
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have submitted a study which uses PET and fMRI data recorded from human subjects. A 
“supply” factor is calculated from PET data and a “demand” factor from fMRI. These factors are then 
transformed with sinusoidal transformation to provide two new factors, “power” (which 
corresponds roughly to correlation or dependence between supply and demand) and “cost” (which 
corresponds roughly to anti-correlation or independence between supply and demand). These 
factors are then statistically analyzed within healthy controls to derive resting state networks. 
Following this, analysis is done under acute or chronic alcohol exposure to show differences in cost 
and power. Finally, demand (but not supply, cost or power) is shown to change under visual 
stimulation.  

 

The study is generally well-written and its use of multimodal data to examine alcoholism is very 
interesting. Unfortunately, it is problematic in that the terms used are confusing, the derived metrics 
are poorly justified, and independent verification was generally not done. To better clarify these 
criticisms:  

 

Confusing terms:  

 

1. Prior studies seem to refer to “supply” as CMRglc and “demand” as lFCD. I would recommend 
using the original terms. Regarding supply, this study itself acknowledges aerobic glycolysis which 
(when the “glycolytic index” measure is examined) shows that oxygen metabolism and glucose 
metabolism can be very different. Regarding demand, some of the authors’ prior work has shown 
that lFCD does not cover every form of fluctuation measurable with resting state fMRI in its 
relationship to CMRglc.  

 

2. “Power” already has a commonly used meaning in time series, and as this study uses fMRI time 
series to calculate lFCD, its use here is confusing. “Cost” has clearer meaning here (than supply, 
demand, or power) but ignores that glucose may be being used for purposes other than lFCD, 
causing the change in “cost.”  

 

Poor justification of derived metrics:  

 



3. Prior studies by some of the authors and others well-characterized both similarities and 
differences between CMRglc and lFCD (and other fMRI measures). What is gained by the 
transformation from supply/demand to cost/power? Most tests are only done on supply/demand 
but not cost/power. Do cost/power provide fundamentally different information? They are further 
derived and thus harder to conceptualize measures, for this reason the authors need to justify what 
they provide that the less derived measures do not.  

 

4. Why is the transformation sinusoidal instead of a projection or coordinate transformation? This 
seems to create a gap in the cloud distribution (Figure 1D/F). Is this desirable? Why? Why does it 
then look like a rotation in 2D space (Figure 2A/B), which hypothetically shouldn’t matter for 
clustering?  

 

5. The major focus of the study is power/cost, so why is the stimulation data for which PET appear to 
be unavailable used? If power and cost provide information supply and demand do not, then this 
isn’t comparable as power and cost cannot be calculated without supply data.  

 

Independent verification not done:  

 

6. This is a multimodal study and, while prior work has examined the effect of PET and fMRI being 
recorded through very different methods, this study calculates new measures from them. When new 
measures are derived, small portions of the variance in source data could be amplified. Thus it is 
critical to validate that the new measures are not amplifying noise. One area in particular is the 
visual cortex which appears strongly in this study with cost/power but can often have good signal in 
PET but poor signal in fMRI. At a minimum, the cost/power calculation and SPM and k-means 
clustering (same number of clusters) should be done on SNR maps for PET and fMRI to see if the SNR 
variation between PET and fMRI causes some of the clusters.  

 

7. Cost and power would be more justifiable (versus the existing measures of CMRglc and lFCD) if 
they were independently verified where existing measures were not. E.g. the authors could use EEG 
to measure demand and MRS to measure supply in only two widely separated brain regions with 
high cost/power deviation. There are many other possible ways to test this, but demonstration that 
new metrics have validity outside of combined PET/fMRI would go a long way to validating them.  

 

8. Voxel-based morphometry (VBM) is commonly used in alcohol use and alcoholism. The relative 
gray matter/white matter levels are thus of suspicion when comparing PET and fMRI modalities. 
(The authors limit their analysis to gray matter, but VBM applies within gray matter alone.) 
Comparing the cost/power significance versus VBM significance would also help validate these 



measures as something novel. (Though if VBM differences and cost/power differences are too 
similar it is unknown whether activity is different due to different anatomy, or if anatomy creates an 
artifact which alters activity measurement.)  

 

The noted problems are addressable but require a substantial rewrite with substantial new data 
analysis.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors acquired BOLD-fMRI and FDG-PET data from healthy subjects and devised a novel, 
integrated measure of power/cost to identify regions with high/low fMRI activity at high levels of 
energy utilization. They found distinct power-cost distributions across the cortex of healthy subjects 
with characteristic changes in another cohort of alcohol drinkers.  

 

While I found it highly interesting to gain novel insights into human brain organization from 
multimodal imaging, I have major concerns with the methodology of defining this novel measure of 
power/cost and was less convinced by the extended view about brain organization derived from the 
novel approach.  

 

The measure of lFCD is a tightly defined parameter to capture neuronal activity from the BOLD-fMRI 
signal. It captures the synchrony of BOLD-signal fluctuations between a specific voxel and voxels in 
close neighborhood at a particular threshold C which is then log-transformed. In order to relate 
fMRI-derived neuronal activity to absolute glucose metabolism, I would suggest to offer a broader 
perspective on BOLD-measures. How do parameters used in this study such as thresholding, log-
transformation, pearson-correlation instead of signaling amplitude impact on the relation of lFCD to 
CMRglc and do other parameters such as structural distance or cortical thickness possibly relate to 
the regional distribution of power/cost? It is important to note that the novel power/cost measure 
was only derived from N=17 healthy subjects of a total of N=75. From those 17 subjects, was the PET 
data always related to the fMRI from the same day or possibly from the second MRI scan?  

 

The authors report a strong linear correlation between loglFCD and CMRglc (Suppl Fig 1) which I 
found not interpretable with respect to the raw data presented in Fig 1B of the main manuscript. 
The heat plot in Fig 1B rather suggests a very confined and heavy aggregation of voxels towards the 
lower left end of the graph with almost no variance along the loglFCD axis. With respect to the slope 
in Suppl Fig 1 this linear correlation is hardly justified when plotting onto the heatmap data. 



Moreover, I did not understand how the regular/circular distribution of power/cost from the model 
(Fig 1E) would fit onto the heavy tailed voxel distribution in Fig 1B. It seems that >90% of all voxels 
would fall into the low power-quadrant making it hard to interpret whole cortex data. Together, this 
critique is also reflected by the fact that the novel measure of power/cost (Fig 1 G/H) reveals an 
almost identical spatial distribution as CMRglc (Fig 1C) alone which indeed has strongest variance in 
Fig 1B. Several voxels seem to have highest relative levels of both power and cost (lateral prefrontal 
regions). Doesn’t that contradict each other?  

 

Overall, I found the research question and concept of integrating both imaging modalities very 
interesting. However, I don’t see the major claims supported by the data and would suggest a more 
detailed derivation of the complex measures power/cost from the fMRI data.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

In this manuscript, the authors have defined novels measures for characterizing coupling between 
glucose metabolism (measures with PET imaging) and resting state connectivity (measured with 
fMRI). They came up with two measures; power (extent of high activity and energy utilization) and 
cost (the extent to which energy utilization exceeds activity), and showed that different regions of 
the brain has different ratios of these measures. They also showed that these measures may be 
altered in heavy alcohol drinkers, and with acute alcohol administration. While this is an interesting 
concept, questions remain about how robust and reliable these measures are, whether they are 
highly variable between individuals, or whether they are affected by limitations of the technology 
itself (e.g. scanner-related issues showing stronger signal to noise ratio (SNR) in some regions 
compared to others.  

 

 

It strikes me that areas of high power may in part be conflated with areas of the brain that are more 
easily imaged by fMRI (e.g. visual areas and default-mode), whereas areas of low power may be 
harder to image due to signal dropout. Have the authors considered this, or run any analyses of 
whether SNR maps were significantly correlated with power/cost in these areas?  

 

I am not sure of the purpose of the the first 2 cohorts (NIH1, n = 28, and NIH, n = 7). Did the authors 
use these two cohorts to assess test-retest reliability? I did not see any data indicating that cohort 2 



was used to verify the results of cohort 1. Were the data combined from these two cohorts? Please 
clarify. Similarly, how variable are these measures (cost/power) between individuals?  

 

The alcohol cohort is interesting, yet needs more explanation. Were the power/cost measures 
sensitive to the level of alcohol drinking, or the level of intoxication, in participants? Do the authors 
have any speculations about how these measures would lead to the functional outcomes 
experienced by long-term, heavy drinkers? Would the authors expect an association between 
power/cost measures and use of alternative sources of energy during intoxication?  

 

It would be interesting to show side-by-side maps of (1) glucose metabolism (PET), (2) resting-state 
activity (fMRI) and (3) cost/power maps in order to directly visualize how these measures relate to 
one another. Showing these in the control cohorts and the alcohol cohort would help the reader 
visualize the potential utility of these measures for clinical purposes. 



Reviewers' comments: 

 

 Reviewer #1 (Remarks to the Author): 

 

 The authors have submitted a study which uses PET and fMRI data recorded from human subjects. A 
“supply” factor is calculated from PET data and a “demand” factor from fMRI. These factors are then 
transformed with sinusoidal transformation to provide two new factors, “power” (which corresponds 
roughly to correlation or dependence between supply and demand) and “cost” (which corresponds 
roughly to anti-correlation or independence between supply and demand). These factors are then 
statistically analyzed within healthy controls to derive resting state networks. Following this, analysis is 
done under acute or chronic alcohol exposure to show differences in cost and power. Finally, demand 
(but not supply, cost or power) is shown to change under visual stimulation. 

 

 The study is generally well-written and its use of multimodal data to examine alcoholism is very 
interesting. Unfortunately, it is problematic in that the terms used are confusing, the derived metrics are 
poorly justified, and independent verification was generally not done. To better clarify these criticisms: 

We thank the reviewer for supporting our work and the insightful and constructive comments. 

 Confusing terms: 

 

1. Prior studies seem to refer to “supply” as CMRglc and “demand” as lFCD. I would recommend using 
the original terms. Regarding supply, this study itself acknowledges aerobic glycolysis which (when the 
“glycolytic index” measure is examined) shows that oxygen metabolism and glucose metabolism can be 
very different. Regarding demand, some of the authors’ prior work has shown that lFCD does not cover 
every form of fluctuation measurable with resting state fMRI in its relationship to CMRglc. 

We agree with the reviewer that CMRglc and lFCD do not fully capture all supply and demand processes 
in the brain. In the revised manuscript, when specifically referring to synchronous BOLD fluctuations and 
cerebral glucose metabolism, we use “lFCD” and “CMRglc”, respectively. We use “demand” and “supply” 
terms only for referring to generic demand and supply processes in the brain. In addition, we have 
explicitly highlighted that lFCD does not capture all forms of measurable resting state fluctuations. For 
example: 

“We used this characterization of the brain’s CMRglc-lFCD dynamics (indexing important components of 
neuronal activity demand and metabolic supply) to classify the brain into major segments based on 
rPWR and rCST.” 

“Here we used CMRglc (indexing brain’s main energy supply) and lFCD (indexing aspects of neuroglial 
activity) and defined novel measures of rPWR (extent of concurrently high CMRglc and lFCD) and rCST 
(the extent to which CMRglc leads lFCD) to study the variations in the coupling between CMRglc-lFCD 
across brain regions.” 



 “Specifically, in a two-dimensional map of (mean-variance normalized) CMRglc-lFCD (Fig. 2e) we 
performed…” 

“While some metrics focus on regional synchrony in slow (< 0.1 Hz) BOLD fluctuations as a marker of 
neuronal activity (e.g., lFCD1 or regional homogeneity measures2), others focus on the amplitude of slow 
fluctuations (e.g., ALFF or fALFF) during resting state3, 4. Synchrony-based measures only capture aspects 
of resting-state activity, however, synchrony-based measures and amplitude-based measures have 
shown good correspondence at rest5 and between different subject groups6.” 

 

 2. “Power” already has a commonly used meaning in time series, and as this study uses fMRI time series 
to calculate lFCD, its use here is confusing. “Cost” has clearer meaning here (than supply, demand, or 
power) but ignores that glucose may be being used for purposes other than lFCD, causing the change in 
“cost.” 

Following the reviewer’s advice, we renamed these metrics to highlight that they are relative and now 
use distinct acronyms (i.e., rPWR and rCST) throughout the text.  

“To characterize this coupling, here we defined novel measures of relative power (rPWR, extent of 
concurrently high activity and energy utilization) and relative cost (rCST, extent that energy utilization 
exceeds activity).” 

We distinguished rPWR from its alternative uses in the literature. We also discuss that these metrics are 
relevant here for when CMRglu and lFCD measures are used to represent supply/demand in the brain 
(please also see response to comment 7 for validity of rPWR/rCST using alterative metrics/modalities). 
rPWR was inspired by the definition of power (P) in electrical circuits (but rPWR does not represent P), 
were instantaneous P = VI, where “V” represents electrical potential (analogous to activity demand) and 
“I” represents electrical current (analogous to metabolic supply). 

“It is worth noting that rPWR and rCST values are relative measures (to the rest of the brain) with the 
assumption that CMRglc indexes glucose energy supply (among other substrates) and that synchronous 
regional fluctuations in the BOLD signal are proportional to local activity, where each capture a fraction 
of energy expenditure and neuroglial activity, respectively.”  

“rPWR should not be confused with other uses of term “power” in the literature such as power in 
electrical circuits (though they bare some similarity), statistical power, and power in time series.” 

We agree with the reviewer that the definition of rCST does not preclude uses of glucose for purposes 
other than lFCD. This is clarified in the discussion. 

“Higher rCST could be attributed to use of less efficient (but fast) glucose metabolic pathways (e.g., 
aerobic glycolysis)7, 8, or even a higher glia to neuron ratio in the neo cortex9. In fact, our estimate of 
regional rCST (Fig. 2h) had a good correspondence with previously reported distribution of aerobic 
glycolysis (accounting for about 10% of glucose metabolized by the adult brain)7, which highlights dorsal-
medial frontal, precuneus, posterior cingulate and lateral frontal regions (see Supplementary Table 2).” 



“Lower rCST in regions such as cerebellum (Fig. 2h and Supplementary Table 2) could be attributed to 
higher regional proportion of oxidative phosphorylation to aerobic glycolysis7 or use of energy sources 
other than glucose such as ketone bodies.” 

 

Poor justification of derived metrics: 

 

 3. Prior studies by some of the authors and others well-characterized both similarities and differences 
between CMRglc and lFCD (and other fMRI measures). What is gained by the transformation from 
supply/demand to cost/power? Most tests are only done on supply/demand but not cost/power. Do 
cost/power provide fundamentally different information? They are further derived and thus harder to 
conceptualize measures, for this reason the authors need to justify what they provide that the less 
derived measures do not. 

We thank the reviewer for the important suggestion. We have highlighted in the text the utility of the 
new measures of rCST and rPWR.  

“Notably, variations in how energy is supplied (and metabolized) in different brain regions (spatially)8 
and under different stimulation and physiological conditions (temporally)10 are of high relevance in our 
understanding of brain physiology11, development8, cognitive abilities12, and neuropsychiatric 
disorders13, 14. However, less attention has been paid to regional variations in metabolic supply (e.g., 
glucose metabolism) while accounting for the underlying activity. The correspondence between 
neuroglial activity and glucose metabolism is important for characterizing functional specialization of 
brain networks, yet this correspondence has not been well quantified in the literature.” 

“The associations between activity demand and metabolic supply in the brain are important for studying 
brain function8, 11, 12 and diseases13, 14, yet these associations have not been well quantified in the 
literature. In principle, energy demand and supply in the brain are matched (with certain exceptions 
such as heat15 or lactate16 production). However, our measures of activity demand (i.e., lFCD) and 
metabolic supply (i.e., CMRglc) only capture specific aspects of demand and supply processes in the 
brain, making their mismatch not only possible but also informative. Conditions such as exposure to 
alcohol17 or sleep10 are known to impact brain glucose metabolism due to the use of alternative source 
of energy (e.g., acetate) or changes in active glucose metabolic pathways (aerobic glycolysis versus 
oxidative metabolism). However, without accounting for underlying brain activity, changes in glucose 
metabolism are hard to interpret, especially when measures of activity and energy metabolism are 
studied in isolation. To quantify the relative changes in the association between two modalities, here we 
proposed two novel metrics of rPWR and rCST that are unit-free and are generalizable to any measures 
of brain activity and energy supply. These metrics quantify how well two modalities that measure 
aspects of activity demand (such as lFCD) and aspects metabolic supply (such as CMRglc) are 
concurrently high or low (i.e., rPWR) and to what extent one exceeds the other (i.e., rCST) relative to the 
rest of the brain. From another perspective, rPWR could be thought of as an index of loudness with 
respect to any of the two modalities, while rCST is an index of mismatch of the two modalities in each 
data point. Since rPWR and rCST are relative, they are not sensitive to global changes in any of the two 
modalities (e.g., levels of glucose metabolism as in acute or chronic alcohol exposure, Fig. 5), and could 



be useful to map and track the associations between specific markers of activity demand and metabolic 
supply under different physiological (e.g., sleep), pharmacological (e.g., alcohol intoxication), or disease 
(e.g., AD) states. Analysis of individual differences showed a clear segregation of different brain 
networks based on rPWR and rCST (Fig. 3f) relative to lFCD and CRMglc (Fig. 3c, also see Supplementary 
Table 8). We found that rPWR and rCST are robust and generalizable to other measures of activity 
demand and metabolic supply (e.g., fALFF and CBF, Supplementary Figs. 4, 5) and do not appear to 
amplify the effects of measurement noise on lFCD and CMRglc (Supplementary Tables 11, 12). Analysis 
of whole-brain distribution of rPWR and rCST characterized alterations in the lFCD-CMRglc coupling due 
to acute alcohol exposure and showed that prolonged alcohol use may shift the brain toward less 
efficient energetic states. More importantly, we found that rPWR and rCST (relative to lFCD and CMRglc) 
were significantly and distinctly related to behavioral effects of acute and chronic alcohol, further 
supporting their utility for capturing meaningful (and possibly unique) aspects of brain performance. 
Thus, we propose that rPWR and rCST as new multimodal metrics to study the energetic economy of 
brain networks18 throughout the lifespan and to monitor the effects of drugs and diseases on the human 
brain.” 

 

 4. Why is the transformation sinusoidal instead of a projection or coordinate transformation? This seems 
to create a gap in the cloud distribution (Figure 1D/F). Is this desirable? Why? Why does it then look like 
a rotation in 2D space (Figure 2A/B), which hypothetically shouldn’t matter for clustering? 

We have now clarified this confusion in the text. The rPWR/rCST transformation is indeed a 45-degree 
rotation of axes in the 2D space of mean-variance normalized CMRglc-lFCD axes. This has also been 
described in Fig. 4b, c (former Fig. 2a, b) where the segmentations are depicted along the rCST-rPWR 
and CMRglu-lFCD axes. The formula presented in the Methods show this effect in a polar coordinate 
system which mirrors our implementation, but now we also include the cartesian equivalent of this 
transformation. It is important to note that the plots in Fig. 2d/f (former Fig. 1d/f) only highlight voxels 
which contribute the most to rPWR variability (now Fig. 2d) and to rCST variability (now Fig. 2f). 
“Highlighting” was only performed for visual demonstration by multiplying the radius of each voxel (in 
polar coordinate system) by its corresponding absolute rPWR (Fig. 2d) or absolute rCST (Fig. 2f). This is 
now clarified in the figure caption. It is noteworthy that without mean-variance normalization of 
CMRglc-lFCD (which is done in the process of rPWR/rCST transformation), the segmentation will be 
primarily driven by regional differences in CMRglc, considering that CMRglc has higher range than lFCD. 

“rPWR and rCST. Voxelwise relative power (rPWR) and relative cost (rCST) were computed by a π/4 rad 
(45°) counterclockwise rotation of (mean and variance normalized) log(lFCD) and CMRglc axes, 
respectively. Specifically, in a two-dimensional polar coordinate system of standardized (whole-brain 
mean = 0, variance = 1) log(lFCD), z(log(lFCD)), plotted against standardized (whole-brain mean = 0, 
variance = 1) CMRglc, z(CMRglc), we define: ܴܹܲݎ = ܴ × cos(ߠ −  ,(4ߨ
and ܶܵܥݎ = ܴ × sin(ߠ −  ,(4ߨ



where R and θ are radius and angle (in radians) of each brain voxel in a polar coordinate system of 
z(log(lFCD)) and z(CMRglc), respectively. Alternatively, in a cartesian coordinate system, 

ቂܶܵܥݎܴܹܲݎ ቃ = 	 ൥		cos గସ sin గସ−sin గସ 		cos గସ൩ ൤ݖ(log(݈ܦܥܨ))(݈ܴܿ݃ܯܥ)ݖ ൨.” 

“Fig. 2…(d–f) rPWR and rCST were calculated by a π/4 (45°) rotation along (mean-variance normalized) 
log(lFCD) and CMRglc axes. (e) A hypothetical presentation of (mean-variance normalized) activity 
demand versus metabolic supply with each circle representing one brain voxel. Yellow-colored voxels 
correspond to higher rCST, blue to lower rCST, red to higher rPWR, and green to lower rPWR. For a 
representative voxel vi (dark gray circle), rPWRi and rCSTi are shown on the plot. For vi, rPWR is negative 
and rCST is positive. For visual demonstration purposes, voxels contributing the most to rPWR variability 
(d) and rCST variability (f) are highlighted. For this purpose, highlighting was performed by multiplying 
the radius of each voxel (in polar coordinate system) by its corresponding absolute rPWR (d) or absolute 
rCST (f). Group-average rPWR (g) and rCST (h) maps.” 

 

5. The major focus of the study is power/cost, so why is the stimulation data for which PET appear to be 
unavailable used? If power and cost provide information supply and demand do not, then this isn’t 
comparable as power and cost cannot be calculated without supply data. 

The visual stimulation data were only used to show the sensitivity of lFCD relative to fALFF to activity at 
0.05 Hz (comparable to major resting-state frequencies). We have now clarified the purpose of the 
visual stimulation experiment and placed the experiment at the beginning of Results. 

“In cohort-vs (vs: visual stimulation; n = 7 healthy participants) with fMRI data only, we tested the 
sensitivity of lFCD to brain activity, by measuring the effects of visual stimulation (f = 0.05 Hz) on lFCD 
relative to fractional amplitude of low frequency fluctuations (fALFF) in the visual cortex.” 

“Functional significance of lFCD. To corroborate the validity of lFCD as a measure of neuronal activity, 
we assessed the effects of a visual stimulation at f = 0.05 Hz on lFCD relative to fALFF in cohort-vs (n = 
7).” 

 

 Independent verification not done: 

 

 6. This is a multimodal study and, while prior work has examined the effect of PET and fMRI being 
recorded through very different methods, this study calculates new measures from them. When new 
measures are derived, small portions of the variance in source data could be amplified. Thus it is critical 
to validate that the new measures are not amplifying noise. One area in particular is the visual cortex 
which appears strongly in this study with cost/power but can often have good signal in PET but poor 
signal in fMRI. At a minimum, the cost/power calculation and SPM and k-means clustering (same 
number of clusters) should be done on SNR maps for PET and fMRI to see if the SNR variation between 
PET and fMRI causes some of the clusters. 



This is an important concern. We calculated the temporal SNR (tSNR) maps for fMRI and PET data 
(Supplementary Tables 10, 11). For example, for both fMRI and PET we found that tSNR was in the mid 
to high range in different segments of visual cortex. As the reviewer advised, we repeated the clustering 
for rPWR and rCST measures based on fMRI and PET tSNR maps. We also characterized how individual 
differences in rPWR and rCST (Supplementary Table 8) are related to tSNR in different regions 
(Supplementary Tables 11, 12). Overall, rPWR and rCST did not appear to amplify the effects of tSNR. 
These analyses are now updated in the Results and Methods: 

“For fMRI, tSNR (see Methods) was overall negatively associated with lFCD (p = 0.005) and positively 
with CMRglc (p = 0.0004) across regions (Supplementary Table 11), but not with rPWR nor with rCST. For 
PET-FDG, tSNR (see Methods) was negatively associated with lFCD (p = 0.02) and positively with CMRglc 
(p < 0.0001) (Supplementary Table 12). PET-FDG tSNR was also significantly associated with rPWR (p = 
0.02) and rCST (p = 0.03), but both to a weaker extent than the associations between PET-FDG tSNR and 
CMRglc (p < 0.0001, Supplementary Table 12). While temporal pole and entorhinal regions both has the 
lowest tSNR in PET-FDG and fMRI, their rPWR and rCST were not associated with tSNRs (Supplementary 
Tables 11, 12). In fact, rPWR and rCST in none of the cortical regions were associated with tSNRs after 
correction for multiple comparisons. We also used PET-FDG tSNR and fMRI tSNR maps to compute SNR-
based rPWR and rCST maps and performed cortical segmentation with k-means clustering (k = 4, 
Supplementary Fig. 6) and found that the clusters differed from those based on CMRglc-lFCD.” 

“Effects of Brain morphometry and temporal signal-to-noise ratio (tSNR)…For fMRI, voxelwise tSNR 
was computed using the mean to standard deviation ratio of the raw fMRI time series (after motion 
correction and spatial normalization). For PET-FDG, voxelwise tSNR was computed using the mean to 
standard deviation ratio of the dynamic FDG time series (after motion correction and spatial 
normalization, acquired between 40–55 min). For each subject, each tSNR measure was averaged within 
each of the 34 bilateral ROIs.” 

“However, we cannot rule out that inherent limitations in PET and MRI imaging (e.g., spatial 
heterogeneity in tSNR) could to some extent affect regional differences in rCST and rPWR. We observed 
that rPWR and rCST do not appear to amplify effects of tSNR in fMRI and PET-FDG (Supplementary 
Tables 11, 12 and Supplementary Fig. 6). Visual networks sowed significant differences in rCST and rPWR 
(Fig. 3d, e; Fig. 4a), yet they had mid-to-high range tSNR in both modalities (Supplementary Tables 11, 
12), suggesting that differences in rPWR and rCST in visual regions are not primarily related to 
measurement noise.” 

 

 7. Cost and power would be more justifiable (versus the existing measures of CMRglc and lFCD) if they 
were independently verified where existing measures were not. E.g. the authors could use EEG to 
measure demand and MRS to measure supply in only two widely separated brain regions with high 
cost/power deviation. There are many other possible ways to test this, but demonstration that new 
metrics have validity outside of combined PET/fMRI would go a long way to validating them. 

As suggested by the reviewer, we performed an independent verification of rPWR and rCST. Accordingly, 
we used a relative measure of cerebral blood flow (CBF) (with perfusion weighted imaging, PWI) as an 
alternative modality to PET-FDG to index metabolic supply. We also used fLAFF as an alternative metric 
of activity which in contrast to lFCD (sensitive to synchrony between voxels) is sensitive to amplitude 



changes in voxels. rPWR and rCST estimated based on CBF-fALFF were in excellent agreement with  
rPWR and rCST estimated based on CMRglc-lFCD (Supplementary Figs. 3–5): 

“Generalizability of rPWR and rCST. We tested whether rPWR and rCST are generalizable to alternative 
measures of neuronal activity (i.e., fALFF) and metabolic supply (i.e., CBF) in cohort-1. Based on prior 
observations, we used cerebral blood flow (CBF) as an alternative proxy of cerebral metabolic supply19, 

20. Consistent with prior reports (Supplementary Fig. 3a)19, CMRglc and CBF (PWI) (see Methods) showed 
a good correspondence across brain networks in our study (Supplementary Fig. 3b). lFCD and fALFF were 
also highly correlated across networks (Supplementary Fig. 3c) but they were not significantly correlated 
with CMRglc and CBF (PWI) (Supplementary Fig. 1a, Supplementary Fig. 3d–f). There was excellent 
agreement between rPWR of different networks when estimated using CMRglc-lFCD and when 
estimated using CBF-fALFF (ICC(3, 1) = 0.8, Supplementary Fig. 4a). While only using CBF (PWI) instead of 
CMRglc also showed strong agreement in rPWR estimates (ICC(3, 1) = 0.85, Supplementary Fig. 4c). The 
lFCD threshold had minimal impact on rPWR estimates (ICC(3, 1) = 0.99, Supplementary Fig. 4d). 
Similarly, there was excellent agreement between rCST of different networks when estimated using 
CMRglc-lFCD and when estimated using CBF-fALFF (ICC(3, 1) = 0.87, Supplementary Fig. 5a). Changing 
lFCD to fALFF had minimal impact on rCST estimates (ICC(3, 1) = 0.99, Supplementary Fig. 5b), so did 
using CBF (PWI) instead of CMRglc (ICC(3, 1) = 0.85, Supplementary Fig. 5c). The lFCD threshold had 
minimal impact on rCST estimates, as well (ICC(3, 1) = 0.99, Supplementary Fig. 5d).” 

“We found that rPWR and rCST are robust and generalizable to other measures of activity demand and 
metabolic supply (e.g., fALFF and CBF, Supplementary Figs. 4, 5) and do not appear to amplify the effects 
of measurement noise on lFCD and CMRglc (Supplementary Tables 11, 12).” 

 

 8. Voxel-based morphometry (VBM) is commonly used in alcohol use and alcoholism. The relative gray 
matter/white matter levels are thus of suspicion when comparing PET and fMRI modalities. (The authors 
limit their analysis to gray matter, but VBM applies within gray matter alone.) Comparing the 
cost/power significance versus VBM significance would also help validate these measures as something 
novel. (Though if VBM differences and cost/power differences are too similar it is unknown whether 
activity is different due to different anatomy, or if anatomy creates an artifact which alters activity 
measurement.) 

Following the reviewers’ comment we now report effects of brain morphometry on rCST and rPWR. 
Unfortunately, the anatomical data in cohort-2 (or BNL cohort, for which we studied the effects of 
alcohol) was of poor quality for reliable VBM analysis. Considering that surface based morphometry 
(SBM) versus voxel based morphometry (VBM) provide comparable results21 and to keep the processing 
pipelines consistent between analyses, we used measures of cortical thickness and cortical distance (as 
also suggested by another reviewer) and report effects of brain morphometry on rCST and rPWR. 

“We studied how measures of brain morphometry (i.e., cortical thickness and cortical distance), and 
fMRI tSNR and PET-FDG tSNR were related to lFCD, CMRglc, rPWR, and rCST. Specifically, these 
measures were related across subjects in 34 bilateral cortical ROIs (see Methods) in cohort-1. Across-
subject mean and standard deviation in lFCD, CMRglc, rCST, and rPWR in these regions are summarized 
in Supplementary Table 8. Supplementary Tables 9–12 show regional associations with tSNRs while also 
reporting level of significance for the correlations across regions. Across regions, there were a positive 



trend of correlations between cortical thickness and lFCD (p < 0.0001) and between cortical thickness 
and CMRglc (p < 0.0001), but not with rPWR nor with rCST. rPWR in superior frontal region was 
associated with cortical thickness (p < 0.05, Bonferroni). Cortical distance (average geometrical distance 
between an ROI to other ROIs, see Methods) showed a significant trend of negative correlation across 
regions with CMRglc (Supplementary Table 10). Cortical distance was associated with rCST in entorhinal, 
lateral orbitofrontal, and inferior temporal cortices and with rPWR in pars triangularis (p < 0.05, 
Bonferroni).” 

“We found that average cortical thickness and cortical distance in several regions were positively 
associated with rCST and rPWR (p < 0.05, Bonferroni, Supplementary Tables 9, 10). It could be expected 
that higher cortical distance (or thickness) is consistent with greater activity and energetic needs, 
particularly for regions with significant remote connectivity. Interestingly, cortical distance and rCST 
were associated in entorhinal, lateral orbitofrontal, and inferior temporal cortices, which are among 
regions implicated in Alzheimer’s diseases (AD)22, 23. Nevertheless, the relevance of these morphological 
findings remains to be determined.” 

 

 The noted problems are addressable but require a substantial rewrite with substantial new data 
analysis. 

 

 Reviewer #2 (Remarks to the Author): 

 

 The authors acquired BOLD-fMRI and FDG-PET data from healthy subjects and devised a novel, 
integrated measure of power/cost to identify regions with high/low fMRI activity at high levels of energy 
utilization. They found distinct power-cost distributions across the cortex of healthy subjects with 
characteristic changes in another cohort of alcohol drinkers.  

 

 While I found it highly interesting to gain novel insights into human brain organization from multimodal 
imaging, I have major concerns with the methodology of defining this novel measure of power/cost and 
was less convinced by the extended view about brain organization derived from the novel approach.  

We thank the reviewer for the constructive and important criticisms. 

  

The measure of lFCD is a tightly defined parameter to capture neuronal activity from the BOLD-fMRI 
signal. It captures the synchrony of BOLD-signal fluctuations between a specific voxel and voxels in close 
neighborhood at a particular threshold C which is then log-transformed. In order to relate fMRI-derived 
neuronal activity to absolute glucose metabolism, I would suggest to offer a broader perspective on 
BOLD-measures. How do parameters used in this study such as thresholding, log-transformation, 
pearson-correlation instead of signaling amplitude impact on the relation of lFCD to CMRglc…  



We have now provided a broader perspective on lFCD in the Discussion (and partly in the Introduction). 
Following other reviewer’s suggestion, we renamed power/cost to rPWR/rCST to minimize any 
confusion with other metrics. We studied the effects of lFCD threshold and amplitude-based measures 
of resting-state activity on the relationship between CMRglc and resting-state activity (Supplementary 
Figs. 3–5). We also discuss the effect of using log-transformation for lFCD (Supplementary Fig. 7): 

“In cohort-vs (vs: visual stimulation; n = 7 healthy participants) with fMRI data only, we tested the 
sensitivity of lFCD to brain activity, by measuring the effects of visual stimulation (f = 0.05 Hz) on lFCD 
relative to fractional amplitude of low frequency fluctuations (fALFF) in the visual cortex.” 

“We tested whether rPWR and rCST are generalizable to alternative measures of neuronal activity (i.e., 
fALFF) and metabolic supply (i.e., CBF) in cohort-1. Based on prior observations, we used cerebral blood 
flow (CBF) as an alternative proxy of cerebral metabolic supply19, 20. Consistent with prior reports 
(Supplementary Fig. 3a)19, CMRglc and CBF (PWI) (see Methods) showed a good correspondence across 
brain networks in our study (Supplementary Fig. 3b). lFCD and fALFF were also highly correlated across 
networks (Supplementary Fig. 3c) but they were not significantly correlated with CMRglc and CBF (PWI) 
(Supplementary Fig. 1a, Supplementary Fig. 3d–f). There was excellent agreement between rPWR of 
different networks when estimated using CMRglc-lFCD and when estimated using CBF-fALFF (ICC(3, 1) = 
0.8, Supplementary Fig. 4a). While only using CBF (PWI) instead of CMRglc also showed strong 
agreement in rPWR estimates (ICC(3, 1) = 0.85, Supplementary Fig. 4c). The lFCD threshold had minimal 
impact on rPWR estimates (ICC(3, 1) = 0.99, Supplementary Fig. 4d). Similarly, there was excellent 
agreement between rCST of different networks when estimated using CMRglc-lFCD and when estimated 
using CBF-fALFF (ICC(3, 1) = 0.87, Supplementary Fig. 5a). Changing lFCD to fALFF had minimal impact on 
rCST estimates (ICC(3, 1) = 0.99, Supplementary Fig. 5b), so did using CBF (PWI) instead of CMRglc (ICC(3, 
1) = 0.85, Supplementary Fig. 5c). The lFCD threshold had minimal impact on rCST estimates, as well 
(ICC(3, 1) = 0.99, Supplementary Fig. 5d).” 

“PET-FDG is a reliable method for measuring CMRglc in the human brain. In comparison, there are a 
range of metrics available to assess voxel-level functional activity during resting-state fMRI. While some 
metrics focus on regional synchrony in slow (< 0.1 Hz) BOLD fluctuations as a marker of neuronal activity 
(e.g., lFCD1 or regional homogeneity measures2), others focus on the amplitude of slow fluctuations 
(e.g., ALFF or fALFF) during resting state3, 4. While synchrony-based and amplitude-based measures 
appear capture different aspects of resting-state activity, they have shown good correspondence at rest5 
and between different subject groups6.” 

“Using CBF (PWI) and fALFF as alternative indices of metabolic supply and neuronal activity resulted in 
rPWR and rCST that had strong agreement with those obtained with CMRglc and lFCD (Supplementary 
Figs. 4, 5) further supporting the generalizability of these metrics.” 

“Because degree-related measures (such as lFCD) follow an exponential distribution, we used log(lFCD) 
in all analyses with a semi-normal distribution (Supplementary Fig. 7) to characterize brain activity and 
its associations with brain glucose metabolism (indexed by CMRglc).” 

 

and do other parameters such as structural distance or cortical thickness possibly relate to the regional 
distribution of power/cost?  



We now added a section on the relationship between brain morphometry and rPWR and rCST: 

“We studied how measures of brain morphometry (i.e., cortical thickness and cortical distance), and 
fMRI tSNR and PET-FDG tSNR were related to lFCD, CMRglc, rPWR, and rCST. Specifically, these 
measures were related across subjects in 34 bilateral cortical ROIs (see Methods) in cohort-1. Across-
subject mean and standard deviation in lFCD, CMRglc, rCST, and rPWR in these regions are summarized 
in Supplementary Table 8. Supplementary Tables 9–12 show regional associations with tSNRs while also 
reporting level of significance for the correlations across regions. Across regions, there were a positive 
trend of correlations between cortical thickness and lFCD (p < 0.0001) and between cortical thickness 
and CMRglc (p < 0.0001), but not with rPWR nor with rCST. rPWR in superior frontal region was 
associated with cortical thickness (p < 0.05, Bonferroni). Cortical distance (average geometrical distance 
between an ROI to other ROIs, see Methods) showed a significant trend of negative correlation across 
regions with CMRglc (Supplementary Table 10). Cortical distance was associated with rCST in entorhinal, 
lateral orbitofrontal, and inferior temporal cortices and with rPWR in pars triangularis (p < 0.05, 
Bonferroni).” 

“We found that average cortical thickness and cortical distance in several regions were positively 
associated with rCST and rPWR (p < 0.05, Bonferroni, Supplementary Tables 9, 10). It could be expected 
that higher cortical distance (or thickness) is consistent with greater activity and energetic needs, 
particularly for regions with significant remote connectivity. Interestingly, cortical distance and rCST 
were associated in entorhinal, lateral orbitofrontal, and inferior temporal cortices, which are among 
regions implicated in Alzheimer’s diseases (AD)22, 23. Nevertheless, the relevance of these morphological 
findings remains to be determined.” 

 

It is important to note that the novel power/cost measure was only derived from N=17 healthy subjects 
of a total of N=75. 

We clarified the number of subjects for each experiment and used a new labelling to identify different 
cohorts in the study. rPWR and rCST were derived with high resolution PET-FDG and fMRI data in cohot-
1 (n = 28). We also referred to the relevant cohort in each figure. We apologize for any confusion. 

“For this purpose, we performed a series of experiments and analyses in three independent cohorts. In 
cohort-vs (vs: visual stimulation; n = 7 healthy participants) with fMRI data only, we tested the sensitivity 
of lFCD to brain activity…” 

“In cohort-1 (n = 28 healthy participants) with high-resolution PET-FDG and fMRI, voxelwise measures of 
relative power (rPWR; indicating high metabolic needs and observed activity relative to the rest of the 
brain) and relative cost (rCST; the extent to which regional metabolic needs exceeds the observed 
activity) were computed.” 

“Finally, in cohort-2 (n = 40) with PET-FDG and fMRI, we tested the sensitivity of rPWR and rCST to acute 
and chronic alcohol exposure which affect brain glucose metabolism17, 24, 25 and neuronal activity26, 27, in 
light drinkers (LD, n = 24) and a heavy drinkers (HD, n = 16) (see Methods).” 

 



From those 17 subjects, was the PET data always related to the fMRI from the same day or possibly from 
the second MRI scan? 

The PET-FDG data were related to lFCD (or fALFF) data (in cohort-1, n = 28) from the average of the two 
fMRI sessions, which is now clarified in the text. 

“For cohort-1, the average log(lFCD) from the two fMRI sessions were used in the analyses to improve 
signal to noise ratio of activity measures. In cohort-1, we tested the sensitivity of rPWR and rCST to lFCD 
threshold by using r = 0.4 as an alternative lFCD threshold (compared to r = 0.6).” 

“For cohort-1, the average fALFF from the two fMRI sessions were used in the analyses to improve signal 
to noise ratio of activity measures.” 

 

 The authors report a strong linear correlation between loglFCD and CMRglc (Suppl Fig 1) which I found 
not interpretable with respect to the raw data presented in Fig 1B of the main manuscript. The heat plot 
in Fig 1B rather suggests a very confined and heavy aggregation of voxels towards the lower left end of 
the graph with almost no variance along the loglFCD axis. With respect to the slope in Suppl Fig 1 this 
linear correlation is hardly justified when plotting onto the heatmap data. 

We removed this confusing figure and replaced it by Supplementary Fig 1a which summarizes lFCD and 
CMRglc averages and their association across 10 brain networks. 

“As in CMRglc and lFCD (Supplementary Fig. 1a), and rPWR and rCST were not correlated across 
networks (Supplementary Fig. 1b), supporting the heterogeneity of these measures across brain 
networks.” 

 

Moreover, I did not understand how the regular/circular distribution of power/cost from the model (Fig 
1E) would fit onto the heavy tailed voxel distribution in Fig 1B. It seems that >90% of all voxels would fall 
into the low power-quadrant making it hard to interpret whole cortex data.  

We have clarified in the figure caption (and the text) that the axes in the hypothetical model are mean-
variance normalized (as they are prior to rPWR and rCST transformations) but the data shown in Fig. 2b 
(previously, Fig. 1b) are in the original lFCD and CMRglc space (thus the centers of axes in Fig. 3b do not 
represent means). The ratio of voxels falling into each quadrant (relative to mean lFCD and CMRglc) is 
now estimated and displayed in Fig. 4c which suggests a relatively balanced distribution. For example, 
36% of voxels fall into the low-power quadrant. 

“Fig. 2…. (d–f) rPWR and rCST were calculated by a π/4 (45°) rotation along (mean-variance normalized) 
log(lFCD) and CMRglc axes. (e) A hypothetical presentation of (mean-variance normalized) activity 
demand versus metabolic supply (not to be confused with part (b) shown without mean-variance 
normalization) with each circle representing one brain voxel. Yellow-colored voxels correspond to higher 
rCST, blue to lower rCST, red to higher rPWR, and green to lower rPWR. For a representative voxel vi 
(dark gray circle), rPWRi and rCSTi are shown on the plot. For vi, rPWR is negative and rCST is positive. 
For visual demonstration purposes, voxels contributing the most to rPWR variability (d) and rCST 
variability (f) are highlighted. For this purpose, highlighting was performed by multiplying the radius of 



each voxel (in polar coordinate system) by its corresponding absolute rPWR (d) or absolute rCST (f). 
Group-average rPWR (g) and rCST (h) maps.” 

“Fig. 4….(c) Same clusters projected back into the original CMRglc-lFCD space. The thick gray lines mark 
the average of CMRglc and average of log(lFCD) with the number in each quadrant showing percentage 
of voxels falling within that quadrant. These quadrants are defined in Fig. 2e.” 

 

Together, this critique is also reflected by the fact that the novel measure of power/cost (Fig 1 G/H) 
reveals an almost identical spatial distribution as CMRglc (Fig 1C) alone which indeed has strongest 
variance in Fig 1B. Several voxels seem to have highest relative levels of both power and cost (lateral 
prefrontal regions). Doesn’t that contradict each other?  

Since rPWR and rCST were calculated based on mean-variance normalized lFCD and CMRglc, both 
measures contributed to variance in rPWR and rCST. We studied this further and reported results in the 
section on rPWR and rCST of resting state networks and individual differences and in Fig. 3 which 
compares lFCD, CMRglc, rPWR, and rCST across 10 brain networks (please also see Supplementary Table. 
8 for individual differences in regions). While mean lFCD was more variable between the 3 visual and 
default mode networks, mean CMRglc was more variable across other networks. Across the 10 network, 
rPWR and rCST were related to both modalities: lFCD-rPWR: r(8) = 0.82, lFCD-rCST: r(8) = -0.7;  CMRglc-
rPWR: r(8) = 0.74, CMRglc-rCST: r(8) = 0.53. Due to limited dynamic range in colors in Fig. 2g, h (former 
Fig. 1g, h), Fig. 3 could help to better show regional differences in rPWR and rCST (we clarified this in Fig. 
2). For example, while both left and right frontoparietal networks had the highest rCST, they had 
intermediate rPWR. 

“Left and right frontoparietal networks had the highest rCST, whereas medial visual followed by the 
cerebellum and occipital pole networks had the lowest rCST.” 

“Since rPWR and rCST were calculated from mean-variance normalized lFCD and CMRglc, both measures 
contributed to variance in rPWR and rCST (see Methods).” 

“Alternatively, in a cartesian coordinate system, 

ቂܶܵܥݎܴܹܲݎ ቃ = 	 ൥		cos గସ sin గସ−sin గସ 		cos గସ൩ ൤ݖ(log(݈ܦܥܨ))(݈ܴܿ݃ܯܥ)ݖ ൨.” 

“Fig. 2….Group-average rPWR (g) and rCST (h) maps but see Fig. 3 (and Supplementary Table 8) for 
demonstration of regional differences.” 

“We studied how measures of brain morphometry (i.e., cortical thickness and cortical distance), and 
fMRI tSNR and PET-FDG tSNR were related to lFCD, CMRglc, rPWR, and rCST. Specifically, these 
measures were related across subjects in 34 bilateral cortical ROIs (see Methods) in cohort-1. Across-
subject mean and standard deviation in lFCD, CMRglc, rCST, and rPWR in these regions are summarized 
in Supplementary Table 8.” 

 



 Overall, I found the research question and concept of integrating both imaging modalities very 
interesting. However, I don’t see the major claims supported by the data and would suggest a more 
detailed derivation of the complex measures power/cost from the fMRI data.  

As the reviewer suggested, we performed multiple analysis to test the generalizability (i.e., estimating 
rPWR and rCST with alternative metrics) and robustness (i.e., studying the effects of brain morphometry 
and tSNR) of rPWR and rCST measures. For equal contribution lFCD and CMRglc, we also clarified that 
both modalities are mean-variance normalized prior to rPWR and rCST transformations. 

 

 Reviewer #3 (Remarks to the Author): 

 

 In this manuscript, the authors have defined novels measures for characterizing coupling between 
glucose metabolism (measures with PET imaging) and resting state connectivity (measured with fMRI). 
They came up with two measures; power (extent of high activity and energy utilization) and cost (the 
extent to which energy utilization exceeds activity), and showed that different regions of the brain has 
different ratios of these measures. They also showed that these measures may be altered in heavy 
alcohol drinkers, and with acute alcohol administration.  

We thank the reviewer for very helpful and insightful suggestions. 

 

While this is an interesting concept, questions remain about how robust and reliable these measures are:  

Following the reviewer suggestion (as well as others) we performed additional analyses and computed 
rPWR and rCST (formerly known as “power” and “cost”) with alternative measures of brain activity and 
metabolic supply:   

“Generalizability of rPWR and rCST. We tested whether rPWR and rCST are generalizable to alternative 
measures of neuronal activity (i.e., fALFF) and metabolic supply (i.e., CBF) in cohort-1. Based on prior 
observations, we used cerebral blood flow (CBF) as an alternative proxy of cerebral metabolic supply19, 

20. Consistent with prior reports (Supplementary Fig. 3a)19, CMRglc and CBF (PWI) (see Methods) showed 
a good correspondence across brain networks in our study (Supplementary Fig. 3b). lFCD and fALFF were 
also highly correlated across networks (Supplementary Fig. 3c) but they were not significantly correlated 
with CMRglc and CBF (PWI) (Supplementary Fig. 1a, Supplementary Fig. 3d–f). There was excellent 
agreement between rPWR of different networks when estimated using CMRglc-lFCD and when 
estimated using CBF-fALFF (ICC(3, 1) = 0.8, Supplementary Fig. 4a). While only using CBF (PWI) instead of 
CMRglc also showed strong agreement in rPWR estimates (ICC(3, 1) = 0.85, Supplementary Fig. 4c). The 
lFCD threshold had minimal impact on rPWR estimates (ICC(3, 1) = 0.99, Supplementary Fig. 4d). 
Similarly, there was excellent agreement between rCST of different networks when estimated using 
CMRglc-lFCD and when estimated using CBF-fALFF (ICC(3, 1) = 0.87, Supplementary Fig. 5a). Changing 
lFCD to fALFF had minimal impact on rCST estimates (ICC(3, 1) = 0.99, Supplementary Fig. 5b), so did 
using CBF (PWI) instead of CMRglc (ICC(3, 1) = 0.85, Supplementary Fig. 5c). The lFCD threshold had 
minimal impact on rCST estimates, as well (ICC(3, 1) = 0.99, Supplementary Fig. 5d).” 



“We found that rPWR and rCST are robust and generalizable to other measures of activity demand and 
metabolic supply (e.g., fALFF and CBF, Supplementary Figs. 4, 5) and do not appear to amplify the effects 
of measurement noise on lFCD and CMRglc (Supplementary Tables 11, 12).” 

 

whether they are highly variable between individuals,  

We also updated a section and clarified in Fig. 3 individual differences in rPWR and rCST and also added 
Supplementary Table 8 which list variability in rPWR and rCST across individuals. We also assessed how 
individual differences in rPWR and rCST are related to brain morphometry (Supplementary Tables 9, 10). 

“rPWR and rCST of resting state networks and individual differences. Fig. 3a, b show individual 
differences in CMRglc and lFCD within 10 predefined resting-state network maps28. Plotting these values 
against each other (Fig. 3c, Supplementary Fig. 1a) shows low segregation of these networks particularly 
when considering individual differences. Similarly, we compared individual differences in rPWR and rCST 
of these 10 networks (Fig. 3d, e).” 

“Fig. 3f shows subject-level averages of rCST and rPWR when plotted against each other, which in 
contrast to Fig. 3c, highlighted consistency of rCST and rPWR values across subjects for each network 
(relative to other networks) which resulted in better segregation of networks based on rCST and rPWR 
properties than CMRglc and lFCD measures (Fig. 3c, f).” 

“We studied how measures of brain morphometry (i.e., cortical thickness and cortical distance), and 
fMRI tSNR and PET-FDG tSNR were related to lFCD, CMRglc, rPWR, and rCST. Specifically, these 
measures were related across subjects in 34 bilateral cortical ROIs (see Methods) in cohort-1. Across-
subject mean and standard deviation in lFCD, CMRglc, rCST, and rPWR in these regions are summarized 
in Supplementary Table 8.” 

“Fig. 3. CMRglc, lFCD, rPWR, and rCST of brain networks and individual differences (cohort-1, n = 28). (a, 
b) Within-subject averages (28 circles) and between-subject average (thick line) of CMRglc and lFCD for 
each of 10 resting-state networks28 including medial visual (MV), occipital pole (OP), lateral visual (LV), 
default mode (DM), cerebellum (CB), sensorimotor (SM), auditory (AD), executive control (EC), right and 
left frontoparietal (RFP & LFP) networks. c) Within-subject averages of CMRglc and lFCD plotted against 
each other (each circle represents one participant) for the networks shown in (a, b). The network colors 
in (c) match those shown in (a, b). (d, e) Within-subject averages (28 circles for 28 participants) and 
between-subject average (thick lines) of rPWR and rCST for each of the 10 resting-state networks shown 
in parts (a, b). f) Within-subject averages of rPWR and rCST plotted against each other for the networks 
shown in (d, e). The networks are color coded in (f) based on those shown in (d, e).” 

 

or whether they are affected by limitations of the technology itself (e.g. scanner-related issues showing 
stronger signal to noise ratio (SNR) in some regions compared to others. It strikes me that areas of high 
power may in part be conflated with areas of the brain that are more easily imaged by fMRI (e.g. visual 
areas and default-mode), whereas areas of low power may be harder to image due to signal dropout. 
Have the authors considered this, or run any analyses of whether SNR maps were significantly correlated 
with power/cost in these areas? 



This is an important concern and we have addressed this question in a new section of Results and 
Discussion. 

“For fMRI, tSNR (see Methods) was overall negatively associated with lFCD (p = 0.005) and positively 
with CMRglc (p = 0.0004) across regions (Supplementary Table 11), but not with rPWR nor with rCST. For 
PET-FDG, tSNR (see Methods) was negatively associated with lFCD (p = 0.02) and positively with CMRglc 
(p < 0.0001) (Supplementary Table 12). PET-FDG tSNR was also significantly associated with rPWR (p = 
0.02) and rCST (p = 0.03), but both to a weaker extent than the associations between PET-FDG tSNR and 
CMRglc (p < 0.0001, Supplementary Table 12). While temporal pole and entorhinal regions both has the 
lowest tSNR in PET-FDG and fMRI, their rPWR and rCST were not associated with tSNRs (Supplementary 
Tables 11, 12). In fact, rPWR and rCST in none of the cortical regions were associated with tSNRs after 
correction for multiple comparisons. We also used PET-FDG tSNR and fMRI tSNR maps to compute SNR-
based rPWR and rCST maps and performed cortical segmentation with k-means clustering (k = 4, 
Supplementary Fig. 6) and found that the clusters differed from those based on CMRglc-lFCD.” 

“Brain morphometry and temporal signal-to-noise ratio (tSNR)… For fMRI, voxelwise tSNR was 
computed using the mean to standard deviation ratio of the raw fMRI time series (after motion 
correction and spatial normalization). For PET-FDG, voxelwise tSNR was computed using the mean to 
standard deviation ratio of the dynamic FDG time series (after motion correction and spatial 
normalization, acquired between 40–55 min). For each subject, each tSNR measure was averaged within 
each of the 34 bilateral ROIs.” 

“However, we cannot rule out that inherent limitations in PET and MRI imaging (e.g., spatial 
heterogeneity in tSNR) could to some extent affect regional differences in rCST and rPWR. We observed 
that rPWR and rCST do not appear to amplify effects of tSNR in fMRI and PET-FDG (Supplementary 
Tables 11, 12 and Supplementary Fig. 6). Visual networks sowed significant differences in rCST and rPWR 
(Fig. 3d, e; Fig. 4a), yet they had mid-to-high range tSNR in both modalities (Supplementary Tables 11, 
12), suggesting that differences in rPWR and rCST in visual regions are not primarily related to 
measurement noise.” 

 

 I am not sure of the purpose of the the first 2 cohorts (NIH1, n = 28, and NIH, n = 7). Did the authors use 
these two cohorts to assess test-retest reliability? I did not see any data indicating that cohort 2 was 
used to verify the results of cohort 1. Were the data combined from these two cohorts? Please clarify. 
Similarly, how variable are these measures (cost/power) between individuals? 

We are sorry for any confusion here. Cohorts are now more clearly defined in the Introduction and each 
section and figure cites the related cohort. The first two cohorts served different purposes. Now they 
are labeled cohort-vs (n = 7) and cohort-1 (n = 28). Cohort-vs was only involved with fMRI for a visual 
stimulation experiment at 0.5 Hz to compare sensitivity of lFCD (synchrony based) and fLAFF (amplitude 
based) measures of resting state activity. Cohort-1 was used for deriving rPWR and rCST (from CMRglc 
and lFCD) and as discussed earlier, their reliability/generalizability is now assessed in the same cohort-1 
with alternative modalities (i.e., CBF and fALFF). We also addressed the question on individual 
differences, in an earlier comment (Fig. 3 and Supplementary Table 8). 



“In cohort-vs (vs: visual stimulation; n = 7 healthy participants) with fMRI data only, we tested the 
sensitivity of lFCD to brain activity,…” 

“In cohort-1 (n = 28 healthy participants) with high-resolution PET-FDG and fMRI, voxelwise measures of 
relative power (rPWR; indicating high metabolic needs and observed activity relative to the rest of the 
brain) and relative cost (rCST; the extent to which regional metabolic needs exceeds the observed 
activity) were computed.” 

 

 The alcohol cohort is interesting, yet needs more explanation. Were the power/cost measures sensitive 
to the level of alcohol drinking, or the level of intoxication, in participants? Do the authors have any 
speculations about how these measures would lead to the functional outcomes experienced by long-
term, heavy drinkers? Would the authors expect an association between power/cost measures and use 
of alternative sources of energy during intoxication?  

This was a very helpful suggestion. We had previously reported effects of acute and chronic alcohol on 
behavioral measures in cohort-229. For acute alcohol effects, both light drinker (LD) and heavy drinker 
(HD) participants received a fixed amount of alcohol (0.75 g/kg) but reported significant effects in 
subjective experience of alcohol. For chronic effects, HD also had lower cognitive outcomes. We related 
these measures to CMRglc, lFCD, rCST, and rPWR and found that regional rCST and rPWR were related 
to these measures: 

“Cohort-2 behavioral measures. In cohort-2, we previously reported behavioral measures in 23 LD 
participants (out of 24) and 15 HD participants (out of 16)24, 29. Superficially, in both groups we found 
significant effects of ALC for 5 self-reported measures of feeling sedated, dizzy, high, pleasant, and 
intoxication29. For summarizing subjective effects of ALC in this study, we computed the first principal 
component of these 5 measures (subjective-PC accounted for 68% of variance), in ALC condition across 
both groups. We also found HD had lower cognitive performance in 5 tasks: Stroop (neutral, congruent, 
and incongruent), Symbol Digit Modalities test (SDMT), and Word Association tasks29. For summarizing 
individual differences in cognitive performance in HDs, we computed the first principal component of 
these 5 measures (cognitive-PC accounted for 50% of variance), obtained in the PLC condition in HDs.” 

“Behavioral association with rPWR and rCST. In cohort-2, for subjective measures showing effects of 
ALC we calculated a subjective-PC (see Methods) and assessed its association with regional CMRglc, 
lFCD, rCST, and rPWR in both groups. We only found significant negative associations between rPWR in 
insula, middle and inferior temporal gyri (in the right hemisphere) and subjective experience of alcohol 
(pFWE < 0.01, Supplementary Table 17). While HD performed worse in a range of cognitive tasks, 
individual differences in these measures in HD (cognitive-PC, see Methods) was only significantly 
associated with rCST in the right inferior parietal lobule (pFWE < 0.01, Supplementary Table 18).” 

“Relative to lFCD, CMRglc, and rCST, less rPWR was association with greater subjective experience of 
alcohol in the insula (Supplementary Table 17), suggesting that concurrent changes in (BOLD) activity 
and metabolism in this limbic region provide relevant markers of subjective experience of alcohol30. We 
also found evidence that rCST (relative to lFCD, CMRglc, and rPWR) in the inferior parietal lobule was 
positively associated with performance in cognitive tasks in HDs (Supplementary Table 18). While 
activity in parietal regions have been previously related to intelligence31, our findings suggest that 



energetic needs (i.e., rCST) in parietal areas contribute to individual differences in cognitive performance 
in HD.” 

“More importantly, we found that rPWR and rCST (relative to lFCD and CMRglc) were significantly and 
distinctly related to behavioral effects of acute and chronic alcohol, further supporting their utility for 
capturing meaningful (and possibly unique) aspects of brain performance.” 

 

It would be interesting to show side-by-side maps of (1) glucose metabolism (PET), (2) resting-state 
activity (fMRI) and (3) cost/power maps in order to directly visualize how these measures relate to one 
another. Showing these in the control cohorts and the alcohol cohort would help the reader visualize the 
potential utility of these measures for clinical purposes. 

We have added Supplementary Fig. 8 which shows CMRglc, lFCD, rCST, and rPWR for the same brain 
cross session with same color-scaling in one LD and one HD participant from cohort-2. 

“Voxelwise rCST and rPWR were estimated for the cohort-1 and cohort-2 for each participant and each 
condition (e.g., PLC and ALC for cohort-2, see Supplementary Fig. 8).” 
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed my concerns from the previous version, I recommend a minor 
revision considering the following points:  
 
1. Is the stimulation data (which lacks a metabolic measure such as glucose or blood flow) 
necessary to have in this paper? It seems like it could be its own paper instead. The submitted 
paper could be shortened by instead citing existing papers comparing lFCD and fALFF to functional 
activation, e.g. Thompson, G. J., et al. (2016). Brain Connect 6(6): 435-447.  
 
2. Discussion of the utility the new measures of rPWR and rCST versus existing metrics should be 
more up-front in the introduction and discussion. E.g. discussion of Figure 3, also how new 
measures do not correlate with anatomy as strongly as glucose metabolism, etc.  
 
3. Some acronym are not defined in the paper, e.g. COMET, PC. This should be added. A table of 
acronyms would also be helpful.  
 
4. Different color scales are used on different plots in Figure 1, unless there is a good reason they 
should be the same colors, to help with visual comparison.  
 
5. "decreased the kurtosis (uniformity)" should probably be "decreased the kurtosis (increased 
uniformity)"  
 
 
Reviewer #2 (Remarks to the Author):  
 
This is a revision of manuscript where I substantially questioned the justification and validity of the 
imaging parameters of the first submission. This was also the main concern of the two other 
reviewers. I am therefore puzzled that the authors did not attempt to better substantiate their 
interpretation of cost/power but simply renamed them to “relative CST/PWR”.  
The two parameters cost/power do not homogeneously or substantially vary across the majority of 
cortical regions. Fig 2g/h indicates a highly similar cortical distribution and this is justified by the 
difference map in Fig 4a. Fig 4a indicates that only two major midline structures do significantly 
differ in rCST/PWR which are medial visual/parietal and temporal cortices. All frontal, sensori, 
motor, and parietal regions cannot be associated with having either predominantly rCST or rPWR 
respectively. This can also be seen in Fig 3d/e which shows that 5 out of the 10 networks are 
highly variable in rCST/rPWR, but the first three are all visual networks. The majority of cortex 
would be, however, represented in the later 5 networks that basically show no variance in any of 
the 2 measures. Importantly, Fig 3b shows that lFCD only varies in the 3 visual networks but 
basically all other major networks are located at the lower bottom of lFCD.  
In my first revision, I was therefore questioning that the raw distribution of CMRGlu and lFCD is 
suitable to justify an equal distribution across the cortex and the 4 virtual quadrants. Rotating and 
normalizing the data does not compensate for that problem. My concern that the majority of the 
voxels are simply located at the lower left quadrant has not been resolved as Fig 2b and Fig 4c do 
not seem to match (I understand that Fig 2c is just a model).  
Interestingly, the authors deleted the “confusing figure Suppl Fig1” from the initial submission that 
was intended to show the necessary relationship between CMRGlu and lFCD which is now replaced 
with a new Suppl Fig 1a that shows no significant correlation and is used as an argument for 
generalizability of rPWR/CST.  
Other parameters during analysis are fully arbitrary. Why are raw data rotated by 45°? Why do r-
thresholds for lFCD-computation vary across cohorts?  
Overall, I have the impression that analyses and interpretation are highly selective and speculative 
but the current imaging measures do not justify the general interpretation of (relative) power or 



cost related to neural activity across the entire human cortex.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors did a commendable job of responding to all reviewer comments, and have included 
several new tables/figures that help with interpretation of the data. Though this manuscript has 
limitations, the authors have addressed most of these in the review process.  



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed my concerns from the previous version, I recommend a minor revision 
considering the following points: 

We thank the reviewer for the helpful feedback and the opportunity to further improve the manuscript. 

 

1. Is the stimulation data (which lacks a metabolic measure such as glucose or blood flow) necessary to 
have in this paper? It seems like it could be its own paper instead. The submitted paper could be 
shortened by instead citing existing papers comparing lFCD and fALFF to functional activation, e.g. 
Thompson, G. J., et al. (2016). Brain Connect 6(6): 435-447. 

As the reviewer suggested, we removed the visual stimulation data but added relevant citations. 

“In this relation, indirect measures of neuronal activity such as fMRI measures of functional 
connectivity1, 2 or MRS measures of glutamatergic function3, have been associated with regional brain 
glucose metabolism, wherein high and low neuronal activity demand were associated with high and low 
metabolic supply, respectively.” 

“Synchrony-based and amplitude-based measures appear to capture overlapping and nonoverlapping 
aspects of brain activity. For example, they have shown good correspondence at rest4 and between 
different subject groups5. Our results indicated an excellent agreement between lFCD-based and fALFF-
based rPWR estimates and between lFCD-based and fALFF-based rCST estimates, across major brain 
networks (Supplementary Fig. 6c and Supplementary Fig. 7c). However, there are indications that 
synchrony-based measures may be more sensitive to changes in functional activity (e.g., eyes open 
versus closed) than amplitude-based measures6. These observations are consistent with the relatively 
high spatial spread of neuronal activity with respect to the stimulation locus7, 8 that could be captured 
with synchrony-based measures of brain activity.” 

 

2. Discussion of the utility the new measures of rPWR and rCST versus existing metrics should be more 
up-front in the introduction and discussion. E.g. discussion of Figure 3, also how new measures do not 
correlate with anatomy as strongly as glucose metabolism, etc. 

We further clarified the utility of the rPWR and rCST in the introduction and emphasized on Fig. 2 
findings (former Fig. 3) and the anatomical correlations in the first paragraph of discussion. 

“There are marked regional differences in glucose metabolism9, 10 and in fMRI measures of brain 
activity11, 12, 13 during resting state that are positively associated across regions1, 2. However, without 
accounting for underlying brain activity, regional differences in glucose metabolism are hard to 
interpret. Interestingly, the level of correspondence between glucose metabolism and neuroglial activity 
has been considered an important marker of functional specialization of brain regions and networks14, 
and could be helpful for inferring use of alternative energy sources or different metabolic pathways. To 
further study this, here we proposed an approach to quantify match and mismatch between measured 



metabolic supply and the observed level of activity across the brain and assessed whether this 
quantification is relevant for studying distinct energetic characteristics of brain regions and networks.” 

We also introduced a metric to quantify the level of network segregation: 

“We quantified the level of segregation of brain networks in the two spaces (i.e., lFCD-CMRglc versus 
rPWR-rCST) using a network segregation index (NSI). Specifically, in a given two-dimensional space and 
for each brain network, NSI was defined as the ratio of the average of between network distances to the 
average of within network distances (see Methods). As expected, in the rPWR-rCST space we found 
significantly higher NSIs (NSI: M = 4.34, SD = 1.46, Fig. 2f) than in the lFCD-CMRglc space (NSI: M = 1.07, 
SD = 0.66, Fig. 2c) across the 10 networks (p = 0.002, Wilcoxon signed rank test).” 

“When considering individual differences in lFCD and CMRglc (Fig. 2c), we found that brain networks 
were more segregated based on rPWR and rCST (Fig. 2f) than based on lFCD and CMRglc (Fig. 2c), 
further supporting the relevance of our approach for studying brain functional specialization. Across 
cortical regions, rPWR and rCST were not consistently associated with cortical thickness (Supplementary 
Table 9) and cortical distance (Supplementary Table 10) as were CMRglu and lFCD, suggesting that these 
anatomical features are differently related to energetic characteristics of different brain regions. 
Additionally, we found that rPWR and rCST indices were distinctly sensitive to the effects of acute and 
chronic alcohol exposure on the brain and behavior.” 

 

3. Some acronym are not defined in the paper, e.g. COMET, PC. This should be added. A table of 
acronyms would also be helpful. 

Accordingly, we clarified the acronyms throughout the text and added a table of acronyms (Table 1). 

“Please refer to Table 1 for the list of acronyms.” 

“…we calculated a subjective-PC (PC: principal component)…” 

“Fig. 4a–d shows the connectivity-metabolism (COMET) maps highlighting alcohol-related changes in 
lFCD and CMRglc…” 

“and CBF (with perfusion weighted imaging: PWI) (see Methods)…” 

 

4. Different color scales are used on different plots in Figure 1, unless there is a good reason they should 
be the same colors, to help with visual comparison. 

The justification for using different color scales in the (new) Fig. 1 (particularly, in parts g and h) is added 
to the figure caption. In addition, we added new supplementary figures (Supplementary Figs. 2 and 3) 
which show lFCD, CMRglc, rPWR, and rCST, in the slice-view format but with the same color scales. 

“…Note the color scale in (g) resembles that used for the hypothetical voxels along the rPWR axis in (d) 
and the color scale in (h) resembles that used for the hypothetical voxels along the rCST axis in (f).” 

 



5. "decreased the kurtosis (uniformity)" should probably be "decreased the kurtosis (increased 
uniformity)" 

Thank you for bringing this to our attention. The sentence is now corrected. 

“…and decreased the kurtosis (increased uniformity)...” 

 

 

Reviewer #2 (Remarks to the Author): 
 
This is a revision of manuscript where I substantially questioned the justification and validity of the 
imaging parameters of the first submission. This was also the main concern of the two other reviewers. I 
am therefore puzzled that the authors did not attempt to better substantiate their interpretation of 
cost/power but simply renamed them to “relative CST/PWR”.  

We thank the reviewer for the careful attention and the critical comments. Our intention has been to 
thoroughly address all the reviewer’s concerns. We renamed the metrics based on reviewer 1’s previous 
comment to avoid confusion with other measures in the literature. In addition, we now better 
substantiate the interpretation of rPWR and rCST in the Introduction and Discussion. 

“There are marked regional differences in glucose metabolism9, 10 and in fMRI measures of brain 
activity11, 12, 13 during resting state that are positively associated across regions1, 2. However, without 
accounting for underlying brain activity, regional differences in glucose metabolism are hard to 
interpret. Interestingly, the level of correspondence between glucose metabolism and neuroglial activity 
has been considered an important marker of functional specialization of brain regions and networks14, 
and could be helpful for inferring use of alternative energy sources or different metabolic pathways. To 
further study this, here we proposed an approach to quantify match and mismatch between measured 
metabolic supply and the observed level of activity across the brain and assessed whether this 
quantification is relevant for studying distinct energetic characteristics of brain regions and networks. 
For this purpose, we measured cerebral metabolic rate of glucose (CMRglc, indexed by 18F-
flurodeoxyglucose; PET-FDG, see Methods) and synchronous fluctuations in the blood oxygenation level 
(BOLD; measured by fMRI and indexed by local functional connectivity density: lFCD, see Methods) 
during resting state. We studied two main (unit-free and generalizable) dimensions of associations. The 
first dimension captured the positive association between glucose utilization and neuroglial activity. This 
dimension was labeled relative power (rPWR) and represented the level of concurrent metabolic need 
and observed activity, relative to the rest of the brain. The second dimension captured the deviation 
between glucose utilization and neuroglial activity. This dimension was labeled relative cost (rCST) and 
represented the extent to which glucose metabolic needs exceed (or fall behind) the observed activity, 
relative to the rest of the brain. As in principal component analysis (PCA), when there is complete 
correspondence between measured neuroglial activity and glucose utilization across regions, all the 
common variance will be accounted for by the rPWR dimension. Yet, more deviation between observed 
neuroglial activity and glucose utilization14, 15, 20, 21 (i.e., disproportional neuroglial activity and glucose 
utilization) across regions, would result in higher variance accounted for by the rCST dimension (Fig. 1, 
see Methods).” 



“To quantify the relative changes in the association between two modalities, here we proposed two 
novel metrics of rPWR and rCST that are unit-free and are generalizable to measures of brain activity 
and energy supply. These metrics quantify how well two modalities that measure aspects of activity 
demand (such as lFCD) and aspects metabolic supply (such as CMRglc) are concurrently high or low (i.e., 
rPWR) in a specific region relative to the rest of the brain, and to what extent one exceeds the other 
(i.e., rCST) in a specific region relative to the rest of the brain. From another perspective, rPWR could be 
thought of as an index of concurrent intensity of the two modalities, while rCST is an index of mismatch 
between the two modalities.” 

The two parameters cost/power do not homogeneously or substantially vary across the majority of 
cortical regions. Fig 2g/h indicates a highly similar cortical distribution and this is justified by the 
difference map in Fig 4a. Fig 4a indicates that only two major midline structures do significantly differ in 
rCST/PWR which are medial visual/parietal and temporal cortices. All frontal, sensori, motor, and 
parietal regions cannot be associated with having either predominantly rCST or rPWR respectively. This 
can also be seen in Fig 3d/e which shows that 5 out of the 10 networks are highly variable in rCST/rPWR, 
but the first three are all visual networks. The majority of cortex would be, however, represented in the 
later 5 networks that basically show no variance in any of the 2 measures. 

We have made several important clarifications to address this. We have clarified in the Methods that 
rPWR and rCST are orthogonal variables (they are not anti-correlated), thus rPWR and rCST estimates 
are not required to be always different throughout the cortex. Accordingly, it was not a requirement for 
regions to be “associated with having either predominantly rCST or rPWR, respectively.” Also, for better 
visual comparison, we provided a slice-view of rPWR and rCST as Supplementary Figs. 2&3 (Fig. 2 also 
includes the former Supplementary Fig. 7). At our cluster-size corrected threshold, majority of the 
cortical areas had significantly different rPWR than rCST (> 54% of gray matter voxels), including many 
regions within frontal, sensorimotor, and parietal cortices. It was not critical to identify all regions that 
have different rPWR than rCST, thus in Fig. 3a (former Fig. 4a), we only highlighted extreme differences 
in the rCST-rPWR contrast by using a stringent threshold (p < 10-7, pFWE < 0.01, corrected at the voxel 
level). This was also the case for Supplementary Tables 1 and 2. In addition, all networks presented in 
Fig. 2 (former Fig. 3) are significantly different in their rPWR and rCST (p < 0.02). 

“In addition, all networks had significantly different rPWR than rCST (p < 0.02).” 

“This 45° counterclockwise rotation is equivalent to performing a PCA on two positively correlated 
variables that are, mean and variance normalized (resulting in an equal contribution of imaging 
parameters into rPWR and rCST). It is important to note that rPWR and rCST variables are orthogonal, 
thus it is possible for regions to have high (or low) rPWR and rCST at the same time, while other regions 
may be high in rCST and low in rPWR or vice versa. While rPWR captures most of the common variance, 
rCST captures the reminder of the common variance between z(log(lFCD)) and z(CMRglc). This is evident 
in Supplementary Fig. 3 histograms, showing higher variability across regions in rPWR (capturing most of 
the variance) relative to rCST.” 

“The contrast analysis indicated that most of the cortex had different rCST than rPWR (approximately 
54% of gray matter voxels, pFWE < 0.01, cluster-size corrected). However, the most pronounced 
differences were in the visual cortices with higher rPWR than rCST and in the limbic and temporal 
regions with higher rCST than rPWR (see Fig. 2a and Supplementary Table 3 for highlighted differences). 
There were also notable differences in rPWR and rCST between regions (Fig. 2, Supplementary Table 8).” 



“For highlighting the most extreme differences, we used a conservative threshold of pFWE < 0.01 at the 
voxel level (|t| > 6). At the normal threshold (pFWE < 0.01, cluster-size corrected), majority of the cortex 
(> 54%) showed differences in rCST versus rPWR (see Supplementary Table 3 for more details).” 

“When indicated, we used a more stringent threshold (corrected at the voxel level, pFWE < 0.01, |t| > 6) 
to further guide summarizing large effects.” 

Importantly, Fig 3b shows that lFCD only varies in the 3 visual networks but basically all other major 
networks are located at the lower bottom of lFCD. 

While the 10 studied networks represented important gray matter areas16, they do not represent the 
entire cortex. In the new Supplementary Figs. 1a and 2 and Supplementary Table 8, we highlighted the 
variability of lFCD across the entire cortex. For the reviewer reference, we also performed a one sample 
t-test on z-scored log(lFCD) which not only highlighted a range of visual regions but also included large 
segments of parietal, cingulate, insular, frontal, and thalamic regions for having significantly higher lFCD 
than the rest of the brain (approximately 20% of the gray matter voxels, pFWE < 0.01, Rebuttal Fig. 1). 
Interestingly (and contrastingly), the 3 visual networks with marked lFCD differences, had comparable 
CMRglc (Fig. 2a, b), which further supports the relevance of studying these regional differences in 
observed activity and level of metabolic supply, under a unified framework of rPWR and rCST. 

 
Rebuttal Figure 1. Regions with significantly higher log(lFCD) than the rest of the brain (pFWE < 0.01, 
cluster-size corrected). The MNI z-coordinate is displayed next to each slice. 



In my first revision, I was therefore questioning that the raw distribution of CMRGlu and lFCD is suitable 
to justify an equal distribution across the cortex and the 4 virtual quadrants. Rotating and normalizing 
the data does not compensate for that problem. My concern that the majority of the voxels are simply 
located at the lower left quadrant has not been resolved as Fig 2b and Fig 4c do not seem to match (I 
understand that Fig 2c is just a model).  

We have added new figures to further delineate regional variability in lFCD and CMRglc.  

“Spatial distributions of lFCD and CMRglc are highlighted in Fig. 1a–c and Supplementary Figs. 1a & 2, 
delineating regional variability...” 

“Supplementary Figure 1. Correlation between CMRglc and lFCD across 34 bilateral cortical 
parcellations (see Methods) (r(32) = 0.42, p = 0.01) (a), and between rCST and rPWR (r(32) = 0.03, p = 
0.87) (b) in cohort-1. Across the 34 bilateral regions the coefficient of variation of lFCD was 23% and 
coefficient of variation of CMRglc was 18%.” 

Importantly, our analysis does not assume an equal distribution of CMRglc and lFCD across the 4 
quadrants. We have clarified this in the text: 

“While Fig. 1e show a hypothetical model with relatively equal distribution of voxels along the 4 
identified quadrants and with no apparent association between the measures, a positive association 
between lFCD (measure of activity) and CMRglc (measure of metabolic supply) would results in more 
voxels being associated with high and low-rPWR quadrants than high and low-rCST quadrants.” 

Furthermore, this has been clarified in the Fig. 3c caption. In addition, there is no mismatch in the data 
used to generate Fig. 1b and Fig. 3c (former Fig. 2b and Fig. 3c). Relative to the average log(lFCD) and 
CMRglc shown in Fig. 3c, 30.5% and 36% of voxels fall in the high and low-rPWR quadrants, respectively. 

“It is important to note that having a higher percentage of voxels associated with high and low-rPWR 
quadrants, is consistent with log(lFCD) and CMRglc being positively correlated (see Fig. 1b).” 

 

Interestingly, the authors deleted the “confusing figure Suppl Fig1” from the initial submission that was 
intended to show the necessary relationship between CMRGlu and lFCD which is now replaced with a 
new Suppl Fig 1a that shows no significant correlation and is used as an argument for generalizability of 
rPWR/CST. 

We deleted the previous Supplementary Fig. 1 based on reviewer’s previous comment: “The authors 
report a strong linear correlation between loglFCD and CMRglc (Suppl Fig 1) which I found not 
interpretable with respect to the raw data presented in Fig 1B of the main manuscript. The heat plot in 
Fig 1B rather suggests a very confined and heavy aggregation of voxels towards the lower left end of the 
graph with almost no variance along the loglFCD axis. With respect to the slope in Suppl Fig 1 this linear 
correlation is hardly justified when plotting onto the heatmap data.” However, Fig. 1b and Fig. 3c both 
show the same data (as the previous Supplementary Fig. 1) but without the linear fit. We agree that 
showing the positive association between log(lFCD) and CMRglc is important. This is also visible in Fig. 3c 
were most voxels fall along the high and low-rPWR quadrants than the high and low-rCST quadrants (as 
defined in Fig. 1e). 



The Supplementary Fig. 1a in the revised paper showed a positive, yet nonsignificant, association 
between log(lFCD) and CMRglc across the 10 networks. In Supplementary Fig. 1a we now show the 
significant association between lFCD and CMRglc across 34 bilateral cortical regions that cover the entire 
cortex. We also report the positive Pearson correlation coefficient for data in Fig. 1b.  

We did not use lack of significant correlation as an evidence for generalizability. We discussed that lack 
of strong correlation across the 10 networks suggests heterogeneity of these associations. For 
generalizability or measures, for example, we performed additional analyses using measures of 
amplitude of low frequency fluctuations and cerebral blood flow to assess how well rPWR and rCST 
calculated based on these measures, correspond to when they are calculated using lFCD and CMRglc. 

“Spatial distributions of lFCD and CMRglc are highlighted in Fig. 1a–c and Supplementary Figs. 1a & 2, 
delineating regional variability in these measures while showing an overall positive association between 
lFCD and CMRglc across the brain regions (cohort-1, n = 28).” 

“A two-dimensional histogram of log(lFCD) versus cerebral metabolic rate of glucose (CMRglc) 
highlighting the frequency of log(lFCD) and CMRglc association pairs (r = 0.44, p < 0.00001, 139269 
voxels).” 

 

Other parameters during analysis are fully arbitrary. Why are raw data rotated by 45°? Why do r-
thresholds for lFCD-computation vary across cohorts? 

As discussed earlier, we have clarified in the Methods that the 45° counterclockwise rotation is 
equivalent to performing a PCA on mean and variance normalized log(lFCD) and CMRglc, ensuring equal 
contribution of both measures to the primary (rPWR) and secondary (rCST) dimensions of associations 
between log(lFCD) and CMRglc. 

The manuscript now reports one primary lFCD threshold of r = 0.6 which is consistent with prior 
literature using similar fMRI temporal resolution6, 11, 17. As the reviewer indicated before, we tested the 
effect of lFCD threshold on rPWR and rCST measures and found excellent agreement between rPWR 
(and rCST) estimated with r = 0.6 and r = 0.4 lFCD thresholds (Supplementary Figs. 6d, 7d). In the visual 
stimulation data, we had used a lower threshold of r = 0.5 for fMRI data which was acquired with a high 
temporal resolution of TR = 0.385 s (relative to TR = 1.5 s). As the reviewer 1 suggested, this experiment 
is now removed from the manuscript. In addition, we have estimated rPWR and rCST using fALFF instead 
of lFCD (which does not require a threshold) (see Supplementary Figs. 6, 7).  

In addition, we added a new measure to quantify the level of network segregation in the lFCD-CMRglc 
and rPWR-rCST spaces. 

“We quantified the level of segregation of brain networks in the two spaces (i.e., lFCD-CMRglc versus 
rPWR-rCST) using a network segregation index (NSI). Specifically, in a given two-dimensional space and 
for each brain network, NSI was defined as the ratio of the average of between network distances to the 
average of within network distances (see Methods). As expected, in the rPWR-rCST space we found 
significantly higher NSIs (NSI: M = 4.34, SD = 1.46, Fig. 2f) than in the lFCD-CMRglc space (NSI: M = 1.07, 
SD = 0.66, Fig. 2c) across the 10 networks (p = 0.002, Wilcoxon signed rank test).” 



“Network segregation index (NSI). This measure was defined to index how well a brain network (or a 
region) is segregated from other brain networks (or regions), when individual participant values for all 
the networks are plotted in a two-dimensional space (e.g., Fig. 2c versus Fig. 2f). For this purpose, three 
parameters were calculated. For a given network (Ni), center of mass (CMi) coordinates were calculating 
by averaging of each dimension across participants. For Ni, average within network distance (AWNDi) 
was calculated by averaging the Euclidian distance of participants data points from the CMi. For Ni, 
average between network distance (ABNDi) was calculated by averaging the Euclidian distance from CMi 
to the CMs of the rest of the networks. Finally, NSI could be defined as following, which is expected to 
have a F-distribution: NSI௜ = ୅୆୒ୈ೔୅୛୒ୈ೔.” 

 

Overall, I have the impression that analyses and interpretation are highly selective and speculative but 
the current imaging measures do not justify the general interpretation of (relative) power or cost related 
to neural activity across the entire human cortex.  

We have carefully considered all specific concerns raised by the reviewers and have accordingly clarified 
or justified our approach. We have further delineated regional variability in the imaging measures and 
their relative distribution, have clarified underlying assumptions of rPWR and rCST parameters, and 
added an index to quantify the level of network segregation in different spaces. We have highlighted 
that lFCD and CMRglc only capture a specific aspect of brain activity demand and metabolic supply but 
provided evidence that studying the regional variations in the associations between these imaging 
measures is important for functional characterization of brain regions and networks. We are happy to 
further consider any specific concerns. 

 

 

Reviewer #3 (Remarks to the Author): 
 
The authors did a commendable job of responding to all reviewer comments, and have included several 
new tables/figures that help with interpretation of the data. Though this manuscript has limitations, the 
authors have addressed most of these in the review process. 

Once again, we thank the reviewer for the constructive feedback and we hope that future work would 
further address limitations. 
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REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed my minor comments from the last revision, and done a good work in 
addressing Reviewer 2’s comments. In particular I like the network segregation method. I 
recommend acceptance of this manuscript.  
 
Reviewer #2  
 
[Was not available to re-review.]  
 
Reviewer #3  
 
[In comments to the editor, indicates that the authors had adequately responded to Reviewer #2 
concerns, and that she/he is happy to recommend publication at this stage.]  
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