## **Supplementary Materials**

## The MapZ-mediated Methylation of Chemoreceptors Contributes to Pathogenicity of *Pseudomonas aeruginosa*

Shuo Sheng<sup>1,5</sup>, Lingyi Xin<sup>2</sup>, Joey Kuok Hoong Yam<sup>2,3,4</sup>, May Margarette Salido<sup>2,3,4</sup>, Nicole Zi

Jia Khong<sup>2</sup>, Qiong Liu<sup>1,5</sup>, Rachel Andrea Chea<sup>2</sup>, Hoi Yeung Li<sup>2</sup>, Liang Yang<sup>2,3,4</sup>, Zhao-Xun

Liang<sup>2,4\*</sup>, Linghui Xu<sup>1,6\*</sup>

**1** Supplementary Movies, Tables and Figures.

**1.1 Supplementary Movies** 

Supplementary Movie S1. The migration of PAO1 towards wounded A549 cells. Supplementary Movie S2. The migration of PAO1/pMapZ towards wounded A549 cells. Supplementary Movie S3. The migration of  $\Delta cheR1/p$  towards wounded A549 cells.

1.2 Supplementary Tables Supplementary Table S1 Supplementary Table S2

1.3 Supplementary Figures Supplementary Figure S1 Supplementary Figure S2

| Strain or plasmid                         | Relevant genotype or description                                              | Reference(s)<br>or source |
|-------------------------------------------|-------------------------------------------------------------------------------|---------------------------|
|                                           | Escherichia coli                                                              |                           |
| E. coli BL21 (DE3)                        | Cells for high level expression of heterologous proteins in E. coli           | Stratagene                |
| E. coli HCB721                            | Cells for expression of <i>P. aeruginosa</i> chemoreceptors                   | (Wolfe et al.,<br>1988)   |
| E. coli DH5a                              | Cells for heat shock transformation                                           | Transgen<br>biotech       |
| E. coli OP50                              | The food source used for <i>C. elegans</i> in fast-killing assay              | Lab stock                 |
| DA01                                      | Pseudomonas aeruginosa                                                        | (Issaha at al             |
| PA01                                      | Wild type                                                                     | (Jacobs et al., 2003)     |
| PA01/p                                    | PAO1 strain containing pUCP18, Car <sup>r</sup>                               | This study                |
| PA01/pMapZ                                | PAO1 strain containing pUCP18-MapZ, Car <sup>r</sup>                          | This study                |
| $mapZ_R13A$ strain                        | PA3348 transposon mutant PW6640 from the Washington                           | (Jacobs et al.,           |
| containing pUCP18,                        | Genome Center PAO1 mutant library                                             | (Jacobs et al.,<br>2003)  |
| Car <sup><math>r\Delta cheR1</math></sup> | Genome Center FAOT initiant horary                                            | 2003)                     |
|                                           | AshaPl strain containing pLICD19 Carl                                         | This study                |
| $\Delta cheR1/p$<br>$cheR1^{D144AY222A}$  | AcheR1 strain containing pUCP18, Car <sup>r</sup>                             | This study                |
| CheRI                                     | PAO1 strain containing D144A and Y222A mutation of PA3348                     | This study                |
| $I \rightarrow 1D144AY222A$               | in genome                                                                     | 7D1 · / 1                 |
| <i>cheR1<sup>D144AY222A</sup>/p</i>       | <i>cheR1</i> <sup>D144AY222A</sup> strain containing pUCP18, Car <sup>r</sup> | This study                |
| $\Delta ctpH$                             | PA2561 transposon mutant PW5300 from the Washington                           | (Jacobs et al.,           |
|                                           | Genome Center PAO1 mutant library                                             | 2003)                     |
| $\Delta ctpH/p$                           | $\Delta ctpH$ strain containing pUCP18, Car <sup>r</sup>                      | This study                |
| $\Delta ctpM$                             | PA2652 transposon mutant PW5440 from the Washington                           | (Jacobs et al.,           |
|                                           | Genome Center PAO1 mutant library                                             | 2003)                     |
| $\Delta ctpM/p$                           | $\Delta ctpM$ strain containing pUCP18, Car <sup>r</sup>                      | This study                |
| $\Delta aer$                              | PA1561 transposon mutant PW3811 from the Washington                           | (Jacobs et al.,           |
|                                           | Genome Center PAO1 mutant library                                             | 2003)                     |
| $\Delta aer/p$                            | $\Delta aer$ strain containing pUCP18, Car <sup>r</sup>                       | This study                |
|                                           | Plasmids                                                                      |                           |
| pUCP18                                    | E. coli - P. aeruginosa expression vector, Amp <sup>r</sup>                   | Lab stock                 |
| pHSe5-PctA                                | PA4309 gene with stop codon cloned into pHSe5 vector,                         | (Schmidt et al.,          |
| -                                         | inducible with IPTG, Amp <sup>r</sup>                                         | 2011)                     |
| pHSe5-PctB                                | PA4310 gene with stop codon cloned into pHSe5 vector,                         | This study                |
| 1                                         | inducible with IPTG, Amp <sup>r</sup>                                         | 5                         |
| pHSe5-PctC                                | PA4307 gene with stop codon cloned into pHSe5 vector,                         | This study                |
| I                                         | inducible with IPTG, Amp <sup>r</sup>                                         | j                         |
| pHSe5-CtpL                                | PA4844 gene with stop codon cloned into pHSe5 vector,                         | This study                |
| prises cepi                               | inducible with IPTG, Amp <sup>r</sup>                                         | This study                |
| pHSe5-Aer                                 | PA1561 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         | This study                |
| pHSe5-CtpH                                | PA2561 gene with stop codon cloned into pHSe5 vector,                         | This study                |
| рпзез-Стрп                                |                                                                               | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         | This stades               |
| pHSe5-PA0411                              | PA0411 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         | <b>TP1 1</b>              |
| pHSe5-WspA                                | PA3708 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         |                           |
| pHSe5-CttP                                | PA0180 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         |                           |
| pHSe5-TlpQ                                | PA2654 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         |                           |
| pHSe5-CtpM                                | PA2652 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         |                           |
| pHSe5-PA4520                              | PA4520 gene with stop codon cloned into pHSe5 vector,                         | This study                |
|                                           | inducible with IPTG, Amp <sup>r</sup>                                         | -                         |

## Table S1. Bacterial strains and plasmids

| pHSe5-PA2788 | PA2788 gene with stop codon close                                                                                  | ned into | pHSe5 vector, | This study |
|--------------|--------------------------------------------------------------------------------------------------------------------|----------|---------------|------------|
| pHSe5-PA2867 | inducible with IPTG, Amp <sup>r</sup><br>PA2867 gene with stop codon clou<br>inducible with IPTG, Amp <sup>r</sup> | ned into | pHSe5 vector, | This study |
| pHSe5-PA2920 | PA2920 gene with stop codon clouinducible with IPTG, Amp <sup>r</sup>                                              | ned into | pHSe5 vector, | This study |
| pHSe5-PA1608 | PA1608 gene with stop codon clos<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-PA4915 | PA4915 gene with stop codon clou<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-PA4290 | PA4290 gene with stop codon clos<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-PA1251 | PA1251 gene with stop codon clou<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-McpK   | PA5072 gene with stop codon clou<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-PA4633 | PA4633 gene with stop codon clos<br>inducible with IPTG, Amp <sup>r</sup>                                          | ned into | pHSe5 vector, | This study |
| pHSe5-PA2573 | PA2573 gene with stop codon close                                                                                  | ned into | pHSe5 vector, | This study |
| pHSe5-PA1646 | inducible with IPTG, Amp <sup>r</sup><br>PA1646 gene with stop codon clou<br>inducible with IPTG, Amp <sup>r</sup> | ned into | pHSe5 vector, | This study |

Table S2. Primers used in this study

| Primers  | Sequence (5'-3')                              | Purpose                              |
|----------|-----------------------------------------------|--------------------------------------|
| pctC-F   | CGCGGATCCATGCTTCGCTCGCTGTCGTTTG               | For construction of pHSe5-<br>PctC   |
| pctC-R   | CCCAAGCTTTCAGATCTTGAAGCTGTCCACC               | For construction of pHSe5-<br>PctC   |
| pctB-F   | CAATTTCACACAGGAAACAGATGATCAAAAGTCT<br>CAAGTTC | For construction of pHSe5-<br>PctB   |
| pctB-R   | TTGACAGCTTATCATCGATATCAGATCTTGAAGCT<br>GTC    | For construction of pHSe5-<br>PctB   |
| ctpL-F   | CGCGGATCCATGCGCCTCAAGCAACTCACCA               | For construction of pHSe5-<br>PA4844 |
| ctpL-R   | CCCAAGCTTTCACAGGCGGAAGGCCTGCACC               | For construction of pHSe5-<br>PA4844 |
| Aer-F    | CGCGGATCCATGCGCAACAATCAGCCCATCA               | For construction of pHSe5-<br>PA1561 |
| Aer-R    | CCCAAGCTTTCAGCGGTTGAAGCGCTCGACC               | For construction of pHSe5-<br>PA1561 |
| ctpH-F   | CGCGGATCCATGCCCGCCTCGCCGGGCCACA               | For construction of pHSe5-<br>CTPH   |
| ctpH-R   | CCCAAGCTTTCAGGCCCGCAGGCGTTGCAGG               | For construction of pHSe5-<br>CTPH   |
| PA0411-F | CGCGGATCCATGAAGAAAATCAACGCAGGCA               | For construction of pHSe5-<br>PA0411 |
| PA0411-R | CCCAAGCTTTCAGGCCTGCTCCACGCCCTCC               | For construction of pHSe5-<br>PA0411 |
| wspA-F   | CGCGGATCCGTGAAGAACTGGACTGTTCGCC               | For construction of pHSe5-<br>PA3708 |
| wspA-R   | CCCAAGCTTTCAGACTTTGAAGCGGGATACG               | For construction of pHSe5-<br>PA3708 |
| cttP-F   | CGCGGATCCATGCGCGAGTCCCTCGGTGTTT               | For construction of pHSe5-<br>PA0180 |
| cttP-R   | CCCAAGCTTTCAGAACAATTCCACTTCGCCC               | For construction of pHSe5-<br>PA0180 |
| tlpQ-F   | CAATTTCACACAGGAAACAGATGTTCCTTCGCCG<br>CCTG    | For construction of pHSe5-<br>PA2654 |
| tlpQ-R   | TTGACAGCTTATCATCGATATCAGGCCTTGAACTG           | For construction of pHSe5-           |

| ctpM-F             | TTCC<br>CGCGGATCCATGATGCGTCTGACCCTGAAAT      | PA2654<br>For constru                |
|--------------------|----------------------------------------------|--------------------------------------|
| ctpM-R             | CCCAAGCTTTCAGATGCGGAACTGACCGACC              | CTPM<br>For constru                  |
| PA4520-F           | CGCGGATCCGTGAAGACCGTACTCTATCCCG              | CTPM<br>For constru<br>PA4520        |
| PA4520-R           | CCCAAGCTTCTACACCCGGAACGCGCCGATC              | For constru<br>PA4520                |
| PA2788-F           | CGCGGATCCATGAACGAAAGCGTCGCCAGGG              | For constru<br>PA2788                |
| PA2788-R           | CCCAAGCTTTCAGGTACGGAAGCGGCCGAGC              | For constru<br>PA2788                |
| PA2867-F           | CGCGGATCCATGGGCACCTGGATCAGCGACA              | For constru<br>PA2867                |
| PA2867-R           | CCCAAGCTTTCAGAGGCGTAGCTGGCCGATG              | For constru<br>PA2867                |
| PA2920-F           | CGCGGATCCATGCTGCAATGGTTCGCTAACC              | FA2807<br>For constru<br>PA2920      |
| PA2920-R           | CCCAAGCTTTCAGACGCGGAAACGGCCGACC              | For constru                          |
| PA1608-F           | CGCGGATCCATGTCTTTGCGCAGTATGCCCA              | PA2920<br>For constru                |
| PA1608-R           | CCCAAGCTTTCAGACGACGAAGCGGGTGACC              | PA1608<br>For constru                |
| PA4915-F           | CGCGGATCCATGCTCACTGGCGTCACGGTTC              | PA1608<br>For constru                |
| PA4915-R           | CCCAAGCTTCTAGACGGTGAAGCGCTGGATC              | PA4915<br>For constru                |
| PA4290-F           | CGCGGATCCATGCAGCCCGCTCGTTCCCGCA              | PA4915<br>For constru                |
| PA4290-R           | CCCAAGCTTCTAGCCGTTCAAGGCCAGGCTC              | PA4290<br>For constru                |
| PA1251-F           | CGCGGATCCATGCTTCTTCGTCGTATCGCCA              | PA4290<br>For constru                |
| PA1251-R           | CCCAAGCTTTCAGACCACGAAGCGACCGATC              | PA1251<br>For constru                |
| mcpK-F             | CGCGGATCCATGTACGATTGGTGGGTTCTCC              | PA1251<br>For constru                |
| mcpK-R             | CCCAAGCTTTTACAGGCGGAAGCGTCCCACC              | PA5072<br>For constru                |
| PA4633-F           | CGCGGATCCATGAAGCTCAAGTCGATCCAGT              | PA5072<br>For constru                |
| PA4633-R           | CCCAAGCTTCTAGACCCTGAACTGATTCACC              | PA4633<br>For constru                |
| PA2573-F           | CGCGGATCCATGAACATTCGGCAGAGAATCC              | PA4633<br>For constru                |
| PA2573-R           | CCCAAGCTTTCAGATCTTGAAGCGCTCCACC              | PA2573<br>For constru                |
| PA1646-F           | CGCGGATCCATGCTGGGGTTGCTGCGCAGGC              | PA2573<br>For constru                |
| PA1646-R           | CCCAAGCTTCTACAAGCGGAAATGCCTGACC              | PA1646<br>For constru                |
| pHSe5-F<br>pHSe5-R | CTGTTGACAATTAATCATCG<br>CTTTCGTCTTCAAGCAGATC | PA1646<br>Detection p<br>Detection p |

ruction of pHSe5ruction of pHSe5primer of pHSe5 primer of pHSe5

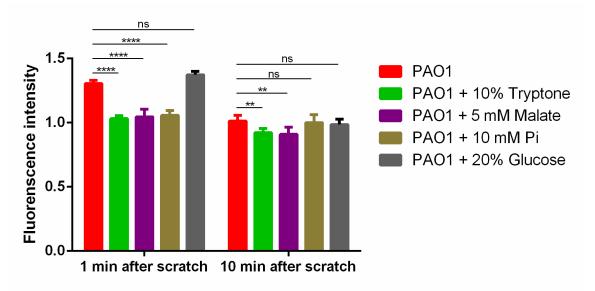



Figure S1. Chemotaxis-guided migration of *P. aeruginosa* strain PAO1 towards scratch-wounded A549 human cells in the presence of different chemoattractants. Quantitative comparison of the accumulation of *P. aeruginosa* cells around the injured A549 cells as indicated by fluorescence intensity. Three independent experiments were performed on each strain and at least 10 cells from each strain were used for quantitative analysis (Data are mean  $\pm$  SD (n>10)).

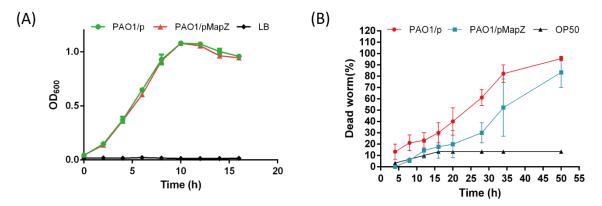



Figure S2. Overexpression of MapZ attenuated virulence in fast killing of the nematode *C. elegans*. (A) Growth curves of *P. aeruginosa* PAO1 and MapZ overexpression mutant in LB medium. The data are presented as the means  $\pm$  standard errors from three independent experiments. (B) Overexpression of MapZ negatively impact virulence in fast-killing *C. elegans*. The data are presented as the means $\pm$  standard errors from three independent experiments.