
Supporting Information: The Evolution of Phenotypic Plas-
ticity when Environments Fluctuate in Time and Space

Here we describe the model and how we derive the equilibrium conditions in more detail. To recap,
we consider a trait whose phenotypic expression is determined by a linear reaction norm, with an
intercept a that is invariant to the environment and a slope b that determines the degree to which the
phenotype changes as the environment changes. The environment determining the plastic response
is called the environment of development D and is different from the environment of selection S
which determines the optimal value of the trait. The optimal trait value is also determined by a
linear function with an intercept A and a slope B that determines the degree to which the optimum
changes as the environment of selection changes.

Both environmental variables vary across the infinite number of islands in which the organisms
live and also fluctuate in time according to an autoregressive process. Variation in the environment
of development D and selection S is not independent but the degree of dependence can be different
in time than it is in space. The reaction norm parameters evolve allowing the organisms to cope
with these environmental fluctuations.

Generations are discrete with the order of events being fertilisation, development, selection, and
then migration (of gametes). Phenotypes are assessed after development and for individual j on
island i at time t is

zjit = ajit + aejit + (bjit + bejit)Dit, (A-1)

where ajit and aejit are the genetic and non-genetic components of the reaction norm intercept, and
bjit and bejit are the genetic and non-genetic components of the reaction norm slope. The within
population variance of these terms is assumed constant in time and space and denoted as Gaa and
Gbb for the genetic terms, and Eaa and Ebb for the environmental terms. In what follows we assume
that any covariances between intercept and slope are zero (i.e. Gab = Eab = 0). Previous theoretical
work generally assumes there is no environmental component to the reaction norm slope, but we
include it here because decomposing between-individual variation in reaction norm slope into genetic
and non-genetic components is an integral part of empirical studies (Nussey et al., 2007). In the
context of theoretical work its main role is to inflate the phenotypic variance in slope and phenotype
which will be penalised under stabilising selection.

The optimal phenotype on island i at time t is given by

θzit = A+BSit, (A-2)

where intercept A represents the optimal phenotype in the reference (average) environment, and
slope B the environmental sensitivity of the optimal phenotype (Chevin et al., 2010).

Both environment variables can be decomposed into separable space-time processes, which for
the environment of development is

Dit = D +Di +Dt +Di·t, (A-3)

where D denotes the grand mean, Di the deviation of island i from the grand mean (averaged over
time), Dt the deviation at time t from the grand mean (averaged over islands) and Di·t the deviation
specific to a time and place. Time is measured in units of generations.

Spatial components of the environmental variables Di and Si are assumed independent and
identically distributed with corresponding variances σ2

DI
and σ2

SI
, as are the space-time interaction

components with variances σ2
DI·T

and σ2
SI·T

. Temporal components are assumed to fluctuate ac-
cording to an autoregressive process, giving rise to the recursive equation (for the environment of
development)

Dt+1 = αDTDt + δDt+1
, (A-4)

where αDT denotes the autocorrelation parameter, δDt+1 is a normally distributed increment with
mean 0 and variance (1− α2

DT
)σ2
DT

, and σ2
DT

is the stationary variance.
The environments of selection and development are assumed to be linearly associated in both

space and time, such that the environment of selection can be expressed as a function of the envi-
ronment of development:

Si = κI Di + eSi (A-5)

St = κT Dt + eSt , (A-6)

Si·t = κI·T Di·t + eSi·t , (A-7)
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where κI is the regression of Si on Di, κT the regression of St on Dt and κI·T the regression of Si·t
on Di·t. The products BκI and BκT are the DO-regressions in time and space and can differ if
κI 6= κT . Residual errors of the spatial regression (eSi) have 0 mean and variance σ2

eSI
, and those

of the space-time interaction regression (eSi·t) have mean 0 and variance σ2
eSI·T

. For the residuals

of the temporal regression, we assume that both environmental variables have the same degree of
temporal autocorrelation (αDT = αST = αT ), which implies

eSt+1 = αT eSt + δeSt+1
, (A-8)

where increments δeSt+1
have mean 0 and variance (1 − α2

T )σ2
eST

. σ2
eST

is the stationary residual

variance and is equal to σ2
ST
− κ2

Tσ
2
DT

. We explore the assumption that αDT = αST = αT later.
The fitness of individual j on island i at time t with phenotype zjit and plastic slope bjit + bejit

is described by the bivariate fitness function

W (zjit, bjit + bejit) ∝ exp
[
− (zjit − θzit)2

2ω2
z

−
(bjit + bejit − θbit)2

2ω2
b

]
, (A-9)

where θzit is the optimal trait value, as described above, and θbit is the optimal value of b in the
population. We assume θbit = 0 ∀ {i, t}, such that the absolute magnitude of plasticity is costly (van
Tienderen, 1997; Lande, 2014; Kuijper & Hoyle, 2015). ωz and ωb are the widths of the bivariate
fitness function along the phenotype and plasticity axis, respectively.

With a bivariate Gaussian fitness function, the selection gradient acting on the phenotype has a
simple form (Lande, 1976):

βzit = γzit(θzit − z̄it), (A-10)

where θzit−z̄it represents the deviation of the mean phenotype from the optimum, and γzit = 1
ω2
z+P zzit

the strength of stabilising selection acting on the phenotype. P zzit is the phenotypic variance on island
i at time t, given by

P zzit = Gaa + Eaa + 2(Gab + Eab)Dit + (Gbb + Ebb)D2
it. (A-11)

The selection gradient for plasticity is given by

βbit = −γbb̄it, (A-12)

where b̄it is the mean slope in the population and γb = 1
ω2
b+P bb

is the strength of stabilising selection

penalising slopes that deviate from 0. P bb = Gbb + Ebb.
Traditionally, the expected evolutionary change in the reaction norm components (a and b)

is derived by obtaining the selection gradients for these same reaction norm components Lande
(e.g. 2009); Tufto (e.g. 2015). Here we take the unorthodox approach of including the redundant
phenotype in the selection analysis and considering a trivariate model (phenotype, intercept, and
slope). This allows us to put a cost on plasticity and so partition evolutionary change in plasticity
into a direct response and an indirect response to selection on phenotype. Likewise, conditional on
the phenotype z there is no direct selection on the intercepts a and so they evolve as a correlated
response to selection on the phenotype (and the slope in situations where Gab 6=). We denote the
vector of average reaction norm components as r̄it = [z̄it, āit, b̄it]

> and the selection gradient vector
as βit = [βzit , 0, βbit ]

>. r̃it denotes the vector of mean reaction norm components after selection but
before migration, which is given by Lande (1979):

r̃it = Gitβit + r̄it, (A-13)

where Git is a matrix of genetic (co)variances:

Git =

Gzzit Gazit Gbzit
Gazit Gaa Gab

Gbzit Gab Gbb

 . (A-14)

We like the redundant approach because it allows us to put a cost on plasticity and so partition
evolutionary change in plasticity into a direct response and an indirect response to selection on
phenotype.
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Although Gaa, Gab and Gbb are assumed constant in time and space, (co)variances with z vary
in time and space due to their dependency on Dit:

Gzzit = Gaa + 2GabDit +GbbD2
it (A-15)

Gazit = Gaa +GabDit (A-16)

Gbzit = Gab +GbbDit. (A-17)

Mean reaction norm components after both selection and migration are given by

r̄it+1 = αI r̃it + (1− αI)
1

n

n∑
x=1

r̃xt, (A-18)

where n is the number of islands and αI the probability of philopatry (1 − m). Since migration

does not alter the global expectation, then 1
n

n∑
x=1

r̃xt = Ei|t[r̃xt] = Ei|t[r̄xt+1], where Ei|t[] is the

expectation over islands at a particular time. This gives

r̄it+1 = αI(Gitβit + r̄it) + (1− αI)(r̄ + r̄t+1). (A-19)

where Ei|t[r̄xt+1] = r̄ + r̄t+1 following the notation of Equation A-3.

Equilibrium Conditions

We are interested in obtaining equilibrium distributions for the mean intercept and slope, and as
a consequence the mean phenotypes. However, it is not possible to get analytical solutions for the
model without making some additional assumptions and approximations. Throughout, we assume
that intercepts and slopes are uncorrelated (Eab = Gab = 0) and that γzit is constant in time and
space (and therefore denoted as γz). This latter approximation will hold if there is weak selection
(because then P zzit is dominated by the constant ω2

z) and/or if variation in the slopes is small
(because then P zzit is dominated by the constants Gaa and Eaa). We also assume that variation in
the mean slope over time within an island is small, which will be true if Gbb is small and/or temporal
fluctuations are weak and not strongly autocorrelated. We relax these assumptions in a simulation
model to assess the robustness of our conclusions.

At equilibrium, the expectation of āit within each island should be constant over time, such that
Et|i[āit] = Et|i[āit+1] ∀ {i, t} where Et|i[] is the expectation over time on a particular island (i.e. the
conditional expectation of the variable conditional on island properties, that is, the variables Di and
Si). When this condition is met (See Equations A-35 to A-40),

ā+ āi = gI(A+BSi − ā− (b̄+ b̄i)Di) + ā, (A-20)

where gI = αIG
aaγz

αIGaaγz+(1−αI) . gI takes values between 0 and 1, where 0 indicates no capacity to

genetically track spatial fluctuations in the optimum and 1 indicates complete capacity to genetically
track the optimum.

Likewise, at equilibrium, the expectation of b̄it within each island should be constant over time,
such that Et|i[b̄it] = Et|i[b̄it+1]∀ {i, t}, which gives (See Equations A-41 to A-43),

b̄+ b̄i =
αIG

bbγz[Di(A+BSi − (ā+ āi)) +B(κTσ
2
DT

+ κI·Tσ
2
DI·T

)− Covt|i(āit, Dit)] + (1− αI)b̄
αIGbb[γz(σ2

DT
+D2

i + σ2
DI·T

) + γb] + 1− αI
.

(A-21)
Equation A-21 includes a term for the covariance between the mean intercept and the environ-

ment of development over time within island i (Covt|i(āit, Dit)). At equilibrium, this covariance is
stationary, such that

Covt|i(āit, Dit) = Covt|i(āit+1, Dit+1)∀ {i, t}, (A-22)

which gives (See Equations A-44 to A-47)

Covt|i(āit, Dit) = gTσ
2
DT [BκT − b̄− b̄i], (A-23)

where gT = αTG
aaγz

αTGaaγz+(1−αT ) and has the same form as gI . This result relies on the two environmental

variables having the same temporal autocorrelation (αDT = αST = αT ) which is discussed below.
More generally, this result relies on the environmental variables experienced by an individual to be
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independent of those experienced by more distant ancestors after conditioning on the environmental
variables of the parents. Consequently, it is unclear to what degree these results would hold if
the environment did not have this Markovian property (for example if the environment followed a
moving average process rather than an autoregressive process).

To obtain solutions for this system of equations, we also need expressions for ā and b̄, which
are the expectations of Equations A-20 and A-21 over islands. In both cases, we can take a Taylor
expansion of Equations A-20 and A-21 around the mean environmental variables. For the mean
intercept ā, a first order expansion is exact. For the mean slope b̄, an exact expression is not obtain-
able and so we use a second order approximation as in Tufto (2000). SpaceTime.nb is a mathematica
notebook for obtaining the solutions. In the main text we also give expressions for the temporal
covariance between āit and the environment of selection, and the spatial covariance between āit and
the environment of selection. The derivation of these covariances are given in Equations A-48 to A-51.

Our main result is an expression for mean plasticity under the limit Gbb → 0. In this limit,
there is sufficient genetic variance in plasticity for it to evolve to a non-trivial equilibrium, but once
reached the strength of plasticity will fluctuate little in time or space and will be roughly constant:

b̄ = B
κI(1− gI)σ2

DI
+ κT (1− gT )σ2

DT
+ κI·Tσ

2
DI·T

γb
γz

+ (1− gI)σ2
DI

+ (1− gT )σ2
DT

+ σ2
DI·T

(A-24)

Although not pursued, the derivations seem to imply that if we allowed within-island temporal
autocorrelation for Di·t and Si·t (rather than assuming white noise: αI·T = 0), then σ2

DI·T
would be

multiplied by the comparable term 1− gI·T in both the numerator and denominator.

In the main text we use Equation A-24 to obtain inequalities for when hyperplasticity and
negative plasticity evolve. For hyperplasticity to evolve we get

b̄Cov(Di,Si)
σ2
SI

> B

B (1−gI)Cov(Si,Di)+(1−gT )Cov(St,Dt)+Cov(Si·t,Di·t)
γb
γz

+(1−gI)σ2
DI

+(1−gT )σ2
DT

+σ2
DI·T

×Cov(Di,Si)
σ2
SI

> B

(1−gI)Cov(Si,Di)+(1−gT )Cov(St,Dt)+Cov(Si·t,Di·t)
γb
γz

+(1−gI)σ2
DI

+(1−gT )σ2
DT

+σ2
DI·T

×Cov(Di,Si)
σ2
SI

> 1

[(1− gI)Cov(Si, Di) + (1− gT )Cov(St, Dt)

+Cov(Si·t, Di·t)]
Cov(Di,Si)

σ2
SI

> γb
γz

+ (1− gI)σ2
DI

+(1− gT )σ2
DT

+ σ2
DI·T

(1− gI)Cov(Si, Di)
Cov(Di,Si)

σ2
SI

− (1− gI)σ2
DI

> γb
γz

+ (1− gT )σ2
DT

−(1− gT )Cov(St, Dt)
Cov(Di,Si)

σ2
SI

+σ2
DI·T

− Cov(Si·t, Di·t)
Cov(Di,Si)

σ2
SI

(1− gI)σ2
DI

(r2
I − 1) > γb

γz
+ (1− gT )σ2

DT

−(1− gT )Cov(St, Dt)
Cov(Di,Si)

σ2
SI

+σ2
DI·T

− Cov(Si·t, Di·t)
Cov(Di,Si)

σ2
SI

(1− gI)σ2
DI

(r2
I − 1) > γb

γz
+ (1− gT )σ2

DT

×(1− Cov(St,Dt)Cov(Di,Si)
σ2
SI
σ2
DT

)

+σ2
DI·T

(1− Cov(Si·t,Di·t)Cov(Di,Si)
σ2
SI
σ2
DI·T

)

(1− gI)σ2
DI

(r2
I − 1) > γb

γz
+ (1− gT )σ2

DT

×(1− rT rI
σST σDI
σDT σSI

)

+σ2
DI·T

(1− rI·T rI
σSI·T σDI
σDI·T σSI

)

−(1− gI)σ2
DI

(1− r2
I ) >

γb
γz

+ (1− gT )σ2
DT

×(1− rT rI
σST σDI
σDT σSI

)

+σ2
DI·T

(1− rI·T rI
σSI·T σDI
σDI·T σSI

)

(A-25)

The LHS has to be non-positive because r2 and g must lie between 0 and 1. Since rT = κT
σDT
σST

,
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rI = κI
σDI
σSI

and rI·T = κI·T
σDI·T
σSI·T

−(1− gI)σ2
DI

(1− κ2
I

σ2
DI

σ2
SI

) > γb
γz

+ (1− gT )σ2
DT

(1− κTκI
σ2
DI

σ2
SI

) + σ2
DI·T

(1− κI·TκI
σ2
DI

σ2
SI

). (A-26)

For negative plasticity to evolve we get

b̄Cov(Di,Si)
σ2
SI

< 0

B
κI(1−gI)σ2

DI
+κT (1−gT )σ2

DT
+κI·Tσ

2
DI·T

γb
γz

+(1−gI)σ2
DI

+(1−gT )σ2
DT

+σ2
DI·T

Cov(Di,Si)
σ2
SI

< 0

κI(1−gI)σ2
DI

+κT (1−gT )σ2
DT

+κI·Tσ
2
DI·T

γb
γz

+(1−gI)σ2
DI

+(1−gT )σ2
DT

+σ2
DI·T

Cov(Di,Si)
σ2
SI

< 0

(A-27)

The denominator γb
γz

+ (1− gI)σ2
DI

+ (1− gT )σ2
DT

+ σ2
DI·T

always has to be positive because gT and
gI lie between 0 and 1. As such, inequality A-27 becomes

κI(1−gI)σ2
DI

+κT (1−gT )σ2
DT

+κI·Tσ
2
DI·T

γb
γz

+(1−gI)σ2
DI

+(1−gT )σ2
DT

+σ2
DI·T

Cov(Di,Si)
σ2
SI

< 0

[κI(1− gI)σ2
DI

+ κT (1− gT )σ2
DT

+ κI·Tσ
2
DI·T

]
κIσ

2
DI

σ2
SI

< 0

[κI(1− gI)σ2
DI

+ κT (1− gT )σ2
DT

+ κI·Tσ
2
DI·T

]κI < 0
κ2
I(1− gI)σ2

DI
+ κTκI(1− gT )σ2

DT
+ κI·TκIσ

2
DI·T

< 0

(A-28)

to give
κ2
I(1− gI)σ2

DI
< −κTκI(1− gT )σ2

DT
− κI·TκIσ2

DI·T
(A-29)

Negative plasticity in space would then be favoured when the relationship between the environ-
ments of development and selection in space (κI) differ in sign from that in time (κT and κIṪ ) and
the capacity to genetically track spatial variation (gI) is large.

Assuming αDT
= αST

The derivation of Covt|i(āit, Dit) (Equation A-23) requires the assumption that āit+1 is independent
of δDt+1

which will generally be true if both Dt and St are independent of δDt+1
(evolution has no

foresight). δDt+1 and Dt are independent by construction but this is not generally the case for δDt+1

and St. Consider the vector autoregressive model (Lütkepohl, 2005):[
Dt+1

St+1

]
=

[
αDT 0

0 αST

] [
Dt

St

]
+

[
δDt+1

δSt+1

]
(A-30)

What we need to know is whether Dt+1 and St are conditionally independent given Dt. Des-
ignating the diagonal matrix of autoregression coefficients as Ψ and the covariance matrix of the
increments as Σδ, then the stationary covariance Σ is given by the solution to the Lyapunov Equa-
tion:

(I−Ψ⊗Ψ)vec(Σ) = vec(Σδ) (A-31)

which gives:

vec(Σ) = (I−Ψ⊗Ψ)−1vec(Σδ)

vec(Σ) =


1− α2

DT
0 0 0

0 1− αDTαST 0 0
0 0 1− αDTαST 0
0 0 0 1− α2

ST


−1 

σ2
δDt

σδDt ,δSt
σδDt ,δSt
σ2
δSt


Σ =


σ2
δDt

1−α2
DT

σδDt ,δSt
1−αST αDT

σδDt ,δSt
1−αST αDT

σ2
δSt

1−α2
ST


(A-32)

The covariance between observations at time t and time t+ 1 is equal to ΨΣ (Lütkepohl, 2005)
which gives:
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cov

 Dt

St
Dt+1

 =


σ2
δDt

1−α2
DT

σδDt ,δSt
1−αST αDT

αDT
σ2
δDt

1−α2
DT

σδDt ,δSt
1−αST αDT

σ2
δSt

1−α2
ST

αST
σδDt ,δSt

1−αST αDT

αDT
σ2
δDt

1−α2
DT

αST
σδDt ,δSt

1−αST αDT

σ2
δDt

1−α2
DT

 (A-33)

from which the covariance between St and Dt+1 after conditioning on Dt (i.e. the covariance between
δDt+1

and St) can be obtained using results for conditional normal distributions:

αST
σδDt ,δSt

1− αSTαDT
−

σδDt ,δSt
1− αSTαDT

(
σ2
δDt

1− α2
DT

)−1

αDT
σ2
δDt

1− α2
DT

= (αST − αDT )
σδDt ,δSt

1− αSTαDT
(A-34)

This term is only zero when αST = αDT = αT . If αST > αDT then the covariance between St
and δDt+1

will take the same sign as κT , and the opposite sign if αDT > αST . Consequently, the
temporal association between intercept and the environment of development (Equation A-23) will
be greater in magnitude when αST > αDT and smaller in magnitude when αDT > αST . Given the
role that the temporal association between intercept and the environment of development plays in
the evolution of plasticity (Equation A-21) situations where αST > αDT will tend to reduce the
evolution of plasticity for dealing with temporal fluctuations.

Although we acknowledge that αST = αDT is an assumption that is unlikely to hold in nature,
we would also like to stress that because we use a discrete spatial model (the island model) rather
than a continuous space model, the homologous spatial terms (αDI and αSI ) are constrained to be
equal (αI) because they just depend on migration. Consequently, by assuming αST = αDT we do
not allow the temporal model to diverge from the spatial model simply because we model time as
continuous (although generations are discrete) and space as discrete. Moving from an island model
to a stepping-stone or 2-D spatial field model would be difficult, but because the two variables
could have different spatial autocorrelation parameters then αDI and αSI could differ despite the
constraint of a common dispersal parameter. We expect the arguments put forward to explain what
would happen when αS 6= αD in time would also hold in space.

Simulations

To test how accurate our approximations are, we simulated the process for 15,000 generations using
a population of 1,000 islands. The basic scheme is to simulate environmental variables following
equations A-3:A-8. Initially āi and b̄i are drawn from unit normals for each island, and their
values in the following generation obtained using Equation A-19. βit and Git vary in time and
space and are calculated following equations A-10:A-12 and equations A-14:A-17 respectively. The
procedure is then repeated each generation. The first 5,000 generations were discarded to allow the
process to reach equilibrium. The simulation was written in R and the code is available in the file
SpaceTime.Rmd and viewable in html (SpaceTime.html).

In order to assess how robust our Gbb → 0 approximation is for mean plasticity, we simulate
the process with parameter values (unless otherwise stated) αT = αI = 0.5, σ2

DT
= σ2

ST
= σ2

DI
=

σ2
SI

= 1, σ2
DI·T

= σ2
SI·T

= 0, A = 0, B = 1, Gaa = Eaa = Gbb = Ebb = 1, κT = −0.8, κI = 0.8
and ωb = 3. In Figure A-1 we plot four evolutionary trajectories as examples with an emphasis on
trajectories that are likely to approach equilibrium slowly in order to justify a burn-in period of 5000
generations.

In the main text we ran simulations across 100 migration rates ranging from 0 to 1 in equally
spaced intervals and for four different values of ωz (1, 5, 10, 20). We reproduce this figure here
also (Figure A-2). In order to place the values for ωz in context we also calculated the average
value of ωz scaled by the within-population phenotypic variance (i.e. calculated E[ωz/P

zz
it ] from the

simulations) which gives values 0.27, 1.36, 2.72 and 5.46. Johnson & Barton (2005) using empirical
data from Kingsolver et al. (2001) suggest a median value for ωz/P

zz of about 5 which is equivalent
to our weak selection scenario. However, the median value is likely smaller (stronger selection)
because of reporting problems (Stinchcombe et al., 2008) although Johnson & Barton (2005) stress
that sampling errors are likely to mean that the strength of stabilising selection is overestimated
(see Morrissey & Hadfield, 2011, also) and that previous theoretical work often uses much higher
vales for ωz/P

zz (weaker selection).
In addition, we ran simulations across 100 values of κT ranging from -0.8 to 0.8 in equally spaced

intervals for the four different values of ωz (Figure A-3).
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Figure A-1: Evolutionary time-series of mean plasticity (left) and mean intercept (right) in the
islands with the most extreme environments of development (left) and selection (right) over 15,000
generations. Migration rate was set to zero 1 − αI = 0 as this results in island-specific equilibria
furthest away from the initial values and for which the time to equilibrium is likely to be highest.
ωz was set to 20 because weak selection is also likely to result in a slower approach to equilibrium.
The black traces are for Gbb = 0.01; the smallest value of Gbb used in the simulations and for which
the time to equilibrium should be longest. The grey traces are for when Gbb = 1. The red vertical
bars indicate the end of the burn-in phase before which the samples are discarded.
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Figure A-2: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 migration rates (1−αI) for four different strengths
of stabilsing selection on the phenotype (ωz; small values indicate stronger stabilising selection). The
number in parentheses is ωz divided by the average within-population phenotypic variance. The
expected mean plasticity obtained using the approximation Gbb → 0 are shown where γz is set to
E[γzit ] calculated assuming no variance in slopes (dashed line) or a third-order Taylor expansion in
Dit (solid line).
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Figure A-3: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of κT for four different strengths of stabilsing
selection on the phenotype (ωz; small values indicate stronger stabilising selection). The number in
parentheses is ωz divided by the average within-population phenotypic variance. The expected mean
plasticity obtained using the approximation Gbb → 0 are shown where γz is set to E[γzit ] calculated
assuming no variance in slopes (dashed line) or a third-order Taylor expansion in Dit (solid line).
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The approximation is worse when κT = κI so we held both at 0.8 and then ran simulations across
100 values of Gbb ranging from 0.01 to 1 in equally spaced intervals for the four different values of
ωz. E

bb was set to zero (Figure A-4).
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Figure A-4: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of Gbb for four different strengths of
stabilsing selection on the phenotype (ωz; small values indicate stronger stabilising selection). κT =
κI = 0.8 and Ebb = 0. The expected mean plasticity obtained using the approximation Gbb → 0
are shown where γz is set to E[γzit ] calculated assuming no variance in slopes (dashed line) or a
third-order Taylor expansion in Dit (solid line).

Finally, we ran the same simulations as above but with P bb ranging from 0.02 to 2 in equally
spaced intervals for the four different values of ωz. Gbb and Ebb were constrained to be the same
(Figure A-5).
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Figure A-5: Mean plasticity (b̄) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of P bb for four different strengths of
stabilsing selection on the phenotype (ωz; small values indicate stronger stabilising selection). κT =
κI = 0.8 and Gbb and Ebb were constrained to be equal. The expected mean plasticity obtained using
the approximation Gbb → 0 are shown where γz is set to E[γzit ] calculated assuming no variance in
slopes (dashed line) or a third-order Taylor expansion in Dit (solid line).
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Derivation of āi (Equation A-20).

At equilibrium the following holds:

Et|i[āit] =Et|i[āit+1]

0 =Et|i[āit+1]− Et|i[āit]
0 =Et|i[āit+1 − āit]

(A-35)

From Equation A-19 this is equal to:

0 =Et|i
[
αI [G

az
it βzit + āit] + (1− αI)(Ei|t[āxt+1])− āit

]
0 =αIG

aaEt|i[βzit ] + αIEt|i[āit] + (1− αI)Et|i[Ei|t[āxt+1]]

− Et|i[āit]
0 =αIG

aaEt|i[βzit ] + αIEt|i[āit] + (1− αI)ā− Et|i[āit]
(1− αI)Et|i[āit] =αIG

aaEt|i[βzit ] + (1− αI)ā
(1− αI)Et|i[āit] =αIG

aaEt|i[γz(A+BSit − āit − b̄itDit)] + (1− αI)ā
(1− αI)Et|i[āit] =αIG

aaEt|i[γz(A+BSit − b̄itDit)]− αIγzGaaEt|i[āit]
+ (1− αI)ā

Et|i[āit](αIγzG
aa + (1− αI)) =αIG

aaEt|i[γz(A+BSit − b̄itDit)] + (1− αI)ā
Et|i[āit](αIγzG

aa + (1− αI)) =αIγzG
aa(A+BEt|i[Sit]− Et|i[b̄itDit]) + (1− αI)ā

Et|i[āit](αIγzG
aa + (1− αI)) =αIγzG

aa(A+BSi − Et|i[b̄itDit]) + (1− αI)ā

Et|i[āit] =
αIG

aaγz(A+BSi − Et|i[b̄itDit]) + (1− αI)ā
αIGaaγz + (1− αI)

(A-36)

Assuming Gbb is small such that Covt|i[b̄it, Dit] is small then

Et|i[āit] =
αIG

aaγz(A+BSi − Et|i[b̄it]Et|i[Dit]) + (1− αI)ā
αIGaaγz + (1− αI)

Et|i[āit] =
αIG

aaγz(A+BSi − (b̄+ b̄i)Di) + (1− αI)ā
αIGaaγz + (1− αI)

(A-37)

Noting that

gI =
αIG

aaγz
αIGaaγz + (1− αI)

(A-38)

and

1− gI =1− αIG
aaγz

αIGaaγz + (1− αI)

1− gI =
αIG

aaγz + (1− αI)
αIGaaγz + (1− αI)

− αIG
aaγz

αIGaaγz + (1− αI)

1− gI =
(1− αI)

αIGaaγz + (1− αI)

(A-39)

gives Equation A-20:

Et|i[āit] =gI(A+BSi − (b̄+ b̄i)Di) + (1− gI)ā
=gI(A+BSi − ā− (b̄+ b̄i)Di) + ā

(A-40)

Derivation of b̄i (Equation A-21).

Following the same logic as above
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0 =Et|i[αI [G
bz
it βzit +Gbbβb̄it + b̄it]

+ (1− αI)(Ei|t[b̄xt+1])− b̄it]
0 =Et|i

[
αI [G

bbDitβzit +Gbbβb̄it + b̄it]

+ (1− αI)(Ei|t[b̄xt+1])− b̄it
0 =αIG

bbEt|i[Ditβzit ] + αIG
bbEt|i[βb̄it ] + αIEt|i[b̄it]

+ (1− αI)Et|i[Ei|t[b̄xt+1]]− Et|i[b̄it]
0 =αIG

bbEt|i[Ditβzit ] + αIG
bbEt|i[βb̄it ] + αIEt|i[b̄it]

+ (1− αI)b̄− Et|i[b̄it]
0 =αIG

bbEt|i[Ditβzit ]− αIGbbγbEt|i[b̄it] + αIEt|i[b̄it]

+ (1− αI)b̄− Et|i[b̄it]
Et|i[b̄it](1− αI + αIG

bbγb) =αIG
bbEt|i[Ditβzit ]

+ (1− αI)b̄
Et|i[b̄it](1− αI + αIG

bbγb) =αIG
bbEt|i[Ditγz(A+BSit − āit − b̄itDit)]

+ (1− αI)b̄
Et|i[b̄it](1− αI + αIG

bbγb) =αIγzG
bb(AEt|i[Dit] +BEt|i[DitSit]− Et|i[Ditāit]

− E[b̄itD
2
it]) + (1− αI)b̄

Et|i[b̄it](1− αI + αIG
bbγb) =αIγzG

bb(AEt|i[Dit]

+BCovt|i(Dit, Sit) +BEt|i[Dit]Et|i[Sit]

− Covt|i(Dit, āit)− Et|i[Dit]Et|i[āit]

− Et|i[b̄itD2
it]) + (1− αI)b̄

Et|i[b̄it](1− αI + αIG
bbγb) =αIγzG

bb(ADi +B(κTσ
2
DT + κI·Tσ

2
DI·T ) +BDiSi

− Covt|i(Dit, āit)−DiEt|i[āit]− Et|i[b̄itD2
it])

+ (1− αI)b̄
Et|i[b̄it](1− αI + αIG

bbγb) =αIγzG
bb(Di(A+BSi − Et|i[āit]) +B(κTσ

2
DT + κI·Tσ

2
DI·T )

− Covt|i(Dit, āit)− Et|i[b̄itD2
it]) + (1− αI)b̄

(A-41)

Again assuming Covt|i(b̄it, Dit) is small such that Et|i[b̄itD
2
it] ≈ Et|i[b̄it]Et|i[D2

it]

Et|i[b̄it](1− αI + αIG
bbγb) =αIγzG

bb(Di(A+BSi − Et|i[āit])
+B(κTσ

2
DT + κI·Tσ

2
DI·T )

− Covt|i(Dit, āit)

− Et|i[b̄it]Et|i[D2
it]))

+ (1− αI)b̄
Et|i[b̄it](1− αI + αIG

bbγb) =αIγzG
bb(Di(A+BSi − Et|i[āit])

+B(κTσ
2
DT + κI·Tσ

2
DI·T )

− Covt|i(Dit, āit)

− Et|i[b̄it](σ2
DT + σ2

DI·T +D2
i ))

+ (1− αI)b̄
Et|i[b̄it](1− αI + αIG

bb(γb + γz(σ
2
DT + σ2

DI·T +D2
i )) =αIγzG

bb(Di(A+BSi − Et|i[āit])
+B(κTσ

2
DT + κI·Tσ

2
DI·T )

− Covt|i(Dit, āit)) + (1− αI)b̄

(A-42)

to give

Et|i[b̄it] =
αIγzG

bb(Di(A+BSi − (ā+ āi)) +B(κTσ
2
DT

+ κI·Tσ
2
DI·T

)− Covt|i(Dit, āit)) + (1− αI)b̄
(1− αI + αIGbb(γb + γz(σ2

DT
+ σ2

DI·T
+D2

i ))
(A-43)
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Derivation of Covt|i(āit, Dit) (Equation A-23)

Since D and Di are constants, and the genetic values at time t + 1 are independent of δDt+1 (if
αDT = αST ):

Covt|i(āit, Dit) = Covt|i(āit+1, Dit+1)

= Covt|i(āit+1, D +Di + αTDt + δDt+1)

= αTCovt|i(āit+1, Dt),

(A-44)

Using this result,

Covt|i(āit, Dit) =αTCovt|i
(
αI [G

azβz + āit] + (1− αI)Ei|t[āxt+1], Dt

)
=αTαICovt|i

(
Gazβz + āit, Dt

)
+ αT (1− αI)Covt|i(Ei|t[āxt+1], Dt)

=αTαICovt|i(G
azβz, Dt) + αTαICovt|i(āit, Dt)

+ αT (1− αI)Covt|i(Ei|t[āxt+1], Dt)

=αTαIG
aaγzCovt|i(A+BSit − ait − b̄itDit, Dt) + αTαICovt|i(āit, Dt

)
+ αT (1− αI)Covt|i(Ei|t[āxt+1], Dt)

=αTαIG
aaγzCovt|i(A+BSit − b̄itDit, Dt) + αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ αT (1− αI)Covt|i(Ei|t[āxt+1], Dt)

=αTαIG
aaγzCovt|i(A+BSit − b̄itDit, Dt) + αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ αT (1− αI)Covt|i(āt+1, Dt)

=αTαIG
aaγzCovt|i(A+BSit − b̄itDit, Dt) + αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ αT (1− αI)Covt|i(āt+1,

1

αT
Dt+1)

=αTαIG
aaγzCovt|i(A+BSit − b̄itDit, Dt) + αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ (1− αI)Covt|i(āt+1, Dt+1)

=αTαIG
aaγzCovt|i(A+BSit − b̄itDit, Dt) + αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ (1− αI)Covt|i(āt, Dt)

(A-45)

Under the previous assumption that b̄it varies little within islands such that Covt|i(b̄itDit, Dt) =
(b̄+ b̄i)σ

2
DT

Covt|i(āit, Dit) = αTαIG
aaγz(BκT − (b̄+ b̄i))σ

2
DT

+ αTαI(1−Gaaγz)Covt|i(āit, Dt

)
+ (1− αI)Covt|i(āt, Dt)

Covt|i(āit, Dit)(1− αTαI(1−Gaaγz)) = αTαIG
aaγz(BκT − (b̄+ b̄i))σ

2
DT

+ (1− αI)Covt|i(āt, Dt)

Covt|i(āit, Dit)(1− αTαI(1−Gaaγz)− (1− αI)) = αTαIG
aaγz(BκT − (b̄+ b̄i))σ

2
DT

Covt|i(āit, Dit) =
αTαIG

aaγz(BκT − (b̄+ b̄i))σ
2
DT

1− αTαI(1−Gaaγz)− (1− αI)

Covt|i(āit, Dit) =
αTG

aaγz(BκT − (b̄+ b̄i))σ
2
DT

1− αT (1−Gaaγz)

(A-46)

to give Equation A-23:

Covt|i(āit, Dit) = gTαTG
aaγz(BκT − (b̄+ b̄i))σ

2
DT (A-47)
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Derivation of Covt|i(āit, Sit)

Following the same logic as above

Covt|i(āit, Sit) = αTαIG
aaγzCovt|i(A+BSit − b̄itDit, St)

+ αTαI(1−Gaaγz)Covt|i(āit, St
)

+ (1− αI)Covt|i(āt, St)
= αTαIG

aaγz(Bσ
2
St − Covt|i(b̄itDit, St))

+ αTαI(1−Gaaγz)Covt|i(āit, St
)

+ (1− αI)Covt|i(āt, St)

(A-48)

and again assuming that b̄it varies little within islands such that Covt|i(b̄itDit, St) ≈ (b̄+ b̄i)κTσ
2
Dt

:

Covt|i(āit, Sit) = αTαIG
aaγz(Bσ

2
St − (b̄+ b̄i)κTσ

2
Dt)

+ αTαI(1−Gaaγz)Covt|i(āit, St
)

+ (1− αI)Covt|i(āt, St)
Covt|i(āit, Sit)(1− αTαI(1−Gaaγz)− (1− αI)) = αTαIG

aaγz(Bσ
2
St − (b̄+ b̄i)κTσ

2
Dt)

Covt|i(āit, Sit) =
αTαIG

aaγz(Bσ
2
St
− (b̄+ b̄i)κTσ

2
Dt

)

1− αTαI(1−Gaaγz)− (1− αI)

Covt|i(āit, Sit) =
αTG

aaγz(Bσ
2
St
− (b̄+ b̄i)κTσ

2
Dt

)

1− αT (1−Gaaγz)

(A-49)

to give
Covt|i(āit, Sit) = gT (Bσ2

St − (b̄+ b̄i)κTσ
2
Dt) (A-50)

Derivation of Covi|t(āit, Sit)

Given Covi|t(āit, Sit) = Covi|t(āi, Si) and that the equilbrium solution for āi is gI [BSi − (b̄+ b̄i)Di]
we get

Covi|t(āit, Sit) = Covi|t(gI [BSi − b̄Di], Si)

= gI [Bσ
2
SI − b̄κIσ

2
DI ]

(A-51)

under the limit Gbb → 0 where b̄i = 0.
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