3. Varying the average infection multiplicity in the agent-based model  

One of the parameters that determines the average infection multiplicity in the agen-

based model is the infection probability, B. Therefore, to explore dependence of 

evolutionary outcomes on multiplicity, we varied the parameter B, and the relationship 

between the value of B and the average multiplicity under the parameters used in the 

figures is shown in Figure S3.  
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4. Viral yield and infection multiplicity 

The analysis performed in the main text assumed that the amount of virus produced by 

infected cells during their life-spans (viral yield) is the same regardless of the infection 

multiplicity. This means that cellular factors limit the rate of virus production, and 

introduces an element of intracellular competition among the different virus strains. This 

section explores the effect of relaxing this assumption.  

 

We can assume that the viral output from infected cells goes up with infection 

multiplicity trough an increase in the rate of virus replication in multiply infected cells 

(Dormond et al., 2009; Ferreira et al., 2005; Gueret et al., 2002; Perez-Cruet et al., 
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Figure	S3:	The	average	infection	multiplicity	is	varied	by	changing	the	infection	probability	of	the	virus,	B,	
as	shown.	The	average	multiplicity	was	determined	by	running	the	simulation	repeatedly	(10,000	runs),	
and	taking	the	average	value	at	a	specific	time	point	during	the	equilibrium	phase	of	the	dynamics.	
Standard	deviations	are	plotted	(almost	not	visible	due	to	relatively	small	value).	Base	parameters	are	
given	as	follows.	B=0.025,	A=0.02,	L=1,	D=0.01,	N=900.			
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1994; Rothmann et al., 1998). In particular, cells containing two viruses would produce 

twice as many offspring viruses, cells infected with three viruses would produce three 

times the amount of offspring virus, etc. This, however, would give rise to a positive 

feedback loop where higher multiplicity increases the rate of viral replication, which in 

turn increases the infection multiplicity. The biologically most reasonable assumption in 

this context would be that the rate of virus production is a saturating function of the 

number of viruses that are present in the cell. Hence, in the model, the probability for an 

infected cell to pass on the virus to a target cell is not given by B anymore, but by 

B(V)(1+ε)/(V+ ε), where V denotes the total number of viruses in a cell. The larger the 

constant ε, the more the rate of virus production (and hence total yield) increases with 

multiplicity before converging to an asymptote. Thus, ε =0 corresponds to the case 

where viral output is independent of the multiplicity of infection, and ε è∞ corresponds 

to the output increasing in an unlimited fashion with multiplicity. We investigated the 

fixation probability in the context of a neutral mutant. As the initial condition, we placed a 

single cell with one mutant virus into a wild-type population at equilibrium and recorded 

the mutant fixation probability as a function of the saturation constant ε.  The results are 

shown in Figure S4 (black filled circles). For low values of ε, the fixation probability is 

close to the one observed for neutral mutants where virus output was assumed 

independent of infection multiplicity.  As the value of ε increases (more pronounced 

increase in viral replication/output in multiply infected cells), the mutant fixation 

probability declines. This makes intuitive sense, because the average infection 

multiplicity in the cells rises with increasing values of ε. The green line (Figure S4) 

shows the reference value 1/Nviruses, i.e. the expectation under neutral evolutionary 
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theory. As before, the observed mutant fixation probability is significantly higher than the 

one predicted by neutral evolutionary theory (green line), for the same reason as given 

in the simpler versions of the model in the main text, where the rate of virus production 

was independent of multiplicity: the mutant dynamics first display a spread phase before 

the number of mutant viruses converges to a neutrally stable equilibrium (Nneut). As in 

the simpler model in the main text, the fixation probability is again given by Nneut/Nviruses, 

as shown by the red crosses that are superimposed on the black circles in Figure S4.  
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We also demonstrate the effect of increasing the parameter ε on the fixation 

probabilities by re-plotting Figure 2A in the main text for different value of ε (Figure S5). 
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Figure	S4:	Fixation	probability	of	a	neutral	mutant	in	the	agent	based	model	where	the	rate	of	virus	
production	is	a	saturating	function	of	infection	multiplicity.	The	fixation	probability	is	shown	as	a	function	
of	the	parameter	ε,	which	determines	how	quickly	saturation	occurs.	Higher	values	of	ε	correspond	to	a	
more	pronounced	increase	in	viral	output	with	multiplicity.	The	green	line	again	depicts	the	value	of	
1/Nviruses.	The	red	line	plots	the	value	of	Nneut/Nviruses,	which	successfully	predicts	the	observed	fixation	
probabilities.	Parameters	were:	B=0.025,	A=0.02,	L=1,	D=0.01,	N=900.	The	number	of	simulation	runs	for	
increasing	values	of	ϵ	were:	119736073,	117908559,	104741112,	87608798,	75812069,	64365150.	The	
trends	described	in	the	text	are	statistically	significant,	according	to	the	Z	test	for	two	population	
proportions	(very	low	p	values,	not	shown).	
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The same dependence of the neutral mutant fixation probability on the infection rate 

(multiplicity) is observed, with higher values of ε shifting the curve towards lower fixation 

probabilities. Therefore, the overall trends described in the main text are not tied to the 

assumption that the rate of virus production is independent of multiplicity.  

 

 

 

 

 

 

 

 

 In these simulations, we assumed that the total virus yield per cell increases with 

multiplicity, due to faster virus replication in multiply infected cells. If an increase in virus 

reproduction in multiply infected cells, however, is matched by an identical increase in 

Figure	S5:	Mutant	fixation	probability	as	a	function	of	the	infection	probability,	B,	assuming	increased	
viral	output	in	multiply	infected	cells.	The	black	line	with	closed	circles	is	the	same	line	as	the	one	
presented	in	Figure	2A	in	the	main	text,	assuming	that	viral	output	from	infected	cells	is	independent	of	
multiplicity.	The	colored	lines	are	equivalent	simulations,	but	assuming	that	viral	output	from	infected	
cells	increases	with	multiplicity	to	varying	degrees,	captured	by	the	parameter	ϵ.	ϵ=0.5,	1,	2	for	the	red,	
blue,	and	green	lines,	respectively.	All	other	parameters	and	conditions	are	the	same	as	specified	for	
Figure	2A.		
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the death rate of infected cells, the total virus yield per cell becomes independent of 

multiplicity.  To explore this, we assumed that the viral replication rate is a function of 

multiplicity as before, given by B*V(1+ε)/(V+ ε), and that the rate of infected cell death 

has the same dependency, given by A*V(1+ε)/(V+ ε). Figure S6 plots the neutral mutant 

fixation probability as a function of the extent to which the replication and death 

parameters increase with multiplicity, ε. As expected, no change is observed. 

 

 

 

 

 

 

Finally, it is also possible that multiple infection results in less overall virus 

production (lower yield) compared to single infection. This might be due to over-

exploitation of cellular resources. It can occur if the death rate of infected cells increases 

with multiplicity to a larger extent than the viral replication rate. This was captured as 

follows. In addition to the viral replication rate increasing asymptotically with multiplicity, 

Figure	S6:	Same	plot	as	Figure	S4	in	main	text,	but	assuming	that	both	the	rate	of	virus	production	and	
the	death	rate	of	infected	cells	increase	equally	with	infection	multiplicity.	The	amount	of	increase	is	given	
by	the	parameter	ϵ.		
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we assume that that death probability of infected cells increases according to the same 

function, but to a larger extent: B(V)(1+ε2)/(V+ ε2). We set ε2> ε, such that an increase in 

multiplicity results in a stronger increase in the infected cell death probability than in the 

viral replication rate.  The total viral yield produced during the life-span of an infected 

cell now declines with multiplicity. Figure S7 plots the fixation probability of neutral 

mutants against the infection probability, for different values of ε2. 

 

 

 

 

 

 

This was done for simulations where a single cell containing mutant virus only was 

placed into the wild-type population at equilibrium. For reference, the black line replots 

the simulation for the assumption that virus parameters are independent of multiplicity 

Figure	S7:	Mutant	fixation	probability	as	a	function	of	the	infection	probability,	B,	assuming	that	viral	
output	from	infected	cells	declines	with	multiplicity.	The	black	line	with	closed	circles	is	the	same	line	as	
the	one	presented	in	Figure	2A	in	the	main	text,	assuming	that	viral	output	from	infected	cells	is	
independent	of	multiplicity.	The	colored	lines	are	equivalent	simulations,	but	assuming	that	both	the	viral	
production	rate	and	the	death	rate	of	infected	cells	increases	with	multiplicity,	with	the	increase	being	
more	pronounced	for	the	death	rate,	expressed	by	ε2>	ε.		ϵ2=1,	2.5,	10,	100		for	the	red,	blue,	green,	and	
brown	lines,	respectively.	All	other	parameters	are	the	same	as	specified	for	Figure	2A.		
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(also shown in Figure 2A, main text). The colored lines plot the same kind of graph for 

different values of ε2. The same general relationship is observed (Figure S7). The more 

virus yield declines with multiplicity (higher values of ε2), the higher the fixation 

probability of the neutral mutant (Figure S7). The reason is that a decline of overall virus 

yield with higher multiplicities results in reduced levels of multiple infection, which 

promotes the chances for the mutant to invade.  

 

 

5. Time to neutral mutant invasion: simulations without back 

mutations 

The main text considers a version of the model that includes mutational processes.  

This model was used to investigate the relationship between infection multiplicity and 

the time to mutant invasion, starting from a wild-type only population at equilibrium. The 

model included both forward and back-mutations. Having both forward and back-

mutations makes biological sense, because we consider point mutations in individual 

base pairs, and the rates of forward and back-mutations are identical in this case. 

Figure 3B in the main text plots the time until the mutant reaches 90% of the total virus 

population. Here, we consider a version of the model that does not include back-

mutations, for the purpose of comparison. In the absence of back-mutations, we 

consider time to fixation rather than time until the mutant makes up 90% of the total 

population. This is because uni-drectional mutations ensure that the wild-type virus is 

not re-created from the mutant. Results are shown in Figure S8.  
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 Similar to the back-mutation model, the time to invasion without back-mutations first 

declines with infection multiplicity and subsequently increases (compare Figure 3B and 

S8). This subsequent increase in time to invasion, however, is much less pronounced in 

the absence of back-mutations because the mutant essentially has an advantage (due 

to the unidirectional production of mutants from wild type). 

 

 

 

Figure	S8:	Time	to	mutant	fixation	in	a	model	without	back-mutation.	Blue	depicts	results	in	the	absence	
of	multiple	infection,	black	in	the	presence	of	multiple	infection.	Parameters	and	conditions	are	identical	
to	Figure	3B	in	the	main	text.		
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6. Limited infection multiplicity 

In the models explored in the main text, the amount of multiple infection is in principle 

not limited. It is determined by the replication rate of the virus and the death rate of the 

infected cells. In several virus infections, however, it has been reported that the virus 

can limit the amount of multiple infection. For example in HIV-1 infection, the virus 

induces the down-modulation of the CD4 T cell receptor some time after viral entry into 

the cell (Levy et al., 2004), after which no further superinfections can occur. In phages, 

it has been reported that maximally 2-3 viruses might be simultaneously present in a 

cell (Turner et al., 1999), although the mechanism underlying this observation requires 

further investigation. To determine the effect of artificially limiting the infection 

multiplicity, we determined the fixation probability of neutral mutants as a function of the 

infection rate under the assumption that a cell can contain maximally two viruses. After 

this multiplicity has been achieved, no further superinfection was allowed. We 

concentrate on the scenario where a single cell containing only mutant virus is placed 

into a wild-type virus population at equilibrium. The results are shown in Figure S9. The 

black line is the same as the one in Figure 2A in the main text. The red line represents 

the results of the limited multiplicity scenario. For low infection rates, multiplicity is 

naturally limited to low values due to the slow infection kinetics. Hence the results of the 

two scenarios are very similar. For higher infection rates, average multiplicities go 

above two in the unlimited scenario, so the results of the limited and unlimited 

multiplicity simulations diverge. Limited infection multiplicity leads to higher fixation 

probabilities of the neutral mutant, because the extent of intracellular competition is 
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reduced. The general dependence of the fixation probability on multiplicity, however, 

remains qualitatively the same. 

 

 

 

 

 

 

 

 

 

 

7. Challenges associated with experimental tests of theoretical 

predictions. 

To test some of the model predictions presented in this paper, an in vitro system would 

be required where a virus population is maintained at steady state with its target cell 

population, into which a mutant virus is introduced and the mutant spread is 

documented. Further, the ability of the virus to productively super-infect cells would 

have to be experimentally manipulated. We are not aware that a feasible in vitro virus-

Figure	S9:	Mutant	fixation	probability	as	a	function	of	the	infection	probability,	B.	The	black	line	with	
closed	circles	is	the	same	as	in	Figure	2A,	and	the	red	line	re-plots	equivalent	results	under	the	assumption	
that	maximally	2	viruses	can	be	simultaneously	present	in	a	cell.		
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host cell system currently exists that would allow such an experimental test. With such a 

system, it would be possible to experimentally investigate the early growth dynamics of 

a mutant virus in the presence and absence of multiple infection. Predictions regarding 

fixation probabilities are even less tractable to test because of the very large number of 

experimental repeats required for an accurate assessment.    

 

8. Theory and existing data 

An important aspect of theoretical work is to use the results to interpret experimental 

data. While the dynamics of mutant fixation have not been studied in settings that vary 

the infection multiplicity, the number of mutants has been quantified in experiments 

where the bacteriophage φ6 was passaged under low and high infection multiplicity 

scenarios (Dennehy et al., 2013). It was found that after 300 generations, genetic 

diversity was larger at low compared to high infection multiplicities, and that this 

difference was mostly due to the presence of mutations in non-coding regions of the 

genome. These were considered likely to be neutral mutations (Dennehy et al., 2013), 

although mutations in non-coding regions need not necessarily be neutral (Cuevas et 

al., 2012; Peris et al., 2010). These results suggested that processes occurring at high 

infection multiplicity (e.g. reassortment of genomic segments, sexual exchange), did not 

contribute to viral genetic diversity (Dennehy et al., 2013). 

 

The models analyzed in our study made predictions about the average dynamics 

of neutral mutant viruses over time, which might be useful for the interpretation of these 
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experimental data. In the presence of multiple infection, the dynamics were 

characterized by two phases: (i) An early growth phase was observed, where the 

dynamics resemble those of an advantageous mutant, which is not seen with neutral 

mutants in the absence of multiple infection. Hence, we expect that multiple infection 

promotes the spread of neutral mutants during this initial phase, which is counter to the 

experimental observations (Dennehy et al., 2013). (ii) This initial phase is followed by 

convergence of the dynamics to a neutral equilibrium, the level of which predicts the 

long-term fixation / extinction probability of the mutant. Fixation is less likely with than 

without multiple infection, and declines with higher infection multiplicities. Stated in 

another way, the mutant virus is more likely to go extinct in the presence compared to 

the absence of multiple infection, and higher multiplicities further promote mutant 

extinction. Therefore, during this longer-term phase, the number of neutral viruses is 

predicted to be larger at low compared to high multiplicities. This is in agreement with 

the experimental data on the evolution of phage φ6 (Dennehy et al., 2013), indicating 

that the timing of the observation could play an important role for the results.  

 

Another complication in the interpretation of the experimental data concerns the 

experimental measure under consideration. The model suggests that different results 

can be obtained about the average number of mutants at low and high infection 

multiplicities depending on whether the number of mutant-infected cells are counted, or 

whether the amount of free virus is compared. This is demonstrated with computer 

simulations in Figure S10.  
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As initial conditions, a model simulation with wild-type virus only was allowed to 

equilibrate, and 10% of the infected cell population was sampled to start a new growth 

phase. A small number of mutant viruses was added to this pool of cells and the 

resulting growth curves were recorded. This might mimic a virus passage, which was 

part of the experiments performed by Dennehy et al (Dennehy et al., 2013). Many 

repeats of such runs were performed, and the average population sizes, as well as 

standard errors are plotted over time in Figure S10. 

 

 

 

 

 

Figure S10A shows that if the number of mutant-infected cells is compared, the number 

is larger in the presence compared to the absence of multiple infection. In contrast, 
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Figure	S10:	Average	mutant	dynamics	in	the	presence	(red)	and	absence	(blue)	of	multiple	infection,	
based	on	repeated	realizations	(100,000)	of	the	agent-based	model	without	mutational	processes.	Grey	
dashed	lines	depict	the	standard	errors	(very	small,	hard	to	see).	The	simulations	were	started	with	wild-
type	virus	only,	until	the	system	equilibrated.	Then,	10%	of	the	wild-type-infected	cells	were	randomly	
selected,	and	renewed	growth	was	simulated,	together	with	a	minority	population	of	mutants	(30%	of	the	
wild-type	population).	This	might	mimic	the	basic	virus	passage	procedures	in	phage	experiments	
reported	by	Dennehy	et	al	(Dennehy	et	al.,	2013).	(A)	The	number	of	mutant-infected	cells	is	plotted.	(B)	
The	sum	of	the	mutant	fractions	across	all	infected	cells	is	plotted,	which	is	proportional	to	the	amount	of	
free	virus.	Parameters	were:	B=0.025,	A=0.02,	L=1,	D=0.01,	N=900.		
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Figure S10B shows the opposite if a measure proportional to the free virus population is 

compared. Even though more mutant-infected cells are predicted in the presence of 

multiple infection, if the mutant virus is significantly diluted by wild-type copies within 

those cells, fewer mutant free viruses will be observed in the presence of multiple 

infection. The reason is the assumption that the rate of mutant virus production is 

proportional to the fraction of the mutant in the cell.  

 

We note that these simulations do not aim to reproduce the experiments by 

Denehy et al. (Dennehy et al., 2013), but to highlight complexities resulting from the 

multiple infection dynamics investigated here that could impact the interpretation of such 

data. There are uncertainties about processes in the experiments which make it 

challenging to construct models and simulations that exactly match the experimental 

conditions. For example it is unclear when the mutants are generated. A mix of mutants 

might be present in the initial inoculum, and their relative abundances might change 

during the growth and passage phases as a result of differential fitness. Alternatively, or 

in addition, mutants might be generated during the viral growth phases and invade. 

Irrespective of these details, however, the challenges to the interpretation of such 

experimental data, as outlined above, should apply and are important to keep in mind.   

 

In summary, the models have identified two factors that can impact whether 

mutant spread is intensified in the presence or absence of multiple infection. The timing 

after mutant introduction can determine the result, and so can the particular measure of 
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mutant spread. These complexities are important to keep in mind when interpreting 

experimental data.  
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