Supplementary Information

Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites

Xiang Yu et al

Supplementary Table 1. Catalytic performances for photocatalytic CH₄ conversion measured

under irradiation at different spectral ranges.

Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH₄ 0.3 MPa, Air 0.1 MPa; irradiation time, 6h; light source, Hamamatsu LC8-06 Hg-Xe stabilized irradiation lamps with a spectral irradiance in the range 240-600; Cut-off filter :Vis-IR λ > 382 nm; UV light, λ = 280-400 nm.

Supplementary Figure 1. (a) CO and CO_2 production rates in the CH₄ oxidation and (**b**) CO_2 production rate in the CO oxidation over different catalysts. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, (a) CH4 0.3 MPa, Air 0.1 MPa; (b) CO 0.3 MPa, Air 0.1 MPa; irradiation time, 6h.

We have conducted a comparative study of both CH₄ and CO photo-oxidation over the HPW-TiO2 composites containing Cu, Zn, Ag and Pd. The relevant tests were carried out respectively in methane and air (**Supplementary Figure 1a**) and in CO and air (**Supplementary Figure 1b**). Interestingly, the rate of CO_2 production increases in the same sequence (Cu-HPW/TiO₂ < Zn- $HPW/TiO₂ <$ Ag-HPW/TiO₂ < Pd-HPW/TiO₂) in both methane and carbon monoxide oxidation reactions.

Supplementary Figure 2. Carbon monoxide and carbon dioxide formation rate over nanocomposites and mechanical mixtures. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH4 0.3 MPa, Air 0.1 MPa; irradiation time, 6h.

Supplementary Figure 3. XRD patterns of different nanocomposites catalysts. (**a**) 2 θ range: 5- 80° and (**b**) 2 θ range 24-36°.

Supplementary Figure 4. FTIR spectra of the Zn-HPW/TiO2 catalyst before and after adsorption of pyridine and sample evacuation at 200°C.

Supplementary Figure 5. (a). CO and CO₂ concentrations in the reactor as function of time on stream on Zn-HPW-TiO₂ catalyst; (**b**) CO and CO₂ selectivities as functions of methane conversion. Reaction conditions: catalyst, 0.1 g; Gas phase pressure, CH4 0.3 MPa, Air 0.1 MPa; irradiation time, 50h.

Supplementary Figure 6. XPS (a) and Zn $L_3M_{4.5}M_{4.5}$ Auger spectra, (b) of Zn-HPW/TiO₂ catalysts in the regions of Zn 2p. (1). fresh catalyst, (2). treatment in 0.3 MPa CH4 under 400 W Xe lamp for 12h, (3). regeneration in 0.1 MPa air under 400 W Xe lamp for 12h.

The positions of all Auger peaks were aligned by the C 1s peak, and a Shirley background was subtracted. The Zn Auger peak from Zn-HPW/TiO₂ catalysts in **Supplementary Figure 6b** is normalized to the peak height of the ZnO Auger feature.

Supplementary Figure 7. FTIR spectra of gaseous phase during methane photocatalytic oxidation over the Zn-HPW/TiO₂ catalyst as a function of reaction time.

IR analysis of the gaseous phase (**Supplementary Figure 7**) clearly shows the presence of methane in the IR cell at the initial periods of the reaction (CH rotation- stretching and rotationbending bands at around 3020 cm⁻¹ and 1300 cm⁻¹ respectively). At longer reaction time, gaseous carbon monoxide was identified by rotation- stretching bands at 2150 cm^{-1} . In agreement with the results of photocatalytic tests, the intensity of the carbon monoxide IR band at 2150 cm-1 increases with the reaction time.

Supplementary Figure 8. IR spectra of adsorbed DMC during exposure to light (**a**) and gas phase analysis (**b**).

(The bands at 1742, 1460, and 1313 cm⁻¹ are attributable to C=O stretching, $v_{as}(CO_3)$ and $v_s(CO_3)$) of O–C–O stretching modes of carbonate species associated with the Zn cations.

This assignment is supported by the work of DMC adsorption over cationic zeolites [*T. Beutel, J. Chem. Soc., Faraday Trans., 1998,94, 985-993; Y. Zhang, A. T. Bell, Journal of Catalysis 255 (2008)* 153–161]. The bands at 1208 and 1083 cm⁻¹ might be assigned to v(C-O) stretching bands in carbonate and methoxy groups, respectively.)

Supplementary Figure 9. Rates of production of CO and CO₂ during decomposition of DMC over the Zn-HPW/TiO₂ catalyst .Reaction condition: Catalyst 0.1 g, Ar 0.2 MPa; DMC 2 mL; 6 h in dark or under light.

Supplementary Figure 10. Mass spectrum in isotopic ${}^{13}CO_2$ labeling experiments (normalized); $black = before$ and $red = after photocatalytic reaction$.

Supplementary Figure 10 presents mass spectrum recorded before and after photocatalytic reaction. The experiments were conducted under a ¹²CH₄, O₂ and ¹³CO₂ atmosphere (0.3 MPa of CH₄, 0.1 MPa of O_2 and 1% isotopic ¹³CO₂).

To facilitate reading, signals have been normalized to the maximum intensity of peak m/z=45. Before reaction (black curve), $m/z=45$ corresponding to ¹³CO₂ is clearly visible together with signal at m/z=29 corresponding to ¹³CO₂ cracking to ¹³CO⁺ fragments in the mass spectrometer ion source. Peaks at $m/z=28$ represents residual N_2 in the mass spectrometer vacuum chamber or CO species generated by the ion source. m/z=44 represents residual CO_2 in the vacuum chamber and ¹²CO₂ impurity contained in the ¹³CO₂ cylinder. After reaction (red curve), $m/z=28$ and $m/z=44$ signals increase due to the production of ${}^{12}CO$ and ${}^{12}CO_2$ from the photocatalytic oxidation of methane. $m/z=29$ signal increases due to the production of ¹³CO. Isotope labelling therefore suggests that some of added ${}^{13}CO_2$ is converted to ${}^{13}CO$.

Supplementary Figure 11. Schema of photocatalytic reactor.