
SUPPLEMENTAL	METHODS	1 
2 

The methods used in this study include many steps. These will be described below in the following 3 
order: (1) in vitro data collection; (2) construction of effective connectivity networks; (3) 4 
quantification of neural computation; (4) rich club detection in networks of effective connectivity; 5 
(5) quantification of the relationship between synergy and rich clubs; (6) control analyses of the6 
synergy-rich club relationship; (7) alternative approaches for quantifying neural computation; and 7 
(8) consideration of neuron auto-prediction.8 

9 
In vitro data 10 

11 
To study the relationship between neural computation and topological measures of networks of 12 
spiking neurons, we analyzed data collected in vitro. Data were spontaneously spiking organotypic 13 
cultures of mouse somatosensory cortex obtained from postnatal Day 6 to 7 Black 6 mouse pups 14 
(RRID:Charles_River:24101632, Harlan)	according to Tang et al., 2008 (Ito et al., 2014). All 15 
animal tissue samples were prepared according to guidelines from the National Institutes of Health 16 
and all animal use procedures were approved by the Indiana University Animal Care and Use 17 
Committee as well as the Animal Care and Use Committee at the University of California, Santa 18 
Cruz. Spontaneous (as opposed to stimulus-driven) spiking activity in the cultures was recorded at 19 
a high temporal resolution of 50 µs, between 2 and 4 weeks after culture preparation, using a 512-20 
microelectrode array (Litke et al., 2004). Array electrodes were flat, 5 µm in diameter and arranged 21 
in a triangular lattice with an interelectrode distance of 60 µm. This spacing means that the spiking 22 
of most cells is picked up by multiple sites and there are few gaps where cells are too far from 23 
electrodes to be recorded. The full array allowed for a total recording area of approximately 0.9 24 
mm by 1.9 mm. This preparation and recording method enabled the isolation of large numbers of 25 
neurons (an average of 309 cells per recording in 25 hour-long recordings) at high temporal 26 
resolution, beyond what can currently be done in any in vivo setup. Crucially, the temporal 27 
resolution of this method was small enough to resolve synaptic delays of 1-20 ms typically found 28 
in cortex (Mason et al., 1991; Swadlow, 1994). 29 

30 
Once the data were collected, spikes were sorted using a PCA approach based on waveforms 31 
detected at seven adjacent electrodes (Ito et al., 2014; Litke et al., 2004; Timme et al., 2014). This 32 
process yielded a single set of spike times for each isolated neuron. Neurons that spiked fewer than 33 
100 spikes during the hour long recording were removed from the analysis. Spike trains were then 34 
used to build networks. 35 

36 
Effective connectivity network construction 37 

38 
Because neural computation is fundamentally a dynamic process, we focused on examining 39 
networks of effective connectivity. In these networks, connections represent a predictive 40 
relationship between the firing of two different neurons. Note, effective connectivity differs from 41 
structural connectivity (synapses or gap junctions between neurons) and functional connectivity 42 
(e.g., cross-correlations between neuronal time series). Here, effective connections represent 43 
directed information transfer between neurons. 44 
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Networks of effective connectivity, representing global activity in recordings, were constructed 46 
according to Timme et al (2014, 2016) using a measure from information theory known as transfer 47 
entropy (TE; Schreiber, 2000). TE was selected for its ability to detect nonlinear interactions and 48 
deal with discrete data, such as spike trains. To capture neuron interactions at timescales relevant 49 
to synaptic transmission (14 ms; Mason et al., 1991; Swadlow, 1994), multiple windows are used 50 
to improve the sensitivity to functional interactions across these delays. spiking data was binned 51 
at three logarithmically-spaced bin sizes (1, 1.6 and 3.5 ms) and TE was computed at delays (0-3 52 
bins, for bins of size 1 and 1-4 bins for bins of size 1.6 and 3.5 ms) corresponding to synaptic 53 
delays, as in Timme et al. (2014, 2016). Thus, we computed TE at three timescales, 0.05–3 ms, 54 
1.6–6.4 ms and 3.5–14 ms. Timescales were purposefully designed to be overlapping so that no 55 
interactions were neglected. See Figure 1 for an overview of the binning structure used in TE 56 
calculations.  57 
 58 
TE quantifies an effective connection from neuron J to neuron I by measuring how much 59 
information the past state of the neuron J time series (𝐽"#$ ) produces regarding the current state of 60 
the neuron I time series (𝐼"  ), beyond what is provided by the past state of the neuron I time series 61 
(𝐼"#$). Here, time series are binary spike trains for neurons I and J, containing 0 for time bins in 62 
which the neuron did not spike and 1 for time bins in which it did spike. Generally, the TE from 63 
neuron J to neuron I is computed as:  64 
 65 
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The probabilities in Eqn. 1 are computed by counting the number of occurrences of all possible 66 
combinations of spiking and not spiking in the 𝑖", 𝑖"#$ and 𝑗"#$ time bins (of the 𝐼", 𝐼"#$ and 𝐽"#$ 67 
time series) for all bins making up the hour-long recording. 68 
 69 
Because we wanted to consider interactions at three timescales associated with synaptic 70 
transmission, we included a delay between the past and future states of the neurons so that 𝑖"#$ 71 
became 𝑖"#< and 𝑗"#$ became 𝑗"#<. Additionally, in order to ensure overlapping timescales, we 72 
combined the 𝑖"#< and 𝑗"#< bins with their previous time bins, such that a spike in either or both 73 
time bins corresponded to a state of 1 while no spikes in either time bin corresponded to a state of 74 
0 (See Figure 1 for binning structure). Denoting these new bins as 	𝑖"#<=  and 	𝑗"#<=  gives a slightly 75 
different form for TE: 76 
 77 
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 79 
Figure 1. Overview of time series binning structure used in transfer entropy calculations. Transfer entropy was used to quantify a 80 
directed, functional connection from neuron J to neuron I which represents how well the current state (t) of neuron I can be predicted 81 
by the past state (’t-d) of neuron J, beyond what is known from the past state of neuron I itself. Three timescales were considered, 82 
each with corresponding delays (d). Timescales considered transfer entropy from 0.05—3 ms, 1.6—6.4 ms, and 3.5—14 ms.  83 
 84 
To cast TE in terms of the percentage of the receiver neuron’s capacity that can be accounted for 85 
by the transmitting neuron, rather than it representing the amount of information being transmitted 86 
from transmitter to receiver, we normalized TE by the entropy of the receiver neuron via: 87 

𝑇𝐸ABCD 𝑑 (	→	+ = 	
𝑇𝐸 𝑑 (	→	+

− 𝑝(𝑖𝑡) log	( 𝑝(𝑖𝑡))𝑖𝑡
 (3) 

Computing (normalized) TE in this way between all pairs of binned neuronal time series results in 88 
a time-scale dependent, weighted, directed network. Networks are weighted because some pairs 89 
of neurons fire more frequently and reliably at certain delays than others, and they are directed 90 
because a predictive, statistical relationship that exists from neuron J to neuron I, may not exist 91 
from neuron I to neuron J. Each element 𝑎7;  in the TE matrix is the TE value from the 𝑖"H to the 92 
𝑗"H neuron. TE values of zero denote the absence of an effective connection between the two 93 
neurons, while TE values greater than zero represent the weighted strength of the effective 94 
connection between the two neurons. 95 
 96 
To determine the significance of network connections (TE values), TE values were computed for 97 
5000 pairs of jittered spike trains. TE values which were larger than 99.9% of jittered values were 98 
considered significant, corresponding to a p-value of less than 0.001. Computing significant, 99 
normalized TE values for 25 recordings at three timescales, resulted in 75 full networks. 100 
 101 
To ensure that the detection of rich clubs was not biased by the spatial sampling of the recording 102 
apparatus, we compared the distances between rich club neurons (defined as the top 30% of 103 
neurons in a network) to the distances between all neurons in the network. We found that there 104 
were no significant differences between the two distributions of distances (KS tests revealed that 105 
75 out of 75 networks had distributions that were not significantly different at the α = 0.01 level; 106 
Figure 2). 107 



 

 

 108 
Figure 2. Spatial distribution of rich club neurons is not significantly different from the spatial distribution of the full network. 109 
Spatial distribution of rich club neurons relative to all neurons in a representative network. 110 
 111 
 112 
To be confident that our timescales captured the peak of information processing in our networks, 113 
we calculated TE at delays other those analyzed here for two representative networks. First, spike 114 
trains were binned at 1 ms. Then TE was calculated at multiple delays ranging from 0 to 501 ms, 115 
in steps of 3 ms, for all existing pairs of significant connections in the network. We found that TE 116 
tended to peak in the 1-14 ms delay range for most connections (Figure 3). In fact, for 87.3% of 117 
pairs on average, the peak of TE occurred at between 1 and 14 ms.   118 
 119 

 120 
 121 
Figure 3. TE peaks between 1-14 ms. Mean distribution of TE over time for all connections from two representative networks. 122 
Left: The black line shows the mean TE over all connections from two representative networks. The shaded region shows the 95% 123 
confidence interval. The vertical dashed red line indicates the upper bound of the timescales analyzed in the manuscript.  Across 124 
connections, the peak TE occurs below this bound at short latencies. Right: Histogram of the delay to the maximum TE over 125 
connections. The height of each bar shows the proportion of connections for which the peak TE was found to occur at the delay 126 
indicated along the x-axis. Most connections had max TE at short delays as shown in the inset panel which zooms in to the first 50 127 
ms of the x-axis. These plots show that most connections had a peak TE at less than 14 ms. 128 
 129 



 

 

Quantification of neural computation 130 
 131 
Computation by neurons receiving inputs from two other neurons in these networks was quantified 132 
following the partial information decomposition (PID) from Williams and Beer (2010). This 133 
method was used as it is currently the only method capable of quantifying how much computation 134 
occurs in an interaction in which three variables predict a fourth as done here (the future state of 135 
the receiver is predicted from the past state of the receiver and two other transmitters). The PID 136 
allows multivariate TE to be separated into distinct information components, one of which is a 137 
measure of neural computation termed synergy. The general form of the decomposition of 138 
multivariate TE between three neuronal time series, with two transmitter neurons, J and K, each 139 
sending a single input to one receiver neuron, I, can be expressed as (Figure 4): 140 

𝑇𝐸 𝐽, 𝐾 → 𝐼 = 	Synergy 𝐽, 𝐾 → 𝐼 + 	Unique 𝐾; 𝐽 → 𝐼 + 
Unique 𝐽; 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (4) 

where 𝐽, 𝐾  is a vector of the combined J and K time series. Similarly, we can express the 141 
decomposition of bivariate TE from neuron J to I and neuron K to I as (Figure 4): 142 
 143 

𝑇𝐸 𝐽 → 𝐼 = 	Unique 𝐾; 𝐽 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (5) 
	
and	
	

 

𝑇𝐸 𝐾 → 𝐼 = 	Unique 𝐽; 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (6) 
 144 
In Equations 4-6, all terms are quantified in units of bits (see Williams and Beer 2010, 2011 for a 145 
full description of these terms). The unique terms correspond to the information provided by that 146 
time series alone (either the J or the K time series) about the current state of I. The redundant term 147 
represents the overlapping information provided by time series J and K about the current state of 148 
I. Notice, in Equations 5 and 6, that although TE is only dependent on the two time series that are 149 
directly interacting (either J and I, or K and I), because J and K are both interacting with the same 150 
time series, their unique interactions are influenced by each other. Thus, the unique information 151 
provided by one of these time series is dependent on the other. In other words, because J and K 152 
provide some redundant (overlapping) information about I, J influences how much information K 153 
provides uniquely versus redundantly about I. Likewise, K influences how much information J 154 
provides uniquely versus redundantly about I.   155 
 156 
The synergistic term in Equation 4 is the additional information (beyond the unique and redundant 157 
information) that is processed by the receiver (I) based on the non-overlapping information from 158 
both inputs (J and K) occurring simultaneously. Thus, synergy is a proxy for the non-linear 159 
computation which takes information from two sources and combines them in some way to 160 
generate a unique output.  161 
 162 
To calculate synergy, note that Equation 4 can be rewritten as: 163 



 

 

Synergy 𝐽, 𝐾 → 𝐼 = 	𝑇𝐸 𝐽, 𝐾 → 𝐼 − 	𝑇𝐸 𝐽 → 𝐼 − 
𝑇𝐸 𝐾 → 𝐼 + 	Redundancy({𝐽, 𝐾} → 𝐼) (7) 

by substituting Equations 5 and 6 and solving for synergy. Notice that we can compute all TE 164 
terms in Equation 7 via Equation 1. This leaves only the Redundancy term to be computed. 165 
Fortunately, a method for measuring this term has been provided by Williams and Beer (2010, 166 
2011), who define redundancy in terms of a quantity titled the minimum information 𝐼[\]: 167 
 168 
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 169 
where the specific information 𝐼cdef is defined as: 170 

𝐼cdef 𝐼" = 𝑖"; 𝑅, 𝐼"#$ = 𝑝 𝑟, 𝑖"#$|𝑖" log
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and 171 

𝐼cdef 𝐼" = 𝑖"; 𝐼"#$ = 𝑝 𝑖"#$|𝑖" log
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(10) 

Thus, redundancy is the minimum information provided by J or K about each state of I, averaged 172 
over all possible states. In other words, redundancy is the minimum overlapping information (the 173 
shared information) that the past states of J and K provide about the current states of I. Redundancy 174 
was calculated via Equations 9 and 10. Finally, synergy was calculated via Equation 7. Computing 175 
synergy for all possible triads (for each neuron that received at least two inputs, all possible 176 
groupings of two input neurons and the receiver were considered) in all networks yields a single 177 
synergy value per triad. We then normalized synergy values by dividing by the entropy of the 178 
future state of I, as done in Equation 3.  179 



 

 

 180 
Figure 4. The Partial Information Decomposition. In this study, we analyzed two-input computations which were determined using 181 
the Partial Information Decomposition to dissect multivariate transfer entropy (occurring among three neurons, with two transmitter 182 
neurons each sending significant information to a receiver neuron) into synergistic, redundant, and unique information terms. The 183 
synergistic information component was used to represent the amount of computation carried out by the receiver.  184 
 185 
Although there are other methods for calculating synergy (Bertschinger et al., 2014; Pica et al., 186 
2017), we chose this measure because it is capable of detecting linear and nonlinear interactions 187 
and it is currently the only measure which can quantify how much synergy occurs in an interaction 188 
in which three variables (here, receiver past and pasts of the two transmitters) predict a fourth. 189 
Note, we chose not to consider higher order synergy terms, for systems with more than two 190 
transmitting neurons, due to the increased computational burden it presented (the number of PID 191 
terms increases rapidly as the number of variables increases). However, based on bounds 192 
calculated for the highest order synergy term by Timme et al. (2016), it was determined that the 193 
information gained by including an additional input beyond two either remained constant or 194 
decreased. Thus, it was inferred that lower order (two-input) computations dominated.  195 
 196 
It is important to re-emphasize two things here. First, transmitter neurons and receiver neurons 197 
differ in terms of how they are defined. Transmitter neurons are required to have at least one 198 
outgoing connection (but not necessarily any incoming connections) and receiver neurons are 199 
required to have at least two incoming connections (but not necessarily any outgoing connections). 200 
Second, synergy occurs at the receiver neuron (where the two input signals are integrated). Thus, 201 
transmitters can be thought of as contributing to computation which occurs at the receiver neuron. 202 
 203 
Rich club detection 204 
 205 
To examine the relationship between rich clubs and computation in our networks, we identified 206 
the weighted rich clubs in each recording. Weighted rich clubs were identified using a modified 207 
version of the rich_club_wd.m function from the Matlab Brain Connectivity toolbox (Rubinov and 208 
Sporns, 2010; van den Heuvel and Sporns, 2011), adapted according to Opsahl et al. (2008) to 209 
compute weighted rich clubs. Briefly, this algorithm computes weighted rich-club coefficients as 210 
follows. For a given recording, a richness parameter (𝑟), defined as the sum of the weights 211 
(incoming and outgoing), was computed for all neurons. Then, for every value of	𝑟 observed in a 212 
recording, a weighted rich club coefficient is computed. A rich club coefficient is computed for 213 
the 𝑘th value of 𝑟 as follows: 214 
 215 



 

 

Φm 𝑟n =
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Here, the numerator is the amount of information transfer between neurons with 𝑟 greater than or 216 
equal to 𝑟n, computed as the sum of the TE value between these neurons. The denominator is the 217 
maximum amount of information transfer that could have been observed among the neurons with 218 
𝑟 greater than or equal to 𝑟n. This is computed as the sum of the largest 𝑛 weights in the network 219 
where 𝑛 is the number of edges found between neurons with 𝑟 greater than or equal to 𝑟n. The 220 
resulting ratio approaches one when the strongest connections connect the neurons that transfer 221 
the most information (i.e., richest neurons).  222 
 223 
To establish the existence of a significant rich club at a given threshold 𝑟n, we computed the ratio 224 
between the observed Φm 𝑟n  and the distribution of those observed when the edges of the network 225 
were shuffled. Shuffles were performed according to the methods of Maslov and Sneppen (2002). 226 
Briefly, this method randomly selects two edges (e.g., A→B and C→D) and randomly swaps either 227 
the sender or the receivers of the edges (A→D and C→B). Such rewiring only takes place if the 228 
newly created edges did not already exist in the network. To shuffle a network, the swapping 229 
process is repeated four times the number of edges in the network.  230 
 231 
For each network, the rich club coefficients from shuffled versions of the network (ΦcHuvvwe<

m ) 232 
were computed from 500 shuffled variants of the network. The mean coefficient for each threshold 233 
𝑟n across shuffles was then used to normalize the observed coefficients, as follows: 234 
 235 

Φs
m 𝑟n =

ΦBxceCye<
m (𝑟n)

|ΦcHuvvwe<
m 𝑟n |

 (7) 

  
The resulting normalized coefficient, Φs

m, reflects how many times greater the observed 236 
coefficients are than the expected values given the distribution of edge weights observed in a given 237 
network. The significance of a given normalized coefficient was established by computing the 238 
associated p-value as the number of coefficients from shuffled networks that exceeded the 239 
observed coefficient and dividing by the number of shuffles (500). We defined p-value ≤ 0.01 as 240 
significant.   241 
 242 
Quantification of the synergy-rich club relationship 243 
 244 
The relationship between synergy and rich clubs was performed using two approaches. In the first 245 
approach, we compared the amount of computation inside versus outside of the rich club by 246 
randomly selecting a single, significant representative rich club for each network and asking what 247 
the expected synergy-per-triad was for triads with receivers inside versus outside of the rich club. 248 
Given the risk for sampling bias introduced by the selection of representative rich clubs in the first 249 
approach, we also pursued a second approach that quantified the relationship between synergy and 250 
the rich club, at all possible thresholds. That is, for each network, we sorted neurons from strongest 251 
to weakest, and then cumulatively recruited neurons into the “rich club” one at a time. For this 252 
second approach, we computed the amount of computation inside and outside of the rich clubs 253 



 

 

defined at all possible thresholds for each network. The results were then aggregated across 254 
networks by aligning coefficients based on the percentage of the network included in the rich club.  255 
The above approaches were also used to compare the computation ratio, or the ratio of computation 256 
to propagation (summed triad TE), inside versus outside the rich club. 257 
 258 
 259 
In addition to the above analyses which considered the position of the receiver with respect to the 260 
rich club, we also calculated the expected synergy found in all possible interactions of triads with 261 
respect to the rich club for all networks (see Figure 5). This was done to achieve a more detailed 262 
understanding of the relationship between triads, synergy, and rich clubs. 263 

 264 
Figure 5. Schematic of possible configurations of synergistic triads interacting with the rich club. In order to quantify the amount 265 
of computation that takes place within the rich club and to determine how the amount of computation depends on the interaction 266 
between synergistic triads and the rich club, we considered all ways in which synergistic triads could interact with the rich club. 267 
From left to right these include: no triad nodes or edges participate in the rich club, a single transmitter (arrow pointing away) is 268 
in the rich club, both transmitters are in the rich club, only the receiver (both arrows pointing toward) is in the rich club, a 269 
transmitter-edge-receiver combination is in the rich club, and finally, the entire connected triad is in the rich club.  270 
 271 
 272 
Control analyses of the synergy-rich club relationship  273 
 274 
Control analysis 1: In order to account for the fact that networks and rich clubs were defined by 275 
TE, a fact which may trivialize the result of greater synergy in rich clubs, we tested the relationship 276 
between synergy and the rich club after permuting the spike times of one transmitter in a triad with 277 
“bonafide” synergy. Here, a triad has bonafide synergy if the total information gained about the 278 
future state of neuron I is greater than the sum of the information provided by neuron J and K in 279 
total (assuming zero redundancy, thus making this maximally conservative) which is expressed as 280 
𝑇𝐸({𝐽, 𝐾} → 𝐼) > 𝑇𝐸 𝐽 → 𝐼 + 	𝑇𝐸(𝐾 → 𝐼). Spike times were permuted by first identifying all 281 
time bins for which Rp and Rf  (Rp = receiver state in the past; Rf  = receiver state in the future) are 282 
in one of the four basic configurations { [0,0], [0,1], [1,0], [1,1] }. For each configuration, we 283 
shuffled the spike times of the transmitter. By shuffling within configurations of the receiver state 284 
we preserve the transfer entropy from the transmitter to the receiver, but destroy the relationship 285 
between transmitters and therefore leading to a different value of synergy. We repeated this 286 
shuffling procedure 200 times per triad, generating a null distribution of synergy, for all triads with 287 
bonafide synergy in all 75 networks. We then asked whether the null synergy was greater in the 288 
rich club compared to outside. We determined that there is significantly greater median null 289 
synergy in the rich club for the 1.6–6.4 ms timescale 0.0016 (Zs.r.= 4.34, n = 25 networks, p = 290 
1.39x10-5) and the 3.5–14 ms timescale 0.002 (Zs.r.= 4.2, n = 25 networks, p = 2.54x10-5), but 291 
not for the 0.05–3 ms timescale 2.5x10-5 (Zs.r. = 0.46, n = 25 networks, p = 0.65). We then 292 
compared these differences to those obtained from the observed synergy and found that there is 293 
significantly greater synergy in rich clubs than what would be expected by chance (Zs.r. = 5.76, n 294 
= 75 networks, p = 8.6x10-9). The empirically observed synergy values were significantly greater 295 
in the rich club in 88% (66 out of 75) of the networks. Converting the observed synergy into a z-296 
score based on the distribution of null synergy values results in a median z-score of 13.31 over all 297 
networks (25.8, 12.03, and 13.5 for timescales 0.05–3 ms, 1.6–6.4 ms and 3.5–14 ms, 298 



 

 

respectively). The results of this analysis demonstrate that the computation observed in the rich 299 
club is not a simple consequence of the magnitude of the TE values that comprise the rich clubs in 300 
these networks. 301 
 302 
Control analysis 2: To demonstrate that the result of synergy in the rich club could not have been 303 
explained by simple correlations between incoming weight of the receiver and synergy, we asked 304 
if there is greater synergy in the rich clubs after the correlation between connection strength and 305 
synergy has been regressed out. To do this, we performed a regression between summed incoming 306 
connection strength and synergy across triad receivers for a given network and then collected the 307 
residual synergy for each triad after accounting for the summed incoming connections. We then 308 
asked if the residual synergy values were still significantly greater in the rich club than outside and 309 
found that they were (Zs.r. = 6.29, n = 75 networks, p = 3.24x10-10).  310 
 311 
Control analysis 3: To illustrate that outgoing connections are not synonymous with synergy, and 312 
to be sure that potential correlations between the strength of outgoing connection and synergy did 313 
not bias the results reported here, we calculated correlations between summed outgoing connection 314 
strength of the receiver and synergy for all triads in all networks. We found that synergy and 315 
outgoing connection strength are not strongly related. Synergy was slightly negatively correlated 316 
with outgoing connection strength at the longest (3.5–14 ms) timescale (⍴ = -0.07, Zs.r. = -3.54, n 317 
= 25 networks, p = 0.0004). The sign of the correlation between outgoing weight and synergy was 318 
slightly positive at the shorter timescales (⍴ = 0.06, Zs.r. = 1.98, n = 25 networks, p = 0.048 for the 319 
0.05–3 ms timescale; and, ⍴ = 0.01, Zs.r. = 0.2, n = 25 networks, p = 0.84 for the 1.6–6.4 ms 320 
timescale). However, when all networks were considered together, the distribution of correlation 321 
values was centered on zero (Zs.r. = -0.8, n = 75 networks, p = 0.42). The only of these timescales 322 
which had a strong relationship between weight and synergy was the 3.5–14 ms timescale, but the 323 
relationship was negative, which would work against the pattern of results reported here that 324 
synergy is greatest in rich clubs. In addition to this, we calculated correlations between summed 325 
incoming and outgoing connection strengths of the receivers. Similarly, we did not find evidence 326 
of a clear relationship between these correlations and the result of synergy in the rich. The median 327 
correlation values for timescales 0.05–3 ms, 1.6–6.4 ms and 3.5–14 ms were ⍴ = 0.33 (Zs.r. = 3.7, 328 
n = 25 networks, p = 0.0002), ⍴ = 0.07 (Zs.r. = 2.25, n = 25 networks, p = 0.02), and ⍴ = -0.13 (Zs.r. 329 
= -3.13, n= 25 networks, p = 0.002), respectively. The fact that the sign and strength of correlations 330 
between summed incoming and outgoing connections strengths across triads did not closely track 331 
difference in synergy density inside versus outside the rich club suggests this was not a 332 
confounding variable. 333 
 334 
Alternative approaches to standard PID 335 
 336 
To ensure that our findings were not method-dependent, we performed additional analyses which 337 
implemented alternative methods for calculating synergy. First, we considered the effect of 338 
calculating the lower bound on synergy, which we refer to as “bonafide” synergy. Second, we 339 
considered an approach which, instead of PID, calculates neuron transfer functions according to 340 
the method proposed by Chichilnisky (2001). This method begins with the calculation of each 341 
neuron’s spike-triggered average (STA), which is the average pattern of input spikes preceding a 342 
spike in the cell (i.e. the sum of the inputs i preceding each spike, divided by the total number of 343 
spikes f) for a specific delay d: 344 
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 346 
Here, we considered a delay of 1-14 ms. In other words, we looked at input patterns occurring 347 
anywhere from 14 to 1 ms before the spike of each neuron.  To determine each neuron’s response 348 
based on its STA, we next calculated a generator signal: 𝑔" = 𝑎 ∙ 𝑠", which is a linear combination 349 
of the input spikes at a particular time, and then examined the average spike count in time bins 350 
with approximately equivalent generator signals (Chichilnisky, 2001). This gave us a neuron 351 
transfer function in the form of probability of spiking vs. generator signal (number of inputs). 352 
Because this relationship can be linear or nonlinear, we then fit each neuron’s transfer function 353 
with both a linear and nonlinear (sigmoidal) fit, and calculated the sum of squared errors for each 354 
fit. We then computed the ratio of the sum of squared errors for the sigmoidal fit to sum of squared 355 
error for the linear fit and used a median split to classify neurons as having either linear or nonlinear 356 
transfer functions. Neurons whose sum of squared errors ratio was greater than the median were 357 
classified as linear, whereas those whose sum of squared errors ratio was less than the median were 358 
classified as nonlinear.  359 
 360 
To examine how this approach relates to PID, we compared the expected synergy for neurons with 361 
nonlinear versus linear transfer functions across all networks. To parallel our synergy-rich club 362 
analysis, we also compared the concentration of neurons with nonlinear transfer functions inside 363 
and outside the rich club. That is, we computed the percentage of rich club and non-rich club 364 
neurons that had nonlinear transfer functions.  365 
 366 
Consideration of neuron auto-prediction 367 
 368 
A further analysis was done to assess the risk posed by the possibility that our use of small windows 369 
when defining the past state of a receiver may underestimate neuron auto-prediction. Such 370 
underestimation could result in inflated TE and synergy values. To address this, we performed an 371 
analysis, similar to Nigam et al., 2016, in which we jittered transmitter neuron spike trains with 372 
respect to receiver neuron spike trains at short timescales, thereby disrupting short timescale 373 
relationships between the neurons but leaving longer timescale statistics intact, and retaining the 374 
auto-prediction of the neuron. We calculated new transfer entropy values as 𝑇𝐸sem =375 
𝑇𝐸BxceCye< − 𝑇𝐸;7""eCe<, where	𝑇𝐸;7""eCe< was the mean of TE values obtained from 100 different 376 
jitters. When jittering, spike times were shifted randomly within a 3 bin window. Synergy values 377 
were calculated in a corresponding fashion, by jittering both transmitters with respect to the 378 
receiver, and subtracting off the mean of the jittered synergy values. We then repeated the core 379 
analyses of synergy in the rich club with these updated values (results shown in Supplemental 380 
Figure 11). 381 
 382 
SUPPLEMENTAL	RESULTS	383 
 384 
The current study investigated the relationship between synergy and rich clubs at multiple 385 
timescales relevant to synaptic connectivity. Although results have been pooled in the manuscript, 386 
here we show them for each timescale separately. First, we show the existence of rich clubs across 387 



 

 

networks at each timescale (Figure 6). Second, we show that there is greater synergy in rich clubs 388 
across networks at each timescale (Figure 7) and that mean network synergy correlates with 389 
normalized rich club coefficient across networks at each timescale (Figure 8). Third, we show that 390 
alternative methods to the original PID produce qualitatively similar results of synergy in the rich 391 
club. Specifically, we use an alternative implementation of PID (Figure 9), as well as a non-392 
information theoretic approach to measuring neural computation (Figure 10). Finally, we show the 393 
results of the bootstrap method which updates TE and synergy values to reflect variance accounted 394 
for by auto-prediction (Figure 11). The findings of these analyses agree with previous results that 395 
synergy is elevated in the rich club.  396 
 397 

 398 
 399 
Figure 6. Network rich clubs. Aggregate rich club curves for all 25 networks at each timescale. The number of significant rich 400 
clubs that were found at each of the possible subnetworks (% neurons sorted by weight) across all networks is also shown. 401 
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 405 
 406 
Figure 7. Synergy in rich clubs. Synergy is greater in rich clubs at all timescales. This is shown for a significant, representative 407 
rich club (top row), as well as at all significant rich club levels (yellow shaded region, bottom row). ***P < 1 x 10-6
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 413 
Figure 8. Mean synergy correlates with normalized rich club coefficient. Correlation values shown for each timescale separately.  414 
 415 
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 423 
 424 
Figure 9. Results of “bonafide” synergy analyses. Mean “bonafide” synergy is significantly greater in the rich club at all significant 425 
rich club levels (yellow shaded region), at all timescales.  426 
 427 
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 429 
 430 
Figure 10. Concentration of nonlinear neurons is highest in the rich club.  The concentration of nonlinear neurons, according to 431 
the classification from the Chichilnisky analysis, is significantly larger in the rich club, for all timescales. **P < 1 x 10-4 432 
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 437 
 438 
Figure 11. Synergy is highest in the rich club after subtracting TE and synergy values that result from jittered spike trains.. (A) 439 
Rich club neurons have greater synergy at all significant rich club levels (signrank: p = 0.002, z = 2.88). (B) The percentage of total 440 
network synergy is higher for neurons in the rich club, at significant rich club levels (signrank: p = 0.004, z = 2.66). (C) The 441 
percentage of total network synergy accounted for by rich club neurons is significantly greater than expected given the percentage 442 
of triads in the rich club, at all significant rich club levels (signrank: p = 0.004, z = 2.66). Significant rich club levels indicated by 443 
yellow shaded region. 444 
 445 


