Supporting Information: The Evolution of Phenotypic Plas-
ticity when Environments Fluctuate in Time and Space

Here we describe the model and how we derive the equilibrium conditions in more detail. To recap,
we consider a trait whose phenotypic expression is determined by a linear reaction norm, with an
intercept a that is invariant to the environment and a slope b that determines the degree to which the
phenotype changes as the environment changes. The environment determining the plastic response
is called the environment of development D and is different from the environment of selection S
which determines the optimal value of the trait. The optimal trait value is also determined by a
linear function with an intercept A and a slope B that determines the degree to which the optimum
changes as the environment of selection changes.

Both environmental variables vary across the infinite number of islands in which the organisms
live and also fluctuate in time according to an autoregressive process. Variation in the environment
of development D and selection S is not independent but the degree of dependence can be different
in time than it is in space. The reaction norm parameters evolve allowing the organisms to cope
with these environmental fluctuations.

Generations are discrete with the order of events being fertilisation, development, selection, and
then migration (of gametes). Phenotypes are assessed after development and for individual j on
island ¢ at time ¢ is

Zjit = Qjit + Qeyyy + (Djie + bey,, ) Dit, (A-1)

where aj;; and ae,,, are the genetic and non-genetic components of the reaction norm intercept, and
bjit and b.,,, are the genetic and non-genetic components of the reaction norm slope. The within
population variance of these terms is assumed constant in time and space and denoted as G** and
G for the genetic terms, and E®® and E® for the environmental terms. In what follows we assume
that any covariances between intercept and slope are zero (i.e. G = E® = (). Previous theoretical
work generally assumes there is no environmental component to the reaction norm slope, but we
include it here because decomposing between-individual variation in reaction norm slope into genetic
and non-genetic components is an integral part of empirical studies (Nussey et al., 2007). In the
context of theoretical work its main role is to inflate the phenotypic variance in slope and phenotype
which will be penalised under stabilising selection.
The optimal phenotype on island ¢ at time ¢ is given by

ezit = A+ BSy, (A—?)

where intercept A represents the optimal phenotype in the reference (average) environment, and
slope B the environmental sensitivity of the optimal phenotype (Chevin et al., 2010).

Both environment variables can be decomposed into separable space-time processes, which for
the environment of development is

Dyt =D+ D; + Dy + Djy, (A-3)

where D denotes the grand mean, D; the deviation of island i from the grand mean (averaged over
time), D; the deviation at time ¢ from the grand mean (averaged over islands) and D;.; the deviation
specific to a time and place. Time is measured in units of generations.

Spatial components of the environmental variables D; and S; are assumed independent and
identically distributed with corresponding variances 01231 and U?g[, as are the space-time interaction
components with variances O'ZDLT and ng.r' Temporal components are assumed to fluctuate ac-
cording to an autoregressive process, giving rise to the recursive equation (for the environment of
development)

Dt+1 - aDTDt + 6Dt+17 (A_4)

where ap,. denotes the autocorrelation parameter, dp,,, is a normally distributed increment with
mean 0 and variance (1 — a%_)o%, , and 0% _ is the stationary variance.
T T T
The environments of selection and development are assumed to be linearly associated in both
space and time, such that the environment of selection can be expressed as a function of the envi-
ronment of development:

Si=rrDi +es, (A-5)
St =kt Dy +eg,, (A-6)
Siy = kT Dyt +es, ,, (A-T)
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where k; is the regression of S; on D;, k1 the regression of Sy on D; and k.1 the regression of S;.¢
on D;;. The products Bk and Brr are the DO-regressions in time and space and can differ if
k1 # k7. Residual errors of the spatial regression (eg,) have 0 mean and variance o2 s and those
gSI_T. For the residuals
of the temporal regression, we assume that both environmental variables have the same degree of
temporal autocorrelation (ap, = ag, = ar), which implies

of the space-time interaction regression (eg,,) have mean 0 and variance o

€S = ares, +0es,, (A-8)

where increments dcg, have mean 0 and variance (1—af)o2, . o2, is the stationary residual
t T T
2

variance and is equal to O-%T — HTU%T. We explore the assumption that ap, = ag, = ar later.
The fitness of individual j on island 7 at time ¢ with phenotype z;;; and plastic slope b;;; + b,
is described by the bivariate fitness function

€jit

(Z jit — ezit)z (bjit + be'it - abq‘,t)z
W(Zjit7 bjit + bejit) X exp[ — J 2(.;)3 — 2;5 5 (A—Q)

where 0,,, is the optimal trait value, as described above, and 6;,, is the optimal value of b in the
population. We assume 6, = 0V {i,t}, such that the absolute magnitude of plasticity is costly (van
Tienderen, 1997; Lande, 2014; Kuijper & Hoyle, 2015). w, and w;, are the widths of the bivariate
fitness function along the phenotype and plasticity axis, respectively.

With a bivariate Gaussian fitness function, the selection gradient acting on the phenotype has a
simple form (Lande, 1976):

ﬂzit = Yzt (ozit - Zit), (A—lO)
where 0, —Z;; represents the deviation of the mean phenotype from the optimum, and v,,, = ﬁ
z it
the strength of stabilising selection acting on the phenotype. P;;* is the phenotypic variance on island
i at time ¢, given by

P77 =G+ E* 4+ 2(G* + E°*) Dy + (G* + E*) D}, (A-11)
The selection gradient for plasticity is given by
Bb“ = _’ngita (A_12)

where b;; is the mean slope in the population and v, = m is the strength of stabilising selection
b

penalising slopes that deviate from 0. P = G + E.

Traditionally, the expected evolutionary change in the reaction norm components (a and b)
is derived by obtaining the selection gradients for these same reaction norm components Lande
(e.g. 2009); Tufto (e.g. 2015). Here we take the unorthodox approach of including the redundant
phenotype in the selection analysis and considering a trivariate model (phenotype, intercept, and
slope). This allows us to put a cost on plasticity and so partition evolutionary change in plasticity
into a direct response and an indirect response to selection on phenotype. Likewise, conditional on
the phenotype z there is no direct selection on the intercepts a and so they evolve as a correlated
response to selection on the phenotype (and the slope in situations where G #). We denote the
vector of average reaction norm components as ¥;; = [Zi, Git, Bit]—r and the selection gradient vector
as Bit = [B2.,,0, By,,] |- it denotes the vector of mean reaction norm components after selection but
before migration, which is given by Lande (1979):

rip = GitfBit + Tit, (A-13)
where G;; is a matrix of genetic (co)variances:
Gy Gy Gy
Giu= |GY¥ G G| . (A-14)
Gi)iz Gab  @Gbb

We like the redundant approach because it allows us to put a cost on plasticity and so partition
evolutionary change in plasticity into a direct response and an indirect response to selection on
phenotype.
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Although G, G and G are assumed constant in time and space, (co)variances with z vary
in time and space due to their dependency on D;;:

22— G 4 2G" Dy + G* D?, (A-15)
=G+ G Dy (A-16)
G = G + G* Dy,. (A-17)

Mean reaction norm components after both selection and migration are given by

1 n
Fip1 = arfi + (1 —as)— Z (A-18)

3

where n is the number of islands and «; the probability of philopatry (1 —m). Since migration
does not alter the global expectation, then 1 Z Tyt = Ej[fut] = Ejj¢[Fatq1], where Ej[] is the

expectation over islands at a particular time. ThlS gives
Firr1 = ar(GuBit + Tit) + (1 — o) (F + Fry1). (A-19)

where Ej;[fyt41] = T 4 T441 following the notation of Equation A-3.

Equilibrium Conditions

We are interested in obtaining equilibrium distributions for the mean intercept and slope, and as
a consequence the mean phenotypes. However, it is not possible to get analytical solutions for the
model without making some additional assumptions and approximations. Throughout, we assume
that intercepts and slopes are uncorrelated (E% = G = 0) and that ., is constant in time and
space (and therefore denoted as ). This latter approximation will hold if there is weak selection
(because then P7* is dominated by the constant w?) and/or if variation in the slopes is small
(because then Pj* is dominated by the constants G*® and E%*). We also assume that variation in
the mean slope over time within an island is small, which will be true if G® is small and/or temporal
fluctuations are weak and not strongly autocorrelated. We relax these assumptions in a simulation
model to assess the robustness of our conclusions.

At equilibrium, the expectation of a;; within each island should be constant over time, such that
Eyilai] = Eyjilais1] V {4, t} where Ey;[] is the expectation over time on a particular island (i.e. the
conditional expectation of the variable conditional on island properties, that is, the variables D; and
S;). When this condition is met (See Equations A-35 to A-40),

a+a; =gr(A+ BS; —a— (b+b;)D;) +a, (A-20)

arG*y,
arGey,+(1-ar)”
genetically track spatial fluctuations in the optimum and 1 indicates complete capacity to genetically

track the optimum. B
Likewise, at equilibrium, the expectation of b;; within each island should be constant over time,
such that Fy;[bit] = Fyj;[bity1] ¥ {i,t}, which gives (See Equations A-41 to A-43),

where g5 = gr takes values between 0 and 1, where 0 indicates no capacity to

Oé[be’yZ[Di(A + BS; — (d + (il)> + B(KTU%T + K[.TU%I_T) — CO’l}tﬁ(dit,Dit)] + (1 — Oé[)b
Gy (0}, + Di+03, ) +7]+1—ar '

B—ng:

(A-21)

Equation A-21 includes a term for the covariance between the mean intercept and the environ-

ment of development over time within island i (Covy|; (@i, Dyt)). At equilibrium, this covariance is
stationary, such that

Covyi(@it, Dit) = Covyi(@irv1, Diry1) V{i, t}, (A-22)

which gives (See Equations A-44 to A-47)
COUﬂi(ELit, Dit) = gT0'2DT [BIiT —b— Ez]; (A—QS)

arG*y,
arGeey.+(1-ar)
variables having the same temporal autocorrelation (ap, = ag, = ar) which is discussed below.

More generally, this result relies on the environmental variables experienced by an individual to be

where gr = and has the same form as g;. This result relies on the two environmental
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independent of those experienced by more distant ancestors after conditioning on the environmental
variables of the parents. Consequently, it is unclear to what degree these results would hold if
the environment did not have this Markovian property (for example if the environment followed a
moving average process rather than an autoregressive process).

To obtain solutions for this system of equations, we also need expressions for @ and b, which
are the expectations of Equations A-20 and A-21 over islands. In both cases, we can take a Taylor
expansion of Equations A-20 and A-21 around the mean environmental variables. For the mean
intercept @, a first order expansion is exact. For the mean slope b, an exact expression is not obtain-
able and so we use a second order approximation as in Tufto (2000). SpaceTime.nb is a mathematica
notebook for obtaining the solutions. In the main text we also give expressions for the temporal
covariance between a;; and the environment of selection, and the spatial covariance between a;; and
the environment of selection. The derivation of these covariances are given in Equations A-48 to A-51.

Our main result is an expression for mean plasticity under the limit G* — 0. In this limit,
there is sufficient genetic variance in plasticity for it to evolve to a non-trivial equilibrium, but once
reached the strength of plasticity will fluctuate little in time or space and will be roughly constant:

k(1 — 91)01231 + k(1 — gT)UQDT + H[.TU2DI‘T

b=DB
2+ (1 -gr)op, + (1 —gr)oh, +0b, .

(A-24)

Although not pursued, the derivations seem to imply that if we allowed within-island temporal
autocorrelation for D;.; and S;.; (rather than assuming white noise: a;. = 0), then U%I_T would be
multiplied by the comparable term 1 — g;.7 in both the numerator and denominator.

In the main text we use Equation A-24 to obtain inequalities for when hyperplasticity and
negative plasticity evolve. For hyperplasticity to evolve we get

60005127,;,51‘) ~ B
B (1—91)00%(&,Di)+(1—gT)ij(st,D,,)+Cov(§f,,,Di.t)
E+QA-gr)o} +(1—gr)o},  +oh
x Cov((Tg).;,Si) > B
(1—gr)Cov(Si.Ds)+(1—g7)Cov(Ss,De)+Cov(S-s.Di 1)
+(1—gr)op +(1—gr)op, +od,
% Cov(?i,Si) > 1
USI
[(1 = gr)Cou(S;, D;) + (1 — gr)Cou(St, Dy)
+Cov(Siy, D)) SR > 2y (1 — g1)o?,

St

+(1- gT)O'ZDT + UZDI-T
anCoulss Dz)%iw —(L=gr)op, > 24+ (1= 97)0D,

—-(1- gT)CO’U(St,Dt)%iHSi)

+03, . — Cov(Si, Di~t)%Dj’Si) o
(1—gr)op,(r; —1) > ;’—b + (1 —gr)op,

—(1 = gr)Cou(S;, Dt)%insi)

0D, COU(Si't’th)%i“si)
(1—gr)op,(ri —1) > ”% +(1— gr)od,

> (1 _ Cov(St,DQt)C;ov(Di,Si))

O'SI UDT
COU(Si,t,DiAt)COU(Di,Si)
(1 - s )

g (e
Sp Dr.r

2
t0D, »

(L= g)od, (i —1) > 2+ (1—gr)od,

. TS 0D,
X (]_2 rTTTrI 7‘7137" o5, )
+0D1-T (1 —rr.TrI

—(1—gn)op, (1 =77) > 2+ (1—gr)op,

981.79D; )
9D;.19Sy

p
o USTUDI
X (1 rTTTrI 7JDT o5, )
2 _ 981.79D;
+0D1.T (1 Tr.rrr oDy 105,
o . . . ag
The LHS has to be non-positive because 72 and ¢ must lie between 0 and 1. Since r = kp UET,
T
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g o
rr = KJ a];; and ry.p = I{[.Tigi;:

2 2 2

2 29D e 2 9D 2 °b
—(1—=gr)op, (1 — K7 U%j) > I+ (1 —=gr)op, (1 = KkrKr U%j ) +ob, . (1—krrkr U?@j ). (A-26)
For negative plasticity to evolve we get
_COU(Di,Si)
B w1(1=g1)oh +rr(l=gr)ob, +r1.70D, . Cov(D;,5:) < 0
EH(i=gnod, +(-gr)oh, +ob 75, (A-27)
’iI(1*QI)UDI+“T(1*9T)‘7DT+"I-TUDI,T Cov(D;,S;) < 0
+(1-gr)op, +(1-gr)o}_+o% 0%,

The denominator 2* + (1 — g1)op, + (1 —gr)op, + 05, . always has to be positive because gr and
gr lie between 0 and 1. As such, inequality A-27 becomes

k1(1=g1)oD +rr(1=g7)0%h +K1.70D, 1 Cov(Ds,S;) < 0
P +(1-gr)op +(1-gr)ot, +tob, o, ,
KR1O
[k1(1 = g1)op, +rr(1 = gr)op, + krrop, | i,gDI < 0 (A-28)
(k1(1 = gr)oh, +kr(L—gr)ot, + koot Jkr < 0
k2(1 — gj)o%l + krrr(l— gT)oJQDT + H[,TI{[O'%I.T < 0
to give
ki(1—gr)oh, < —krki(l—gr)ot, — KkrTkIoh, . (A-29)

Negative plasticity in space would then be favoured when the relationship between the environ-
ments of development and selection in space (k) differ in sign from that in time (k7 and x;;4) and
the capacity to genetically track spatial variation (gy) is large.

Assuming ap, = ag,

The derivation of Covy;(a;t, Di¢) (Equation A-23) requires the assumption that @41 is independent
of 0p,,, which will generally be true if both D; and S; are independent of dp,,, (evolution has no
foresight). dp,., and D, are independent by construction but this is not generally the case for dp,
and S;. Consider the vector autoregressive model (Liitkepohl, 2005):

Dytq ap, 0 D, dp

= + i A-30

|: St+1 O O[ST St 5St+1 ( )

What we need to know is whether D;;; and S; are conditionally independent given D;. Des-

ignating the diagonal matrix of autoregression coefficients as ¥ and the covariance matrix of the

increments as X5, then the stationary covariance X is given by the solution to the Lyapunov Equa-
tion:

(I-TQPvec(X) = vec(Xs) (A-31)

which gives:

vee(Z) = (I— P @ ) tvec(Xs)

1-a3 0 0 0 Tsp,
vec(z) _ 0 1-— ap,OS, 0 0 0'5Dt755t
0 0 1— QApDLOS, 0 05]35,55,5
0 0 0 1-a?, o3, (A-32)
- 2 t
5p, 95p, .85,
1—042 1—045 ap
E — D 2T T
05p, .83, 953,
1—a5To¢DT lfa?gT

The covariance between observations at time ¢ and time ¢ + 1 is equal to ¥X (Liitkepohl, 2005)
which gives:
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2
o o o
5Dy 9Dy 8y 5D

P — ap 2
Dt l—aDT 1 ocs2TaDT T1l-«
o
cou S, — | _opiss, b, o, Diis (A-33)
D l-aspapg 1—o¢§T Tl-asrapy
t+1 U? 0sp, .8 Ug

ap Dy ag D¢°%S¢ Dy

2 2
s 1—aDT T1l—ag D 1—()¢DT

from which the covariance between S; and Dy after conditioning on D; (i.e. the covariance between
dp,,, and S;) can be obtained using results for conditional normal distributions:

05p,,6 0sp,,6 Og ' cg O6p,,0

D195 D595 D D D105

. t295¢ t295¢ t2 a t2 _(OS ap ) ot (A-gz)
l—asTaDT l—aSTaDT 1 ap l—OéD l—agTaDT

This term is only zero when ag, = ap, = ar. If ag, > ap, then the covariance between S
and 0p,,, will take the same sign as xr, and the opposite sign if ap, > ag,. Consequently, the
temporal association between intercept and the environment of development (Equation A-23) will
be greater in magnitude when ag, > ap, and smaller in magnitude when ap, > ag,. Given the
role that the temporal association between intercept and the environment of development plays in
the evolution of plasticity (Equation A-21) situations where ag, > ap, will tend to reduce the
evolution of plasticity for dealing with temporal fluctuations.

Although we acknowledge that ag, = ap, is an assumption that is unlikely to hold in nature,
we would also like to stress that because we use a discrete spatial model (the island model) rather
than a continuous space model, the homologous spatial terms (ap, and «ag,) are constrained to be
equal (ay) because they just depend on migration. Consequently, by assuming ag, = ap, we do
not allow the temporal model to diverge from the spatial model simply because we model time as
continuous (although generations are discrete) and space as discrete. Moving from an island model
to a stepping-stone or 2-D spatial field model would be difficult, but because the two variables
could have different spatial autocorrelation parameters then ap, and ag, could differ despite the
constraint of a common dispersal parameter. We expect the arguments put forward to explain what
would happen when ag # ap in time would also hold in space.

Simulations

To test how accurate our approximations are, we simulated the process for 15,000 generations using
a population of 1,000 islands. The basic scheme is to simulate environmental variables following
equations A-3:A-8. Initially @; and b; are drawn from unit normals for each island, and their
values in the following generation obtained using Equation A-19. B;; and Gy vary in time and
space and are calculated following equations A-10:A-12 and equations A-14:A-17 respectively. The
procedure is then repeated each generation. The first 5,000 generations were discarded to allow the
process to reach equilibrium. The simulation was written in R and the code is available in the file
SpaceTime.Rmd and viewable in html (SpaceTime.html).

In order to assess how robust our G® — 0 approximation is for mean plasticity, we simulate
the process with parameter values (unless otherwise stated) ap = oy = 0.5, 03, = 0%, = 07, =
0%1 =1, U%I.T = U%I.T =0,A=0,B=1, G* = F% =G = E% =1, kp = —0.8, k; = 0.8
and wp, = 3. In Figure A-1 we plot four evolutionary trajectories as examples with an emphasis on
trajectories that are likely to approach equilibrium slowly in order to justify a burn-in period of 5000
generations.

In the main text we ran simulations across 100 migration rates ranging from 0 to 1 in equally
spaced intervals and for four different values of w, (1, 5, 10, 20). We reproduce this figure here
also (Figure A-2). In order to place the values for w, in context we also calculated the average
value of w, scaled by the within-population phenotypic variance (i.e. calculated E|w,/Pj?] from the
simulations) which gives values 0.27, 1.36, 2.72 and 5.46. Johnson & Barton (2005) using empirical
data from Kingsolver et al. (2001) suggest a median value for w,/P?** of about 5 which is equivalent
to our weak selection scenario. However, the median value is likely smaller (stronger selection)
because of reporting problems (Stinchcombe et al., 2008) although Johnson & Barton (2005) stress
that sampling errors are likely to mean that the strength of stabilising selection is overestimated
(see Morrissey & Hadfield, 2011, also) and that previous theoretical work often uses much higher
vales for w,/P?** (weaker selection).

In addition, we ran simulations across 100 values of k1 ranging from -0.8 to 0.8 in equally spaced
intervals for the four different values of w, (Figure A-3).
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Figure A-1: Evolutionary time-series of mean plasticity (left) and mean intercept (right) in the
islands with the most extreme environments of development (left) and selection (right) over 15,000
generations. Migration rate was set to zero 1 — ay = 0 as this results in island-specific equilibria
furthest away from the initial values and for which the time to equilibrium is likely to be highest.
w, was set to 20 because weak selection is also likely to result in a slower approach to equilibrium.
The black traces are for G = 0.01; the smallest value of G used in the simulations and for which
the time to equilibrium should be longest. The grey traces are for when G* = 1. The red vertical
bars indicate the end of the burn-in phase before which the samples are discarded.
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Figure A-2: Mean plasticity (b) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 migration rates (1 —a;y) for four different strengths
of stabilsing selection on the phenotype (w,; small values indicate stronger stabilising selection). The
number in parentheses is w, divided by the average within-population phenotypic variance. The
expected mean plasticity obtained using the approximation G* — 0 are shown where ~, is set to
E[vz,,] calculated assuming no variance in slopes (dashed line) or a third-order Taylor expansion in
D, (solid line).
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Figure A-3: Mean plasticity (b) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of kp for four different strengths of stabilsing
selection on the phenotype (w,; small values indicate stronger stabilising selection). The number in
parentheses is w, divided by the average within-population phenotypic variance. The expected mean
plasticity obtained using the approximation G** — 0 are shown where ., is set to E[y.,,] calculated
assuming no variance in slopes (dashed line) or a third-order Taylor expansion in D;; (solid line).
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The approximation is worse when k7 = xk; so we held both at 0.8 and then ran simulations across
100 values of G ranging from 0.01 to 1 in equally spaced intervals for the four different values of
w,. B was set to zero (Figure A-4).
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Figure A-4: Mean plasticity (b) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of G® for four different strengths of
stabilsing selection on the phenotype (w,; small values indicate stronger stabilising selection). Ky =
kr = 0.8 and E® = 0. The expected mean plasticity obtained using the approximation G* — 0
are shown where v, is set to E[vy,,,] calculated assuming no variance in slopes (dashed line) or a
third-order Taylor expansion in D;; (solid line).

Finally, we ran the same simulations as above but with P ranging from 0.02 to 2 in equally
spaced intervals for the four different values of w,. G*® and E® were constrained to be the same
(Figure A-5).
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Figure A-5: Mean plasticity (b) in stochastic simulations with 1,000 islands over 10,000 generations.
A single simulation was conducted for each of 100 values of P for four different strengths of
stabilsing selection on the phenotype (w,; small values indicate stronger stabilising selection). Ky =
k1 = 0.8 and G and E were constrained to be equal. The expected mean plasticity obtained using
the approximation G* — 0 are shown where ~, is set to E[y.,,] calculated assuming no variance in
slopes (dashed line) or a third-order Taylor expansion in D;; (solid line).
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Derivation of a; (Equation A-20).
At equilibrium the following holds:

Eyilai]) =Eyi(@ir]
0 =Eyi[@it 1] — B[]

A-35
0 =Ey;[@it+1 — it ( )
From Equation A-19 this is equal to:
0 =FEy; (1[G B, + @it] + (1 — ar) Byt 41]) — Qi
0 =a;G"Ey;[B.,,] + arEy;ai] + (1 — ar) Eyi[Ej[azi1]]
— Eyjilai]
0 =a;G*"Ey;[B,,] + arEy;ai] + (1 — ar)a — Ey;[a]
(1 = ar)Byilai] =arG*“ Ey;[B.,,] + (1 —ag)a
(1 = ar)Ey;las] =arG* Ey;ly.(A+ BSi — @i — birDit)] + (1 — ap)a
(1 — ar)Ey,lan] =a1G*Eyi[v.(A+ BSiy — by Diy)] — oG By [a)] (A-36)
(1 — Oz])
Eyilai] (G + (1 — ag)) =a;G*“Ey;[v.(A+ BSi — b Dit)] + (1 — ar)a
Et|z[ ](OéI%Gaa (1 - 041)) :Oél%Gaa(A + BEt|z[Szt] Et\i[bitDit]) + (1 - CYI)@
Et|1[ ](Oé]")/zGaa (]. — Oq)) :a]’)/ZG a(A + BS; — Et|z[bitDit]) + (1 — a[)(_l
B Oé]Gaa"}/z(A + BS; — Etll[EltD’Lt]) + (1 - a])(_l
Eyjila] = Gaa
afg Yz + (1 - Ol[)
Assuming G® is small such that Covt”[i)m D;;] is small then
Eyyifau] _CYIGM%(A + BS; — Et|i[6it]Et|i[Dit]) + (I -aj)a
t]i |Gt aIGaa»ZZ +7(1 — Oq) (A—37)
_ OéIGaa’Yz(A +BS;— (b+ bi)DZ‘) + (1 — OZI)d
Eyilaq) = o Gaa —
1 Yo + (1 OZI)
Noting that
Oana’}/z
= A-38
I arGoey, + (1—ar) (4-38)
and
O‘IG(W'YZ
1—gr=1—
g1 arGey, + (1 —ay)
a Gy + (1 —ag) a Gy,
1—gr = - A-39
T aGe (T =ar)  arGee+ (1—an) (439
(1—oag)
1—g; =
g1 arGoey, + (1 — ag)
gives Equation A-20:
Eyilai) =g1(A+ BS; — (b+b;)D;) + (1 — gr)a (A-40)
=g;(A+ BS; —a— (5—1—5 )D)+a

Derivation of b; (Equation A-21).

Following the same logic as above
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0 =Ey;[or [G%Bzit + beﬂ(}“ + biy]
+ (1= ar)(Eijelbar]) — bi

0=FEy; [aI[beDitﬁzit + beﬁgit + bt
+ (1= ar)(Eijbar+1]) — bir

0 :alebEﬂi[Ditﬁzit] + OéIbeEtuWEit] + arEy;[bi)
+ (1 — ar) Eyi[Eij¢[bat41]] — Eylbic]

0 =a;G"Ey;[DiuB.,,] + arG™ Ey;[Bs,,] + a1 Eyy;[bit]
+(1—as)b— Et|i[6it]

0 =a;G" Ey;[Diuf3.,,] — a1 G Eyi[bit] + ovr Eyji[bia]
+ (1 = ar)b — Ey;[bi]

Eyilbi](1 — a1 + a;G"y,) =a; G Eyi[Dir 3., ]

+(1—ag)b
Eyilbi) (1 — ar + a1 G"y) :alebEtﬁ[?it'Yz(A + BSit — @it — bitDit)] (A1)
+ (1 —ar)b
Eyilbit) (1 — ar + a; G ) =ary.G" (AE;[Dit] + BEy;[DitSit] — Eyji[Divi]
— E[bis D)) + (1 — ar)b
Eyilbic) (1 — ar + arG"y) =ary.G" (ABy;[Di]
+ BCouvy;i(Dit, Sit) + BEy)i[Dit] Ey)i[Sit]
— Covyi(Dit, @it) — Ey)i[Dit] Byl @]
— Eya[biD3]) + (1 — ar)b
Eyi[bit) (1 — ar + a;G” ) =ary.G"(AD; + B(kroh, + kr.rop, ) + BD:S;
— Covy;(Dit, i) — Di Eylas] — Eyi[bi D7)
+(1—ar)b
Eyilbi)(1 — ar + a;G"y) =a;7.G"(Di(A + BS; — Eyilaq]) + B(krop, + krroh, )
— Covyi(Dit, ait) — Et|i[l;itDi2t]) +(1—ar)b
Again assuming C’ovtﬁ(l_)l-t, D;;) is small such that Et‘i[Eitht} ~ Et‘i[l_)it]Eﬂi[th}
Eyilbit] (1 — ar + arG"y) =a;7.G"(Di(A + BS; — Ey;la))
+ B(ﬁTU%T + H[.TO'%I'T)
— Covy)i(Dit, ast)
— Byl B (D)
+ (1 —ar)b
Et‘i[l;it](l —ay+ aIbe%) :oq'yszb(Di(A + BS; — Eyji[ai])
+ B(krop, + kr.r0h, ) (A-42)
— Covyi(Dit, ait)
— Eyi[bitl(0D, + 0D, + D7)
+ (1 —ar)b

Eyilbie](1 — ar + s G (1 +7:(0D, + 0D, . + D7) =a17:G"(Di(A + BS; — Eyji[as))

aI’yZbe(Di(A + BS; — (ZL + dl)) + B(K,TO'QDT + KI‘TO.I%LT) — COUt|i(Dit, a'it)) + (1 - Oé[)b

+ B(kroh, + k110D, .,.)
- CO’Ut“(Dit, ait)) + (1 — Oé])b

(1 —ar+arG®(yw +.(0}, + 0}, + D7)
(A-43)

All



Derivation of Covy;(ai, Diy) (Equation A-23)

Since D and D; are constants, and the genetic values at time ¢ + 1 are independent of dpsr1 (if
Dy = O‘ST):

Covyi(ait, Dit) = Covyi(@itt1, Dity1)
= Covt|i(ait+17 D+ D;+arD; + 5Dt+1) (A—44)
= arCovy;(@it+1, Dy),

Using this result,

Covyi(@it, Dit) =arCovy; (o [G B2 + @it] + (1 — ar) Ejje[awis1], Dt)

:OzTOé]CO’Ut‘i(Gazﬂz + @, Dt) + ar(1 — ar)Covy; (Ejj¢[aze 1], Dt)

=ararCovy;(G**B., Di) + ararCovy;(ast, D)
+ ar (1l — ar)Covy (Ejjilai11], Dy)

=ara;G*y.Covy;(A+ BSi — ait — bitDit, Dy) + ara;Covy i (ai, Dy)
+ ar (1 — ar)Covy (Ejjilaei11], Dy)

=ararG**y,Covyi(A+ BS;; — bitDit, Dy) + arar(l — Gy )Covyi (@i, Dt)
+ ar(1 — ar)Covyi (Ejlasi 1], Dt)

=ararG**y.Covyi(A + BSy — by Dy, Dy) + arar(l — G**.)Covy;(ai, D)
+ar(1 —ar)Covy;(ai41, Dy)

=ararG**y,Covyi(A + BSy — by Dy, Dy) + apar(l — G**.)Covy;(ai, D)

1
+ar(l— aI)OOUW((_It_,_l, —Dy41)
ar

=ararG**y,Covyi(A + BSy — by Dy, Dy) + arar(l — G**.)Covy;(ai, D)
+ (1 — ar)Covyi(@tt1, Dit1)
=ararG**y,Covy;i(A + BSy — by Dy, Dy) + apar(l — G**.)Covy;(ai, Dy)
+ (1 = ar)Covy(as, D)
(A-45)

_ Under the previous assumption that by varies little within islands such that Couvy; (b Dit, Dy) =
(b+0bi)op,

Couvyi(air, Dit) = ara;G*~v.(Brr — (b+b;))op,
+arar(l — G*v,)Covy; (s, Dt)
+ (1 = ay)Covy;(as, Dy)
Covyi(a@it, Dit)(1 — arar(1 — G*7.)) = ara;G*v.(Brr — (b+b;))op,
+ (1 = ar)Covy(as, D)

’ (A-46)
Covyi(@it, Dit)(1 — arar(1 — G*y.) — (1 — ag)) = ararG**y.(Brr — (b+ bi))U%T
B ara;Gy,(Brr — (b+b;))o?,
C i\ Wit Dl = -
ovt| (CL ¢ t) 1-— aTa1(1 — Gaa,-yz) — (]. — Oé])
~ arGy,(Brr — (b+ b;))o?
Covyi (@i, Dit) = =
OUt|z(a t t) 1— OéT(]. — G““’Vz)
to give Equation A-23:
Covy)i(ait, Dit) = grarG**y.(Bkr — (b+ Bi))U%T (A-47)
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Derivation of Couvy; (@i, Sit)

Following the same logic as above

Covy|i(@it, Sit) = ararG*®y,Covy; (A + BSis — bitDit, St)
+ arar(l — Gy, )Covy; (a4, St) + (1 — ay)Couvyj;(at, St)
= aTalGaayz(Bogt — Covy;(bitDit, St))
+ arar(l — Gy, )Covy; (a4, St) + (1 — a)Couvyj;(as, St)

(A-48)

and again assuming that b;; varies little within islands such that C’ovt”(l_JZ—tDit, Sp) ~ (l_) + I_JZ-)/{Toth:

Covyi(ast, Sit) = ararG**.(Bog, — (b+b;)krop,)
+ arar(l — G*.)Covy (@i, S)
+ (1 — ay)Covy,(ay, St)
Covy)i(ast, Sit)(1 — arar(l — G*y.) — (1 —ay)) = ozTOqG““’yz(Bcré —(b+ Bi)HTUth)

o (A-49)
Covn (. ) =“T01G™1=(Bos — (b+b)krap,)
ovy; (Qig, Sir) =
tlilSity it 1—arar(l — G*y,) — (1 — «aj)
_ aTGaa'Yz(BU% - (Z; + Ei)HTJQD )
Covyi(ait, Sit) = : t
ovy;(@it, Sit) T op (1 Gain)
to give o
Covyi(@it, Sit) = gT(BO_g't —(b+ bi)nTJ%t) (A-50)
Derivation of Cov; (i, Sit)
Given Cov;¢(ast, Sit) = Cov;(as, S;) and that the equilbrium solution for a; is g;[BS; — (b+b;)D;]
we get
CO’UZ' z‘zi aSi, = COUi BSz — l_)Dl ,Si
(@it Sit) 1t(gr( ],S:) (a51)

= gI[BO'ng — Bma%l]

under the limit G* — 0 where b; = 0.
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