Supplementary Information

Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites

Xiang Yu et al

Supplementary Table 1. Catalytic performances for photocatalytic CH₄ conversion measured

Spectral range of irradiation (nm)	Formation rate (µmol g ⁻¹ h ⁻¹)		Irradiance (mW	Formation rate to
	CO	CO ₂	cm ²)	μmol g ⁻¹ h ⁻¹ mW ⁻¹ cm ²)
>382	11	5.9	94	0.12
280-400	208	48	38	5.5

under irradiation at different spectral ranges.

Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH₄ 0.3 MPa, Air 0.1 MPa; irradiation time, 6h; light source, Hamamatsu LC8-06 Hg-Xe stabilized irradiation lamps with a spectral irradiance in the range 240-600; Cut-off filter :Vis-IR $\lambda > 382$ nm; UV light, $\lambda = 280-400$ nm.

Supplementary Figure 1. (a) CO and CO₂ production rates in the CH₄ oxidation and (b) CO₂ production rate in the CO oxidation over different catalysts. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, (a) CH₄ 0.3 MPa, Air 0.1 MPa; (b) CO 0.3 MPa, Air 0.1 MPa; irradiation time, 6h.

We have conducted a comparative study of both CH₄ and CO photo-oxidation over the HPW-TiO₂ composites containing Cu, Zn, Ag and Pd. The relevant tests were carried out respectively in methane and air (**Supplementary Figure 1a**) and in CO and air (**Supplementary Figure 1b**). Interestingly, the rate of CO₂ production increases in the same sequence (Cu-HPW/TiO₂ < Zn-HPW/TiO₂ < Ag-HPW/TiO₂ < Pd-HPW/TiO₂) in both methane and carbon monoxide oxidation reactions.

Supplementary Figure 2. Carbon monoxide and carbon dioxide formation rate over nanocomposites and mechanical mixtures. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH₄ 0.3 MPa, Air 0.1 MPa; irradiation time, 6h.

Supplementary Figure 3. XRD patterns of different nanocomposites catalysts. (**a**) 2 θ range: 5-80° and (**b**) 2 θ range 24-36°.

Supplementary Figure 4. FTIR spectra of the Zn-HPW/TiO₂ catalyst before and after adsorption of pyridine and sample evacuation at 200°C.

Supplementary Figure 5. (a). CO and CO₂ concentrations in the reactor as function of time on stream on Zn-HPW-TiO₂ catalyst; (b) CO and CO₂ selectivities as functions of methane conversion. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH₄ 0.3 MPa, Air 0.1 MPa; irradiation time, 50h.

Supplementary Figure 6. XPS (**a**) and Zn $L_3M_{4.5}M_{4.5}$ Auger spectra, (**b**) of Zn-HPW/TiO₂ catalysts in the regions of Zn 2p. (1). fresh catalyst, (2). treatment in 0.3 MPa CH₄ under 400 W Xe lamp for 12h, (3). regeneration in 0.1 MPa air under 400 W Xe lamp for 12h.

The positions of all Auger peaks were aligned by the C 1s peak, and a Shirley background was subtracted. The Zn Auger peak from Zn-HPW/TiO₂ catalysts in **Supplementary Figure 6b** is normalized to the peak height of the ZnO Auger feature.

Supplementary Figure 7. FTIR spectra of gaseous phase during methane photocatalytic oxidation over the Zn-HPW/TiO₂ catalyst as a function of reaction time.

IR analysis of the gaseous phase (**Supplementary Figure 7**) clearly shows the presence of methane in the IR cell at the initial periods of the reaction (CH rotation- stretching and rotation-bending bands at around 3020 cm⁻¹ and 1300 cm⁻¹ respectively). At longer reaction time, gaseous carbon monoxide was identified by rotation- stretching bands at 2150 cm⁻¹. In agreement with the results of photocatalytic tests, the intensity of the carbon monoxide IR band at 2150 cm⁻¹ increases with the reaction time.

Supplementary Figure 8. IR spectra of adsorbed DMC during exposure to light (a) and gas phase analysis (b).

(The bands at 1742, 1460, and 1313 cm⁻¹ are attributable to C=O stretching, $v_{as}(CO_3)$ and $v_s(CO_3)$ of O–C–O stretching modes of carbonate species associated with the Zn cations.

This assignment is supported by the work of DMC adsorption over cationic zeolites [*T. Beutel, J. Chem. Soc., Faraday Trans., 1998,94, 985-993; Y. Zhang, A. T. Bell, Journal of Catalysis 255 (2008)* 153–161]. The bands at 1208 and 1083 cm⁻¹ might be assigned to v(C-O) stretching bands in carbonate and methoxy groups, respectively.)

Supplementary Figure 9. Rates of production of CO and CO₂ during decomposition of DMC over the Zn-HPW/TiO₂ catalyst .Reaction condition: Catalyst 0.1 g, Ar 0.2 MPa; DMC 2 mL; 6 h in dark or under light.

Supplementary Figure 10. Mass spectrum in isotopic ${}^{13}CO_2$ labeling experiments (normalized); black = before and red = after photocatalytic reaction.

Supplementary Figure 10 presents mass spectrum recorded before and after photocatalytic reaction. The experiments were conducted under a ${}^{12}CH_4$, O₂ and ${}^{13}CO_2$ atmosphere (0.3 MPa of CH₄, 0.1 MPa of O₂ and 1% isotopic ${}^{13}CO_2$).

To facilitate reading, signals have been normalized to the maximum intensity of peak m/z=45. Before reaction (black curve), m/z=45 corresponding to ${}^{13}CO_2$ is clearly visible together with signal at m/z=29 corresponding to ${}^{13}CO_2$ cracking to ${}^{13}CO^+$ fragments in the mass spectrometer ion source. Peaks at m/z=28 represents residual N₂ in the mass spectrometer vacuum chamber or CO species generated by the ion source. m/z=44 represents residual CO₂ in the vacuum chamber and ${}^{12}CO_2$ impurity contained in the ${}^{13}CO_2$ cylinder. After reaction (red curve), m/z=28 and m/z=44 signals increase due to the production of ${}^{12}CO$ and ${}^{12}CO_2$ from the photocatalytic oxidation of methane. m/z=29 signal increases due to the production of ${}^{13}CO$. Isotope labelling therefore suggests that some of added ${}^{13}CO_2$ is converted to ${}^{13}CO$.

Supplementary Figure 11. Schema of photocatalytic reactor.