IL1RL1 is dynamically expressed on *Cbfb-MYH11*⁺ leukemia stem cells and promotes cell survival

Yiqian Wang¹, Lisa Richter¹, Michelle Becker¹, Catalina Amador², and R. Katherine Hyde^{1*}

Supplemental Figure S1. The expression of KIT after plpC treatment.

(A) Representative FACS plots showing the expression of KIT and IL1RL1 at the indicated time points after the induction of *Cbfb-MYH11*. (B) Bar graph showing the percentages (%) of KIT⁺ cells at the indicated time points. N \geq 3.

Supplemental Figure S2. Expression of *Cbfb-MYH11* after plpC treatment.

Bar graph showing the qRT-PCR analysis of mRNA expression of *Cbfb-MYH11* allele 4, 7 and 10 days after induction of *Cbfb-MYH11* by plpC. N=3; **P*<.05.

CSF2RB⁻

CSF2RB⁺

Supplemental Figure S3. Methylcellulose colonies derived from different sub-populations do not have difference in morphology.

Representative photomicrographs of methylcellulose colonies derived from CSF2RB⁻ and CSF2RB⁺ cells after 14 days of culture are shown. Scale bar:100 µm.

Supplemental Figure S4. Sorting strategy and post-sort analysis of each sub-population.

(A) Mouse leukemia cells were stained with anti-CSF2RB, anti-IL1RL1, and anti-KIT antibodies. Each sub-population was then sorted on a BD FACS Aria. Dot plots quantitate percentages of cells shown in each gate. (B) Representative FACS plots of post-sort analysis of the sorted sub-populations. The purity was greater than 90%. Data are from one of the three independent experiments.

Supplemental Figure S5. Leukemia cells from each of the sorted sub-populations have similar appearances.

Representative Wright-Giemsa staining of peripheral blood smears from mice transplanted with the indicated LSC sub-populations. Scale bar: 20 µm.

Supplemental Figure S6. GFP expression in each sub-population.

Bar graph showing percentage of GFP⁺ cells in each sub-population as indicated. N=2.

Supplemental Figure S7. Most normal spleen cells are CSF2RB⁻ IL1RL1⁻ KIT⁻.

(A) Representative IL1RL1 and KIT staining of CSF2RB⁻ cells from wild-type mice. (B) Bar graph showing IL1RL1 and KIT expression in CSF2RB⁻ population. N=3; ****P<.0001.

Supplemental Figure S8. Cells from each sub-population do not differ in the expression of *Cbfb-MYH11*.

Bar graph showing the fold changes in mRNA expression of *Cbfb-MYH11* in leukemia cells from *Cbfb-MYH11^{+/56M}*, *Mx1-Cre*⁺ mice compared to

the relative expression level in CSF2RB⁻ IL1RL1⁻ KIT⁺ population. Relative expression levels were normalized to that of Actb. N=2.

Supplemental Figure S9. Cells from each sub-population have similar viability *in vitro*.

Bar graph showing relative viability of each sorted population after culture on OP-9 cells for 24 hours compared to time

zero (0 hour). N=3.

Supplemental Figure S10. IL-33-induced colony-forming ability is dependent on IL1RL1.

Bar graph showing the relative number of colonies observed from equal numbers of Cbfb-

MYH11^{+/56M}, Mx1-Cre⁺ leukemia cells cultured in the presence of IL-33 (100 ng/mL) or in

combination with an anti-IL1RL1 antibody (1µg/mL) in methylcellulose. Colonies were scored on

day 14. N=3. **P*<.05

Supplemental Figure S11. Full size images of western blots shown in Fig. 6E.

IL-33

The cropped area (in red) corresponding to that shown in the main figure. Protein lysates were loaded onto 4-12% Bis-Tris gel and transferred to PVDF membrane. Membranes were cut into 2 fragments and probed using antibodies against Traf-1 (upper right) or Bcl-xl (upper left), stripped and reprobed for Mcl-1 (lower left), and stripped again and reprobed for GAPDH (lower right). * non-specific band at ~64 kDa.

Statistical differences between sub populations	P value (Log-rank test)		
Statistical differences between sub-populations	100 cells	1,000 cells	10,000 cells
CSF2RB⁻ IL1RL1⁻ KIT⁺ vs. CSF2RB⁻ IL1RL1⁺ KIT⁺	0.7332	0.0547	0.0073 **
CSF2RB ⁻ IL1RL1 ⁻ KIT ⁺ vs. CSF2RB ⁻ IL1RL1 ⁻ KIT ⁻	0.0652	0.0625	0.2336
CSF2RB ⁻ IL1RL1 ⁻ KIT ⁺ vs. CSF2RB ⁻ IL1RL1 ⁺ KIT ⁻	0.4913	0.3272	0.1997
CSF2RB ⁻ IL1RL1 ⁻ KIT ⁺ vs. CSF2RB ⁺	0.0652	0.6058	0.8843
CSF2RB ⁻ IL1RL1 ⁺ KIT ⁺ vs. CSF2RB ⁻ IL1RL1 ⁻ KIT ⁻ 0.0272* 0.0		0.0008***	<0.0001****
CSF2RB ⁻ IL1RL1 ⁺ KIT ⁺ vs. CSF2RB ⁻ IL1RL1 ⁺ KIT ⁻	0.2287	0.3807	0.1262
CSF2RB ⁻ IL1RL1 ⁺ KIT ⁺ vs. CSF2RB ⁺	0.0272*	0.0234*	0.0075**
CSF2RB ⁻ IL1RL1 ⁻ KIT ⁻ vs. CSF2RB ⁻ IL1RL1 ⁺ KIT ⁻	0.1451	0.0101*	0.0257*
CSF2RB ⁻ IL1RL1 ⁻ KIT ⁻ vs. CSF2RB ⁺	>0.9999	0.1451	0.255
CSF2RB ⁻ IL1RL1 ⁺ KIT ⁻ vs. CSF2RB ⁺	0.1451	0.1369	0.1737

Supplemental Table S1. Differential survival in mice transplanted with different LSC sub-populations.

Survival differences between groups were compared using the log-rank (Mantle-Cox) test. P-values for pairwise

comparisons of LSC sub-populations were indicated. N=9; **P* <.05; ***P* <.01; ****P*<.00; *****P*<.0001.

Gene	Primer	Sequence (5'- 3')	
Bcl-xl ²⁹	forward	AAC ATC CCA GCT TCA CAT AAC CCC	
	reverse	GCG ACC CCA GTT TAC TCC ATC C	
Bcl-2 ²⁹	forward	GTC CCG CCT CTT CAC CTT TCA G	
	reverse	GAT TCT GGT GTT TCC CCG TTG G	
TRAF-1 ²⁹	forward	GCA GTC ACC CAA GCA CGC CTA C	
	reverse	AGC TGG TTC TGT CAG GAG ACA CCC	
TRAF-2 ²⁹	forward	CTA CTT GAA TGG CGA CGG CAC TG	
	reverse	ACT GCA ACA GAG CAT CAT TGG GG	
McI-1 ⁴¹	forward	GGT GCC TTT GTG GCC AAA CAC TTA	
	reverse	ACC CAT CCC AGC CTC TTT GTT TGA	
Actb ⁴²	forward	CCC TAA GGC CAA CCG TGA A	
	reverse	CAG CCT GGA TGG CTA CGT ACA	
Cbfb-MYH11	forward	GAG AAG GAC ACG CGA ATT TGA AGA TAG	
	reverse	CGT GAA GCT GTC TCT GCA GTT G	
Runx1 ⁴²	forward	CCA GCA AGC TGA GGA GCG GCG	
	reverse	TGA CGG TGA CCA GAG TG	

Supplemental Table S2. Mouse Primers for qRT-PCR.