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SUMMARY

The coordinated polarization of cells in the plane of
a tissue, termed planar polarity, is a characteristic
feature of epithelial tissues [1]. In the fly wing,
trichome positioning is dependent on the core
planar polarity proteins adopting asymmetric sub-
cellular localizations at apical junctions, where
they form intercellular complexes that link neigh-
boring cells [1–3]. Specifically, the seven-pass
transmembrane protein Frizzled and the cyto-
plasmic proteins Dishevelled and Diego localize to
distal cell ends, the four-pass transmembrane pro-
tein Strabismus and the cytoplasmic protein Prickle
localize proximally, and the seven-pass transmem-
brane spanning atypical cadherin Flamingo local-
izes both proximally and distally. To establish asym-
metry, these core proteins are sorted from an
initially uniform distribution; however, the mecha-
nisms underlying this polarized trafficking remain
poorly understood. Here, we describe the iden-
tification of retromer, a master controller of endo-
somal recycling [4–6], as a key component regu-
lating core planar polarity protein localization in
Drosophila. Through generation of mutants, we
verify that loss of the retromer-associated Snx27
cargo adaptor, but notably not components of the
Wash complex, reduces junctional levels of the
core proteins Flamingo and Strabismus in the devel-
oping wing. We establish that Snx27 directly associ-
ates with Flamingo via its C-terminal PDZ binding
motif, and we show that Snx27 is essential for
normal Flamingo trafficking. We conclude that
Wash-independent retromer function and the
Snx27 cargo adaptor are important components in
the endosomal recycling of Flamingo and Stra-
bismus back to the plasma membrane and thus
contribute to the establishment and maintenance
of planar polarization.
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RESULTS AND DISCUSSION

The endosomal sorting of internalized cargo for recycling to the

cell surface is a highly regulated process [7]. A master conductor

for the recycling of numerous cargoes is retromer, a stable het-

erotrimer of VPS29, VPS35, and VPS26 [4, 5]. To examine the

role of retromer in the establishment and maintenance of planar

polarization (Figures 1A and 1B), we performed genetic analysis

in Drosophila. As null mutants of the retromer subunit Vps35 are

lethal during late larval or early pupal stages [8, 9], we generated

Vps35-null mutant clones in the pupal wing. This revealed that

junctional levels of the transmembrane core proteins Flamingo

(Fmi), Strabismus (Stbm), and Frizzled (Fz) were decreased

within Vps35-null clones (Figures 1C, 1D, and S1A–S1E). Levels

of the cytoplasmic core protein Dishevelled (Dsh) were also

slightly reduced, and levels of Prickle (Pk) and other junctional

proteins, such as Armadillo, were unaffected (Figures S1B–

S1E). In contrast, loss of the retromer-linked SNX-BAR proteins,

Snx1 or Snx6, or the core component of the retriever complex

C16orf62 (data not shown) did not affect levels of Fmi or Stbm

(Figures S1G–S1I). Notably, both core protein asymmetry and

polarity coordination between cells (Figures 1E and S1F) were

reduced in Vps35 mutant tissue, accompanied by a delay in

trichome initiation (Figure 1F). By revealing a role for retromer

in regulating the cell surface levels and asymmetry of core planar

polarity proteins in the pupal wing, these data extend the role

of retromer in specifying polarity through recycling of Crumbs

[10, 11] and the Scribble polarity module [12].

In mammalian cells, retromer function is coupled to the actin-

polymerizing Wiskott-Aldrich syndrome and SCAR homolog

(WASH) complex, a pentameric assembly of WASH (WASHC1),

FAM21 (WASHC2), CCDC53 (WASHC3), SWIP (WASHC4), and

Strumpellin (WASHC5) [13, 14].Within this complex,WASH stim-

ulates the ARP2/3 complex to drive polymerization of branched

actin networks that aid the organization of endosomal retrieval

sub-domains [7]. We used CRISPR/Cas9 editing to generate a

Drosophila Fam21-null mutant (see Figure S1J; STAR Methods).

Homozygous Fam21-null flies were viable and fertile. In Fam21-

null mutant clones in the pupal wing, we observed no effect on

the levels of Fmi and Stbm (Figures 1D and 1G) nor was any ef-

fect observed in wash-null mutant clones (Figures 1D and 1H)

[15]. Therefore, in contrast to Drosophila trachea development,
ª 2019 Published by Elsevier Ltd.
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Figure 1. Vps35 Regulates Levels of Fmi and Stbm at Apical Junctions Independently of the Wash Complex

(A) Diagram illustrating asymmetric localization of the core planar polarity proteins in the pupal wing. Two cells are shown, with Fmi, Fz, Dsh, and Dgo localizing on

distal cell edges. This forms an intercellular complex with Fmi, Stbm, and Pk on proximal edges of the neighboring cell.

(B) During polarization, complexes sort from a uniform distribution (left), and all the complexes become oriented in the same direction (right). This specifies

positioning of trichomes (black in right diagram) to distal cell edges.

(C, F, G, and H) 28-hr after puparium formation (APF) (C, G, and H) or 32-hr APF (F) pupal wings carrying clones of Vps35 (C and F), Fam21 (G), orwash (H), marked

by loss of b-gal staining (blue in C, G, and H and green in F).Wings are immunolabeled for Fmi in green and Stbm in red (C, G, andH) or Fmi in blue and phalloidin in

red (F). The reduced phalloidin staining in Vps35mutant tissue (F) indicates a delay in trichome initiation. In older wings, phalloidin-stained trichomes are visible in

Vps35 clones (not shown). Scale bar 10 mm.

(legend continued on next page)
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where retromer and Wash work together [16, 17], the retromer-

mediated asymmetry of Fmi and Stbm in the pupal wing occurs

independently of the Wash complex.

A global proteomic analysis, performed in vitro and in non-

polarized cultured cells, identified an association between

CELSR1 and VANGL1/VANGL2, mammalian equivalents of

Drosophila Fmi and Stbm, respectively, with the retromer cargo

adaptor sorting nexin 27 (SNX27) [18]. SNX27 directly associ-

ates with the VPS26 subunit of retromer through a mechanism

that is conserved in Drosophila [19] and promotes endosomal

recycling to the plasma membrane. SNX27 contains an

amino-terminal PDZ domain that binds to cargoes that contain

a C-terminal PDZ binding motif [18, 20]. Drosophila Fmi and

Stbm both contain PDZ binding motifs (Figure 2A), and

they were both able to associate with human SNX27 and

Drosophila Snx27 in a PDZ-binding-motif-dependent manner

(Figures 2B–2E).

To establish the role of Drosophila Snx27 in retromer-medi-

ated sorting of Fmi and Stbm, we generated a Snx27 loss-of-

function mutant (see Figure S2A; STAR Methods). Snx27-null

flies are homozygous viable and fertile. As in Vps35 mutant

clones, junctional levels of both Fmi and Stbm were reduced in

Snx27 pupal wing clones (Figures 3A and 3B). Western blotting

revealed that total levels of Fmi were reduced in Snx27 mutant

pupal wings (Figures S2B and S2C), consistent with increased

Fmi degradation in the absence of Snx27-retromer-mediated

recycling. Levels of Fz at apical junctions were also slightly

reduced, and levels of other junctional proteins (Pk, Dsh, and

Armadillo) were unaffected (Figures S2D–S2H). Despite the

reduced protein levels, core protein asymmetry and trichome

initiation and polarity were normal (Figures 3C and 3D), suggest-

ing that sufficient protein reaches the junctions for cells to

polarize correctly. The reduced junctional levels of Fmi and

Stbm were fully rescued by expression of a rescue transgene

tub-GFP-Snx27 (Figures S2I and S2J), confirming that these ef-

fects are due to loss of Snx27.

Interestingly, Stbm levels appeared more greatly reduced in

Vps35 clones than in Snx27 clones, but Fmi levels were similar

in each (compare Figures 1D and 3B). This was confirmed by

making overlapping clones of Vps35 and Snx27 in the same

wings (Figures S3A, S3B, and S3E). This suggests that, although

retromer acts together with Snx27 to regulate Fmi and Stbm

levels, Vps35 also acts on Stbm independently of Snx27.

Furthermore, this might explain why reduced asymmetry is

seen in Vps35mutants, but not in Snx27mutants. This Snx27-in-

dependent effect of Vps35 is likely to be a retromer-dependent

function, as Stbm levels are also decreasedmore than Fmi levels

in Vps26mutant tissue (Figures S3G and S3H). Interestingly, Fmi

also accumulated in intracellular puncta in Vps26 mutant tissue

(Figure S3G’). Simultaneous loss of Snx27 and Vps35 did not

cause a further decrease in levels of Fmi and Stbm, over loss
(C’) High magnification image of wild-type and mutant regions immunolabeled w

(C’’) Polarity nematic showing the magnitude and angle of polarization for each c

(D) Quantitation of mean intensity of Fmi (red dots) or Stbm (orange dots) membra

compared to wild-type in each wing; error bars are SD. One-sample t tests were

(E) Mean polarity and variation in polarity angle of wings immunolabeled for Fmi in

are linked by black bars; mean and SD are listed. Paired t tests were used to co

See also Figure S1 and Data S1 for all statistical comparisons.
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of Vps35 alone (Figures S3C, S3D, and S3F). This suggests

that Snx27 acts only through retromer in regulating Fmi and

Stbm recycling.

As Snx27 interacts with the PDZ binding motifs of Fmi and

Stbm and is required for their retromer-mediated recycling,

we examined whether the PDZ binding motifs of these pro-

teins were necessary for their correct junctional levels. First,

we generated flies carrying P[acman] rescue constructs, in

which either full-length Stbm or Stbm lacking the PDZ binding

motif was tagged with EGFP at the N terminus. We then

generated pupal wings in which clones of EGFP-Stbm were

juxtaposed to clones of EGFP-StbmDPDZ binding motif, in a

stbm mutant background. No difference in junctional levels

of Stbm was seen (Figures S4A and S4B), suggesting that

the PDZ binding motif of Stbm is not required for maintenance

of Stbm junctional levels and by extension that Snx27 cannot

be regulating Stbm levels via a direct interaction between the

PDZ binding motif and the PDZ domain. To confirm this,

clones of Snx27 were induced in tissue expressing either

EGFP-Stbm or EGFP-StbmDPDZ binding motif. In both cases,

junctional levels were reduced (Figures S4C–S4E), suggesting

that the effect of Snx27 on Stbm is independent of the PDZ

binding motif.

Next, we generated flies in which the Fmi was tagged with

EGFP in its extracellular domain, expressed under the armadillo

promoter. Clones of EGFP-Fmi adjacent to clones of EGFP-

FmiDPDZ binding motif were then created, in a fmimutant back-

ground. Deletion of the PDZ binding motif caused a reduction in

junctional levels of Fmi (Figures 3E and 3F). Lower levels of Stbm

were also observed at junctions in EGFP-FmiDPDZ bindingmotif

clones (Figures 3E and 3F), consistent with the previous obser-

vation that Fmi is required for normal Stbm levels at the plasma

membrane [21] and suggesting that Stbm levels decrease in

Snx27 clones as a consequence of a decrease in Fmi levels.

Deletion of the PDZ binding motif of Fmi, although lowering junc-

tional levels of Fmi, did not reduce overall asymmetry (Figure 3G),

similar to what is observed inSnx27mutants and also in flies with

reduced fmi gene dosage [22].

The similar phenotypes observed upon loss of Snx27 and loss

of the Fmi PDZ binding motif are consistent with Fmi interacting

directly with Snx27 via the PDZ domain of Snx27. Confirming

this, we found that EGFP-FmiDPDZ bindingmotif was insensitive

to loss of Snx27: although junctional levels of EGFP-Fmi were

reduced in Snx27 clones (Figures 3H and 3I), levels of EGFP-

FmiDPDZ binding motif did not decrease any further (Figures

3H and 3J).

These data are consistent with the reduced junctional levels of

Fmi being caused by reduced recycling, but it is also possible

that there is less delivery of newly synthesized Fmi. To distin-

guish these possibilities, we analyzed Fmi protein dynamics.

First, in an antibody internalization experiment, live prepupal
ith Fmi and used to quantitate polarity.

ell.

ne labeling in pupal wing clones. Intensity is shown as a ratio of signal in mutant

used to determine whether the ratio differed from 1.0.

wild-type and Vps35mutant tissue (see C’ and C’’). Values from the same wing

mpare values in the same wing. ***p < 0.001.



Figure 2. Drosophila Snx27 Interacts with the PDZ Binding Motifs Present in the C Termini of Fmi and Stbm

(A) Alignment of the C-terminal PDZ bindingmotifs ofDrosophila Fmi and Stbmwith the optimized sequence for PDZ bindingmotif recognition by the PDZ domain

of SNX27.

(B–E) GFP-nanotrap immunoprecipitations of HEK293T cells transiently transfected with constructs encoding for GFP-tagged tail regions of Fmi and Stbm (GFP-

Fmi wild-type [WT], B and D, and GFP-StbmWT, C and E) or the corresponding constructs deleted for the last three amino acids of the PDZ binding motif (GFP-

FmiDPDZbm, B and D, and GFP-StbmDPDZbm, C and E).

(B and C) Samples immunoblotted for the presence of endogenous human SNX27.

(D and E) Cells co-transfected with mCherry-tagged Drosophila Snx27 and samples immunoblotted with anti-mCherry. Data are representative of similar data

derived from three independent biological replicates.
wings carrying Snx27 clones were labeled with a pulse of Fmi

antibody and then internalization was time resolved after anti-

body wash off. As expected, extracellular Fmi labeling revealed

less junctional Fmi in Snx27 tissue compared to wild-type (0.64 ±

0.10; p < 0.001) at the start of the experiment (Figure 4A). In both
wild-type and Snx27 tissue, extracellular Fmi levels decreased

over time (Figures 4A–4C and 4G). This was accompanied by

the appearance of Fmi in intracellular puncta, which we previ-

ously showed were endosomal (Figures 4D–4F) [23]. Interest-

ingly, at 10 min internalization, a similar number of puncta
Current Biology 29, 484–491, February 4, 2019 487



Figure 3. Snx27 Regulates Junctional Levels of Fmi and Stbm via the PDZ Binding Motif of Fmi

(A and D) 28-hr APF (A) or 32-hr APF (D) pupal wings carrying clones of Snx27 (Figure S2A), marked by loss of GFP immunolabeling (green in A) or RFP fluo-

rescence (red in D). Wings are immunolabeled for Fmi in red and Stbm in blue (A) or Fmi in blue and phalloidin in green (D). Scale bar 10 mm.

(B) Quantitation ofmean intensity of Fmi (red dots) or Stbm (orange dots) membrane labeling in pupal wing clones ofSnx27. Intensity is shown as a ratio of signal in

Snx27 mutant compared to wild-type in each wing.

(C) Mean polarity and variation in polarity angle of wings immunolabeled for Fmi in wild-type and Snx27 mutant tissue.

(E) 28-hr APF pupal wing with twin clones of arm-PRO-EGFP-fmi next to arm-PRO-EGFP-fmiDPDZ binding motif (DPDZbm), marked by b-gal immunolabeling in

blue, in a fmiE59/fmiE45 mutant background. The wing is immunolabeled for EGFP in green and Stbm in red.

(F) Quantitation of mean intensity of membrane labeling of EGFP-Fmi (red dots) and Stbm (orange dots). Intensity is shown as a ratio of signal in DPDZbm

compared to full-length protein in each wing.

(legend continued on next page)
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Figure 4. Loss of Snx27 Disrupts Intracellular Trafficking of Fmi

(A–F) Images of Fmi internalization experiment. (A–C) Extracellular Fmi immunolabeling of 5.5 hr APF prepupal wings, imaged at the apical junctions.

(D–F) Total Fmi immunolabeling of the same wings, imaged 1.2 mm below the apical junctions. Images at 0 min (A and D), 10 min (B and E), or 30 min (C

and F) after removal of Fmi antibody, in wild-type (A–F) or Snx27 (A’–F’) mutant regions of the same wings are shown. Scale bar 5 mm. (G and H)

Quantitation of extracellular Fmi immunolabeling (G) or Fmi intracellular puncta size and number (H) in wild-type and Snx27 tissue, after antibody inter-

nalization.

(G) Intensity at 0 min is normalized to 1.0 for each genotype (but note that Fmi levels in Snx27 tissue were 64% of levels in wild-type). Error bars are SD; ANOVA

with Dunnett’s multiple comparisons test was used to compare intensities to 0 min; ***p < 0.001; **p % 0.01. Immunolabeling is more punctate after internali-

zation, as Fmi that is highly clustered is stable, and non-clustered Fmi is rapidly internalized (see [23]).

(H) Data are shown as a ratio of puncta size or number in Snx27mutant compared to wild-type in each wing. Error bars are SD. One-sample t tests were used to

determine whether the ratio differed from 1.0; ***p < 0.001; **p < 0.01. Note that puncta intensity was similar in wild-type and Snx27 tissue.

(I) FRAP of EGFP-Fmi, in 5.5-hr APF prepupal wings from wild-type or Snx27 flies. Note that pre-bleach levels of EGFP-Fmi in Snx27 tissue were decreased

relative to wild-type (0.56 ± 0.13; p < 0.001), but data on the graph were normalized to a pre-bleach intensity of 1.0 for each genotype. A two-phase

exponential curve was fitted; error bars are SD. Recovery in the first phase is not significantly different, but there is proportionally less recovery in the

second phase in Snx27 compared to wild-type (p = 0.006). Recovery of neither genotype reaches a plateau in the time of imaging.

See Data S1 and Table S1 for all statistical comparisons.
were observed in Snx27 and wild-type, and puncta were larger

in Snx27 (Figures 4E and 4H). Because less extracellular Fmi la-

beling was observed in Snx27 tissue than wild-type (Figure 4A),

and internalization rates were similar (Figure 4G), it follows that

endosomal puncta are more persistent in Snx27 than in wild-

type. The number of puncta in Snx27 relative to wild-type was

reduced at 30 min internalization, and puncta size was similar
(G) Mean polarity and variation in polarity angle of wings immunolabeled for EGF

(H) Quantitation of mean intensity of EGFP-Fmi membrane labeling. Intensity is sh

wing.

(I and J) 28-hr APF pupal wings expressing Arm-PRO-EGFP-fmi (I) or Arm-PRO

marked by loss of RFP (red). EGFP immunolabeling is in green.

(B, F, and H) Error bars are SD. One-sample t tests were used to determine whe

(C and G) Values from the same wing are linked by black bars; mean and SD are l

See also Figures S2, S3, and S4 and Data S1 for all statistical comparisons.
(Figures 4F and 4H). This is consistent with a proportion of

Fmi being rapidly recycled to the plasma membrane in wild-

type, but in Snx27, Fmi persists in endosomes and is subse-

quently degraded.

Fluorescence recovery after photobleaching (FRAP) experi-

ments using EGFP-fmi knockin flies provide a further confirma-

tion of altered Fmi dynamics in Snx27 wings. Recovery of
P in EGFP-fmi and EGFP-fmiDPDZbm tissue.

own as a ratio of EGFP signal in Snx27 mutant compared to wild-type in each

-EGFP-fmiDPDZ binding motif (DPDZbm) (J) and carrying clones of Snx27,

ther the ratio differed from 1.0; ***p < 0.001.

isted. Paired t tests were used to compare values in the same wing; **p < 0.01.

Current Biology 29, 484–491, February 4, 2019 489



EGFP-Fmi fluorescence after bleaching fitted to a two-phase

exponential curve, where the fast phase of recovery was similar

in wild-type and Snx27 wings and the slow recovery was

reduced in Snx27 compared to wild-type (Figure 4I; Table S1).

These phases likely correspond to recovery by diffusion and

endocytosis and recycling, respectively (compare to [24]) and

thus suggest reduced recovery via endosomal trafficking in

Snx27 wings.

In the present study, we provide biochemical and genetic ev-

idence to establish that retromer and its associated cargo

adaptor Snx27 are important components in the in vivo traf-

ficking of the core planar polarity proteins Fmi and Stbm in the

Drosophila pupal wing. As far as we are aware, this is the first

in vivo demonstration of a functional coupling between the

core planar polarity cargo and an endosomal recycling complex.

Interestingly, in humans, planar polarity mutations have been

shown to contribute to the etiology of Robinow syndrome, a se-

vere skeletal dysplasia characterized by short limbs and cranio-

facial anomalies [25–31]. It is intriguing to note that the SNX27�/�

mouse phenotype is characterized not only by neurological de-

fects but also skeletal dysplasia, including shortened forelimbs

and cranial defects [32], which could be attributed to a defect

in the robustness of planar polarization.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Genotypes of experimental models

d METHOD DETAILS

B Cell culture and western blots

B Generation of CRISPR/Cas9 Snx27 and Fam21 mu-

tants, and EGFP-fmi knockin flies

B Transgenics

B Pupal wing immunostainings, imaging, and quantita-

tion

B Antibody internalisation

B FRAP

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Quantification of western blots

B Quantification of membrane intensity and polarity in

pupal wings

B Quantification of antibody internalisation

B FRAP processing

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, and two data files

and can be found with this article online at https://doi.org/10.1016/j.cub.

2018.12.027.

ACKNOWLEDGMENTS

We thank Jessica Gamage for making transgenic constructs; John Walker for

making the EGFP-fmi knockin; and the Bloomington Drosophila Stock Center,
490 Current Biology 29, 484–491, February 4, 2019
the Vienna Drosophila Resource Centre, and Avital Rodal for fly stocks. The

Developmental Studies Hybridoma Bank is thanked for antibodies and

BestGene, Genetivision, and the University of Cambridge Department of Ge-

netics for embryo injections. This work was funded through aWellcome Senior

Fellowship (grant number 100986/Z/13/Z) awarded to D.S. and through

Wellcome Trust (104568/Z/14/Z) and the Medical Research Council (MR/

L007363/1 and MR/P018807/1) awards to P.J.C. Imaging was performed in

the Wolfson Light Microscopy Facility at the University of Sheffield.

AUTHOR CONTRIBUTIONS

Conceptualization, P.J.C. and D.S.; Reagent Generation, Acquisition, and

Analysis of Data, H.S., P.F.L., N.P., and K.J.M.; Writing – First Draft, P.J.C.,

H.S., and N.P., Writing – Review and Editing, H.S., P.F.L., N.P., K.J.M., D.S.,

and P.J.C.; Funding Acquisition, Resources, and Supervision, D.S. and P.J.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 2, 2018

Revised: November 15, 2018

Accepted: December 14, 2018

Published: January 17, 2019

REFERENCES

1. Butler, M.T., and Wallingford, J.B. (2017). Planar cell polarity in develop-

ment and disease. Nat. Rev. Mol. Cell Biol. 18, 375–388.

2. Goodrich, L.V., and Strutt, D. (2011). Principles of planar polarity in animal

development. Development 138, 1877–1892.

3. Devenport, D. (2014). The cell biology of planar cell polarity. J. Cell Biol.

207, 171–179.

4. Seaman, M.N.J., McCaffery, J.M., and Emr, S.D. (1998). Amembrane coat

complex essential for endosome-to-Golgi retrograde transport in yeast.

J. Cell Biol. 142, 665–681.

5. Burd, C., and Cullen, P.J. (2014). Retromer: a master conductor of endo-

some sorting. Cold Spring Harb. Perspect. Biol. 6, a016774.

6. Wang, S., and Bellen, H.J. (2015). The retromer complex in development

and disease. Development 142, 2392–2396.

7. Cullen, P.J., and Steinberg, F. (2018). To degrade or not to degrade: mech-

anisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol.

19, 679–696.

8. Franch-Marro, X., Wendler, F., Guidato, S., Griffith, J., Baena-Lopez, A.,

Itasaki, N., Maurice, M.M., and Vincent, J.P. (2008). Wingless secretion re-

quires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retro-

mer complex. Nat. Cell Biol. 10, 170–177.

9. Port, F., Kuster, M., Herr, P., Furger, E., B€anziger, C., Hausmann, G., and

Basler, K. (2008). Wingless secretion promotes and requires retromer-

dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185.

10. Pocha, S.M., Wassmer, T., Niehage, C., Hoflack, B., and Knust, E. (2011).

Retromer controls epithelial cell polarity by trafficking the apical determi-

nant Crumbs. Curr. Biol. 21, 1111–1117.

11. Zhou, B., Wu, Y., and Lin, X. (2011). Retromer regulates apical-basal po-

larity through recycling Crumbs. Dev. Biol. 360, 87–95.

12. de Vreede, G., Schoenfeld, J.D., Windler, S.L., Morrison, H., Lu, H., and

Bilder, D. (2014). The Scribble module regulates retromer-dependent en-

docytic trafficking during epithelial polarization. Development 141, 2796–

2802.

13. Derivery, E., Sousa, C., Gautier, J.J., Lombard, B., Loew, D., and

Gautreau, A. (2009). The Arp2/3 activator WASH controls the fission of en-

dosomes through a large multiprotein complex. Dev. Cell 17, 712–723.

14. Gomez, T.S., andBilladeau, D.D. (2009). A FAM21-containingWASH com-

plex regulates retromer-dependent sorting. Dev. Cell 17, 699–711.

https://doi.org/10.1016/j.cub.2018.12.027
https://doi.org/10.1016/j.cub.2018.12.027
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref1
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref1
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref2
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref2
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref3
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref3
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref4
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref4
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref4
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref5
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref5
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref6
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref6
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref7
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref7
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref7
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref8
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref8
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref8
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref8
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref9
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref9
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref9
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref9
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref10
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref10
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref10
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref11
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref11
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref12
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref12
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref12
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref12
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref13
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref13
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref13
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref14
http://refhub.elsevier.com/S0960-9822(18)31661-0/sref14


15. Linardopoulou, E.V., Parghi, S.S., Friedman, C., Osborn, G.E., Parkhurst,

S.M., and Trask, B.J. (2007). Human subtelomeric WASH genes encode a

new subclass of the WASP family. PLoS Genet. 3, e237.

16. Dong, B., Kakihara, K., Otani, T., Wada, H., and Hayashi, S. (2013). Rab9

and retromer regulate retrograde trafficking of luminal protein required for

epithelial tube length control. Nat. Commun. 4, 1358.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

mouse monoclonal anti-Fmi #74

(immunolabelling of fixed tissues)

DSHB [33] RRID: AB_2619583

mouse monoclonal anti-Fmi #71

(antibody internalisation)

[33] n/a

rat anti-Stbm [34] n/a

affinity purified rabbit anti-Fz [35] n/a

affinity purified rat anti-Pk [36] n/a

rat anti-Dsh [37] n/a

mouse monoclonal anti-Arm DSHB RRID: AB_528089

mouse monoclonal anti-bgal 40-1a DSHB RRID: AB_2314509

rabbit anti b-gal MP Biochemicals/Cappel cat# 0855976 (old cat# 55976);

RRID: AB_2334934

affinity purified rabbit anti-GFP Abcam cat# ab6556; RRID: AB_305564

mouse monoclonal anti-SNX27 1C6 Abcam cat# AB77799; RRID: AB_10673818

mouse monoclonal anti-GFP Roche cat# 11814460001; RRID: AB_390913

mouse monoclonal anti-mCherry Abcam cat# AB125096; RRID: AB_11133266

mouse monoclonal anti-Actin AC40 Sigma cat# A4700; RRID: AB_476730

Alexa Fluor 680 goat anti-mouse IgG Thermo-Fisher cat# A21057; RRID: AB_2535723

Alexa Fluor 800 goat anti-rabbit IgG Thermo-Fisher cat# SA535571; RRID: AB_2556775

HRP conjugated goat anti Mouse DAKO cat# P0447; RRID: AB_2617137

Chemicals, Peptides, and Recombinant Proteins

Alexa Fluor 568 conjugated Phalloidin Invitrogen cat# A12380

FITC conjugated Phalloidin Molecular Probes cat# F-432

DMEM Sigma cat# D5796

Foetal bovine serum for use with DMEM Sigma cat# F7524

GFP trap beads Chromotek cat# gta-20

SuperSignal West Dura Extended duration

substrate

Thermo-Fisher cat# 34075

16% paraformaldehyde solution

(methanol free)

Agar Scientific cat# R1026

Triton X-100 VWR cat# 28817.295; CAS: 9002-93-1

Normal goat serum Jackson Labs cat# 005-000-121

Glycerol VWR cat# 284546F; CAS: 56-81-5

DABCO Fluka cat# 33480; CAS: 280-57-9

Schneider’s medium Thermo-Fisher cat# 21720

Foetal bovine serum for use with

Schneider’s medium

Sigma cat# F4135

Mowiol Polysciences cat# 17951; CAS: 9002-89-5

Methyl cellulose Sigma cat# 274429; CAS: 9004-67-5

Experimental Models: Cell Lines

HEK293 ATCC CRL-11268

Experimental Models: Organisms/Strains

Vps35MH20 [8] FlyBase: FBal0221635

Snx1D2 [38] FlyBase: FBal0336681

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Snx61 [38] FlyBase: FBal0267856

Fam21 This work n/a

wash185 [15] FlyBase: FBal0219165

Snx2725 This work n/a

Vps26C [39] FlyBase: FBal0316800

stbm6 [40] FlyBase: FBal0062423

fmiE59 [33] FlyBase: FBal0101421

fmiE45 [33] FlyBase: FBal0101422

tub-GFP-Snx27 This work n/a

P[acman]-EGFP-stbm This work n/a

P[acman]-EGFP-stbmDPDZ binding motif This work n/a

armP-PRO-EGFP-fmi This work n/a

armP-PRO-EGFP-fmiDPDZ binding motif This work n/a

EGFP-fmi (knockin allele) This work n/a

Ubx-FLP Bloomington Drosophila Stock Center FlyBase: FBti0150334

Oligonucleotides

Snx27 gRNAi 1: GCGAGCCATCCTCACGGC This work n/a

Snx27 gRNAi 2: ATCGAAGAGACGCCAATCC This work n/a

Fam21 gRNA 1: GCAGGCTTAGGGATGAGCGT This work n/a

Fam21 gRNA 1: TTTGATGGAATGGTAGCAGT This work n/a

Recombinant DNA

pEGFP-C1-Fmi This work n/a

pEGFP-C1-FmiDPDZ binding motif This work n/a

pEGFP-C1-Stbm This work n/a

pEGFP-C1-StbmDPDZ binding motif This work n/a

pmCherry-C1-Snx27 This work n/a

Software and Algorithms

Image Studio LI-COR imaging systems n/a

Image Lab version 4.1 BioRad Laboratories BioRad Laboratories n/a

NIS Elements AR version 4.60 Nikon n/a

ImageJ version 2.0.0-r65/1.51 s https://fiji.sc n/a

Tissue Analyzer https://grr.gred-clermont.fr/labmirouse/

software/WebPA/

n/a

MATLAB_R2014b Mathworks n/a

Membrane intensity and Polarity

measurement scripts (MATLAB)

[22] n/a

MATLAB script to compare puncta size This work Data S2

GraphPad Prism version 7.0c GraphPad Software, Inc. n/a
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Peter Cullen (Pete.Cullen@

bristol.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HEK293T cells were maintained in DMEM (Sigma, cat# D5796) supplemented with 10% (v/v) fetal bovine serum (Sigma, cat# F7524)

under standard conditions.

Drosophila melanogaster flies were grown on standard cornmeal/agar/molasses media at 18�C or 25�C, in plastic vials in

a controlled humidity environment, on a 12 hr/12 hr light-dark cycle. For pupal wing dissections, pupae were aged for 28 hr after
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puparium formation (APF) at 25�C, or for 32 hr APF for trichome staining. For experiments using prepupal wings, pupae were aged for

5.5 hr APF at 25�C. Sex of pupae was not determined, unless stated below. The health/immune status cannot be determined for in-

dividual pupae. Pupae were not subjected to previous procedures and were drug and test naive.

Fly strains are described in the Key Resources Table. stbm6, fmiE59, fmiE45, Vps35MH20,wash185, Snx1D2 andSnx61 are putative null

mutations. Vps26C is a point mutation in a highly conserved residue in the arrestin-like domain. Mitotic clones were generated using

the FLP-FRT system and either Ubx-FLP or hs-FLP.

Genotypes of experimental models
Figure 1

(C-F) y w Ubx-FLP; FRT42 Vps35MH20 / FRT42 arm-lacZ

(D, G) y w Ubx-FLP; FRT42 Fam21KO / FRT42 arm-lacZ

(D, H) y w Ubx-FLP; FRT42 wash185 / FRT42 arm-lacZ

Figure 3

(A-D) y w Snx27KO FRT19A / y w ubi-GFP FRT19A; Ubx-FLP/+ (females)

(E-G) y w Ubx-FLP; arm-PRO-EGFP-fmi FRT40 fmiE59 / arm-PRO-EGFP-fmiDPDZbm arm-lacZ FRT40 fmiE45

(H, I) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; arm-PRO-EGFP-fmi FRT42 fmiE59 / + (females)

(H, J) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; arm-PRO-EGFP-fmiDPDZbm FRT42 fmiE59 / + (females)

Figure 4

(A-H) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; Ubx-FLP / + (females)

(I) w1118; EGFP-fmi / + (males) and y w Snx27KO FRT19A; EGFP-fmi / + (males)

Figure S1

(A-F) y w Ubx-FLP; FRT42 Vps35MH20 / FRT42 arm-lacZ

(G, I) y w Ubx-FLP; Snx1D2 FRT40 / arm-lacZ FRT40

(H, I) y w Ubx-FLP; Snx61 FRT40 / arm-lacZ FRT40

Figure S2

(B, C) w1118 (males) and y w Snx27KO FRT19A (males)

(D-H) y w Snx27KO FRT19A / y w ubi-GFP FRT19A; Ubx-FLP/+ (females)

(I, J) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; tub-GFP-Snx27 / Ubx-FLP (females)

Figure S3

(A-F) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; FRT42 Vps35MH20 / FRT42 arm-lacZ (females)

(G, H) y Vps26C w FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; Ubx-FLP / + (females)

Figure S4

(A, B) y w Ubx-FLP; P[acman]-EGFP-stbm arm-lacZ FRT40 stbm6 / P[acman]-EGFP-stbmDPDZbm FRT40 stbm6

(C, E) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; P[acman]-EGFP-stbm FRT40 stbm6 (females)

(D, E) y w Snx27KO FRT19A / Ubi-RFP-nls, w hs-FLP FRT19A; P[acman]-EGFP-stbmDPDZbm FRT40 stbm6 (females)
METHOD DETAILS

Cell culture and western blots
pEGFP-C1-Stbm and pEGFP-C1-StbmDPDZbm were generated by amplifying the Stbm C-terminal intracellular tail (encoding the

last 285 amino acids for the full-length tail) from genomic DNA (from w1118 flies) and cloning into the BglII and EcoRI sites of

pEGFP-C1 (Clontech). pEGFP-C1-Fmi and pEGFP-C1-FmiDPDZbmweremade by amplifying theC-terminal intracellular tail (encod-

ing the last 527 amino acids for the full-length tail) of Fmi from cDNA and cloning into the XhoI and EcoRI sites of pEGFP-C1.

pmCherry-C1-Snx27 was made by amplifying Snx27-RA from cDNA and cloning into the NotI and BamHI sites of pmCherry-C1

(Clontech).

Cells were transfected or transducedwith the desired GFP-tagged ormCherry-tagged constructs and immunoprecipitations using

GFP traps were carried out as previously described [18]. Western blots were performed using standard procedures. Detection was

carried out on a Li-Cor Odyssey Infrared scanning system using fluorescently labeled secondary antibodies. Primary antibodies were

mouse anti-SNX27 (Clone 1C6, Abcam, cat# AB77799, 1:500), mouse anti-GFP (Roche, cat# 11814460001, 1:1000) and mouse
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anti-mCherry (Abcam, cat# AB125096, 1:1000). Secondary antibodies were Alexa Fluor 680 goat anti-mouse IgG (Invitrogen, cat#

A21057, 1:10000) and Alexa Fluor 800 goat anti-rabbit IgG (Invitrogen, cat# SA535571, 1:10000). Immunoprecipitations were per-

formed on three independent biological replicates.

For pupal wing westerns, 28 hr APF pupal wings were dissected directly into sample buffer. One pupal wing equivalent was used

per lane. Westerns were probed with mouse monoclonal anti-Fmi 74 (DSHB [33],) and Actin AC-40 mouse monoclonal (Sigma, cat#

A4700, 1:5000). Secondary antibody was HRP-conjugated goat anti-mouse (DAKO, cat# P0447, 1:5000), and detection used

SuperSignal West Dura Extended Duration Substrate (Thermo Scientific, cat# 34075). A BioRad ChemiDoc XRS+ was used for im-

aging. Western blots were perfomed on four independent biological replicates. No sample size estimation was carried out, and no

data were excluded.

Generation of CRISPR/Cas9 Snx27 and Fam21 mutants, and EGFP-fmi knockin flies
CRISPR/Cas9 Snx27 and Fam21 mutants were designed using protocols from http://www.crisprflydesign.org and [41], and gRNAs

were designed using http://www.flyrnai.org/crispr2/. For Snx27 the following gRNAs were used: Snx27 gRNA1 – 50 GCGAGC

CATCCTCACGGC 30 and Snx27 gRNA2 – 50 ATCGAAGAGACGCCAATCC 30. Guide RNAs were separately cloned into the pCFD3

vector (http://www.crisprflydesign.org/grna-expression-vectors/ and http://www.addgene.org/Simon_Bullock/) and co-injected

into nos-Cas9 (Bloomington: 54591) embryos by the University of Cambridge Department of Genetics. Progeny were screened by

PCR and sequenced, and one mutant allele was obtained, Snx2725.

For the Fam21 knockout, CRISPR/Cas9 was used to generate a 4699 bp deletion, which removes the Fam21 50UTR and all of the

coding sequence except the last 36 bp. Gibson assembly was used to insert 1 kb homology arms into the 50 and 30 multiple cloning

sites of pTV3 (a simplified version of pTVcherry described in [42]. pTV3 sequence available on request) to generate pTV3-Fam21. Two

CRISPR targets within proximity of the homology arms, andwithin the sequence to be deleted, were chosen based on their efficiency

and lack of off targets. The 50 CRISPR target sequence was GCAGGCTTAGGGATGAGCGT (on the plus strand) and the 30 CRISPR
target sequence was TTTGATGGAATGGTAGCAGT (on the minus strand). These protospacer sequences were cloned into

the pCFD4 vector [41] to generate pCFD4-Fam21. pTV3-Fam21 and pCFD4-Fam21 were mixed 1:1 and injected at a con-

centration of 500 ng/ul into nos-Cas9 (Bloomington: 54591) embryos by Bestgene. The resulting ‘founder’ adult males were crossed

to y w; G, bc / CyO and the progeny were screened for mCherry fluorescence, which indicates successful targeting. Knockout alleles

were verified by sequencing.

EGFP was knocked into the endogenous fmi locus by homologous recombination. The sequence for EGFP was inserted into the

pRK2 targeting vector [43], such that EGFP is upstream of the LoxP-white-LoxP cassette. Homology arms of approximately 3 kb of

genomic DNA for fmi were inserted on either side, inserting EGFP 5 amino acids downstream of the PRO domain and 7 amino acids

upstream of the first cadherin repeat, after amino acid Q355.

Targeting vectors were introduced into the genome by P-element mediated transgenesis, to produce donor strains. Homologous

recombination was carried out as described by [43]. Targeted lines on the correct chromosome were verified by PCR of EGFP, and

the white marker gene was excised by Cre-Lox recombination, leaving a single LoxP site downstream of EGFP.

Transgenics
Drosophila Snx27 cDNA (LD13361 Berkeley Drosophila Genome Project) was cloned into pEGFP-C1 (Clontech). GFP-Snx27 was

then cloned into the tub-MCS vector and tub-GFP-Snx27 was integrated into the genome via P-element mediated transgenesis.

P[acman]-EGFP-stbm was made by inserting an in-frame EGFP tag upstream of the stbm ORF in P[acman]-stbm, using standard

recombineering methods, leaving a LoxP site between EGFP and the stbm ORF. For P[acman]-EGFP-stbmDPDZbm, the final three

amino acids of the stbm ORF were precisely deleted using recombineering with positive-negative selection. P[acman]-EGFP-stbm

and P[acman]-EGFP-stbmDPDZbm were integrated into the genome via FC31-mediated recombination into the attP40 landing site

and recombined with arm-lacZ FRT40 stbm6 or FRT40 stbm6 respectively.

Tomake arm-PRO-EGFP-fmi, cDNA from the stan-PA isoformwas used, which contains a PDZbmat its C terminus. PCRwas used

to insert EGFP in frame after Q355 in the N terminus of Fmi, 5 amino acids downstream of the predicted PRO cleavage site [44], and 7

amino acids upstream of the start of the first cadherin repeat. The ORF was then inserted downstream of the armadillo promoter and

upstream of a polyA sequence in a modified pAttB vector. PCR was used to delete the final three amino acids to make arm-PRO-

EGFP-fmiDPDZbm. arm-PRO-EGFP-fmi and arm-PRO-EGFP-fmiPDZbm were integrated into the genome via FC31-mediated

recombination into the attP40 landing site and recombined with FRT40 fmiE59 or arm-lacZ FRT40 fmiE45 respectively.

Transgenics were made by Bestgene or Genetivision.

Pupal wing immunostainings, imaging, and quantitation
Pupal wings were dissected at 28 hr after puparium formation (APF) at 25�C, or at 32 hr APF for trichomes [45]. Pupae were removed

from their pupal case and fixed for 25-60 min in 4% paraformaldehyde in PBS, depending on antibody combinations. Wings were

then dissected and the outer cuticle removed, and were blocked for 1 hr in PBS containing 0.2% Triton X-100 (PTX) and 10% normal

goat serum. Primary and secondary antibodies were incubated overnight at 4�C in PTX with 10% normal goat serum, and all washes

were in PTX. After immunolabelling, wings were post-fixed in 4% paraformaldehyde in PBS for 30 min. Wings were mounted in 25 ml

of PBS containing 10%glycerol and 2.5%DABCO, pH7.5. Antibodies used for immunolabelling weremousemonoclonal anti-Fmi 74

(DSHB [33],), rat anti-Stbm [34], affinity-purified rabbit anti-Fz [35], affinity-purified rat anti-Pk [36], rat anti-Dsh [37], mouse
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monoclonal anti-Armadillo (DSHB), affinity-purified rabbit anti-GFP (Abcam, cat# ab6556), rabbit anti-b-galactosidase (MP Biomed-

icals/Cappel, cat# 55976) and mouse monoclonal anti-b-galactosidase 40-1a (DSHB). Trichomes were stained using fluorescein

Phalloidin (Molecular Probes, cat# F-432) or Alexa Fluor 568 Phalloidin (Invitrogen cat# A12380). Pupal wingswere imaged on aNikon

A1R GaAsP confocal microscope using a 60x NA1.4 apochromatic lens. Nine Z-slices separated by 150 nm were imaged. Wings

from at least five independent animals were imaged for each experiment. No randomization, blinding or sample size estimation

was carried out, and no data were excluded.

Antibody internalisation
5.5 hr APF prepupal wings were dissected in Schneider’s Medium (SM; Thermo-Fisher, cat# 21720) containing 10% fetal bovine

serum (FBS; Sigma, cat# F4135) and transferred to a microtiter plate on ice. Medium was replaced with SM/FBS containing mouse

monoclonal Fmi antibody 71 [33], and wings were incubated at 4�C for 30 min. Wings were washed briefly in SM/FBS on ice, and

chased in 1 mL SM/FBS at room temperature (RT) for various times. Endocytosis was stopped by pipetting wings into SM/FBS at

4�C for 5min, and wings were then fixed in 4%paraformaldehyde/PBS for 20min. For detection of extracellular Fmi, tissue was incu-

bated in Cy2-conjugated anti-mouse secondary antibody in the absence of detergent, and post-fixed before adding Alexa 647-con-

jugated anti-mouse secondary antibody in the presence of 0.1% Triton X-100, for total Fmi staining. Wings were mounted in Mowiol

(Polysciences, cat# 17951) containing 2.5%DABCO. Pupal wings were imaged on a Nikon A1R GaAsP confocal microscope using a

60x NA1.4 apochromatic lens. Nineteen Z-slices separated by 150 nmwere imaged using constant confocal settings.Wings from ten

independent animals were imaged. No randomization, blinding or sample size estimation was carried out, and no data were excluded

FRAP
For FRAP, 5.5 hr APF prepupal wingweremounted in a small volume of SMcontaining 1.25%methyl cellulose (Sigma cat# 274429) to

reduce sample movement, and imaged within 45 min. Images were 256 3 256 pixels, with a pixel size of 100 nm, and a pinhole of

1.2 AU. ‘Hub-and-spoke’ ROIs of 3-4 mm2 were selected, that covered a vertex and 3 half-cell edges. Three pre-bleach images were

taken at 2 frames/sec, and ROIs were then bleached using a 488 nm Argon laser at 80%with 8 passes (1 s total time), which resulted

in 60%–75%bleaching. Immediately following bleaching, 5 images were taken at 5 s intervals, followed by 10 images at 10 s intervals

and 26 images at 15 s intervals. Laser power was adjusted to maintain constant power between different imaging sessions. Wings

from ten independent animals were imaged. Based on themean intensity and standard deviation of previous sets of wings, we deter-

mined that imaging at least 6wings per genotypewould allow detection of differences of 20% in themeans, in a pairwise comparison,

with a power of 0.8 and a 0.05 (using G*Power). No randomization or blinding was carried out. The last five or six time points from two

images were excluded, as the image moved out of focus during imaging.

QUANTIFICATION AND STATISTICAL ANALYSIS

Where the sample sizewas large enough, a D’Agostino and Pearson normality test was used to determine if the data fitted to a normal

distribution. All datasets analyzed had a normal distribution, so parametric statistical tests were performed.

Quantification of western blots
Band intensities from four biological replicates were quantified using ImageJ. Data were compared using unpaired t tests.

Quantification of membrane intensity and polarity in pupal wings
The three brightest slices around apicolateral junctions were selected and averaged for each channel in ImageJ. Membrane masks

were generated in Packing Analyzer [46], and MATLAB scripts were used to calculate mean membrane intensity for mutant or wild-

type regions of each wing [22]. Polarity magnitude (maximum asymmetry ratio on a cell-by-cell basis) and variation in polarity angle

were also calculated using MATLAB [22]. Error bars represent standard deviation. Values were compared between control and

mutant regions of the same wings using paired t tests. Alternatively, one sample t tests were used to determine if the ratio of signal

between mutant and wild-type regions of the same wing differed from 1.0 (p % 0.05 *, p % 0.01 **, p % 0.001 ***).

Quantification of antibody internalisation
For quantification of extracellular staining, ImageJ was used to select and average the three brightest slices around apicolateral

junctions, and to measure total signal in mutant or wild-type regions of each wing. Laser-off background was subtracted, and the

readings were normalized to 1.0 at the 0 min time point for each genotype. Error bars represent standard deviation, and ANOVA

with Dunnett’s multiple comparisons test was used to compare intensities to the 0 min control (p % 0.05 *, p % 0.01 **, p %

0.001 ***).

Intracellular puncta were quantified from three slices just below the level at which junctional staining was no longer visible. A modi-

fied version of our MATLAB script [22] was used to find a threshold value that resulted in 1% of the total area in wild-type wings being

identified as puncta. The same threshold value was then applied tomutant tissue of the samewing. The number, size, and intensity of

puncta was determined, and error bars represent standard deviations. One sample t tests were used to determine if the ratio of values

between mutant and wild-type regions of the same wing differed from 1.0 (p % 0.05 *, p % 0.01 **, p % 0.001 ***).
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FRAP processing
ImageJ was used to manually reselect up to six bleached regions in each image for each time point. The laser off background was

subtracted, and the values were corrected for acquisition bleaching and normalized against the average of the prebleach values.

Data were then plotted on an xy graph using Prism (v7 Graphpad) and bleached regions within the same wing were averaged. A

two-phase exponential curve was fitted for each wing, as this was preferred over a one-phase exponential fit in Prism. Ten wings

(n = 10) were then combined per genotype and an exponential association curve was fitted. Curves were compared using an

extra-sum-of-squares F test (p % 0.05 *, p % 0.01 **, p % 0.001 ***).

DATA AND SOFTWARE AVAILABILITY

AMATLAB script for comparing puncta intensities in two regions of the samewing, using the same threshold value to identify puncta,

is supplied as Data S2.
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Figure S1. Effects of loss of Vps35, Snx1 and Snx6 on membrane-associated proteins. Related to Figure 1 
(A-D, G, H) 28 hr APF pupal wings carrying clones of Vps35 (A-D), Snx1 (G) or Snx6 (H), marked by loss of ß-
gal immunolabelling (blue). (A, B, D) Wings immunolabelled for Stbm in green and Fz (A), Pk (B) or Arm (D) 
in red. (C) Wings immunolabelled for Fmi in green and Dsh in red. (G, H) WIngs immunolabelled for Fmi in 



green and Stbm in red. (B') High magnification image of wild-type and mutant regions immunolabelled with Pk  
and used to quantitate polarity. (B'') Polarity nematic showing the magnitude and angle of polarisation for each 
cell. Scale bar 10 µm. 
(E, I) Quantitation of mean intensity of membrane labelling for the genotypes in A-D, G, H. (E) Wings 
immunolabelled for Fz (green dots), Pk (pale blue dots), Dsh (dark blue dots) or the non planar polarity protein 
Armadillo (purple dots). (I) Wings immunolabelled for Fmi (red dots) and Stbm (orange dots). Intensity is 
shown as a ratio of signal in mutant tissue compared to wild-type in each wing, error bars are SD. One-sample t-
tests were used to determine if the ratio differed from 1.0. *p<0.05. 
(F) Quantitation of polarity in Vps35 pupal wing clones immunolabelled for Pk, levels of which are not 
significantly decreased within the clone (see panels B and E). Graphs show mean polarity and variation in 
polarity angle, in wild-type and Vps35 mutant tissue. Values from the same wing are linked by black bars, mean 
and SD are listed. Paired t-tests were used to compare values in the same wing, **p<0.01. Like wings 
immunolabelled for Fmi (Fig. 1E), mean polarity and variation in polarity angle are significantly different in 
Vps35 tissue than in wild-type tissue, suggesting that the polarity measurements are not affected by overall 
levels of protein at the junctions. 
 (J) Diagram of the Fam21 locus, showing the exon structure and the position of the gRNAs used for 
CRISPR/Cas9 gene editing, which results in a replacement of the entire coding sequence of Fam21, except the 
final 36bp, by a pax-mCherry selection cassette. (J') Agarose gel showing PCR products after amplification of 
genomic DNA from wild-type and Fam21 homozygous mutant flies. The PCR product in Fam21 flies is smaller 
than in wild-type flies, as expected. 
See Data S1 for all statistical comparisons. 



 

 

Figure S2. Effect of loss of Snx27 on overall Fmi levels and on other membrane-associated proteins. 
Related to Figure 3 

(A) Diagram of the Snx27/CG32758 locus showing the 3 predicted isoforms. The sequence encoding the PDZ, 
PX and FERM domains is indicated above. Another gene (CG15773) is present in the first intron of CG32758-
RA, so the Snx27 knock-out was made by deleting the C-terminal exons, using two gRNAs targeting the 
indicated locations. (A') Agarose gel showing PCR products after amplification of genomic DNA from wild-



type and Snx27 homozygous mutant flies. The PCR product in Snx27 flies is smaller than in wild-type flies, as 
expected.  

(B-C) Immunoblot (B) and quantitation of protein levels (C) from pupal wing extracts from wild-type and Snx27 
flies, probed for Fmi and Actin. Quantitation was from 4 biological replicates, and samples were compared by 
unpaired t-test, *p<0.05. 
(D-G) 28 hr APF pupal wings carrying clones of Snx27, marked by loss of GFP (green). (D-F) Wings 
immunolabelled for Fmi in blue and Fz (A), Pk (B) or Dsh (C) in red. (G) Wings immunolabelled for Stbm in 
red and the non-planar polarity protein Armadillo in blue. Scale bar 10 µm. 
(I) 28 hr APF pupal wing expressing tub-GFP-Snx27 (GFP immunolabelling in green) and carrying clones of 
Snx27, marked by loss of RFP fluorescence (red). Wings immunolabelled for Fmi in blue.  
(H, J) Quantitation of mean intensity of membrane labelling for the genotypes in D-G, I and Figure 3A. (H) 
Wings immunolabelled for Fz (green dots), Pk (pale blue dots), Dsh (dark blue dots) or Armadillo (purple dots). 
(J) Wings immunolabelled for Fmi (red dots) or Stbm (orange dots), in the presence or absence of tub-GFP-
Snx27. Intensity is shown as a ratio of signal in Snx27 mutant compared to wild-type in each wing, error bars are 
SD. One-sample t-tests were used to determine if the ratio differed from 1.0. ***p<0.001. 
See Data S1 for all statistical comparisons. 
 

  



 

Figure S3. Stbm levels are regulated by retromer independently of Snx27. Related to Figure 3 

(A, B, C, D) 28 hr APF pupal wings carrying clones of Snx27 marked by loss of RFP fluorescence (red), and 
clones of Vps35MH20 marked by loss of ß-gal immunolabelling (blue). Wings immunolabelled for Fmi (A, C) or 
Stbm (B, D) in green. (A, B) Snx27 clones adjacent to Vps35 clones. Stbm levels are reduced in Vps35 clones 
compared to Snx27 clones, while Fmi levels are similar. (C, D) Clones of Vps35 (loss of blue labelling) next to 
tissue mutant for both Snx27 and Vps35 (loss of red and blue labelling). Levels of Fmi and Stbm are similar in 
both regions. Scale bar 10 µm. 
(E, F) Quantitation of mean intensity of Fmi (red dots) or Stbm (orange dots) immunolabelling at membranes 
for the immunolabellings shown in A, B, C and D. Intensity is shown as a ratio of signal in Vps35 mutant 
compared to Snx27 mutant in each wing (E), or as ratio of signal in Snx27 Vps35 double mutant compares to 
Vps35 single mutant (F). Error bars are SD, one-sample t-tests were used to determine if the ratio differed from 
1.0, ***p<0.001. 
(G) 28 hr APF pupal wings carrying clones of Vps26, marked by loss of RFP fluorescence (red). WIngs 
immunolabelled for Fmi in green and Stbm in blue. (G) shows immunolabelling in the junctional region and (G') 
shows immunolabelling more basally. Intracellular puncta containing Fmi, but not Stbm, are visible in Vps26 
mutant tissue. Such large intracellular puncta are never seen in Snx27 mutant tissue, possibly because Fmi never 
engages with the recycling machinery in this situation and is rapidly degraded in the lysosome. Intracellular 



puncta are also rarely seen in Vps35 mutant tissue. We hypothesise that in Vps26 mutant tissue, Fmi binds to its 
cargo adaptor Snx27 and is retained in the endosomal system. 
(H) Quantitation of mean intensity of Fmi (red dots) or Stbm (orange dots) membrane labelling in pupal wing 
clones of Vps26. Intensity is shown as a ratio of signal in Vps26 mutant compared to wild-type in each wing. 
Error bars are SD, one-sample t-tests were used to determine if the ratio differed from 1.0, ***p<0.001. 
See Data S1 for all statistical comparisons. 



 

Figure S4. Stbm lacking its PDZ binding motif is sensitive to loss of Snx27. Related to Figure 3 

(A) 28 hr APF pupal wings with twin clones of P[acman]-EGFP-stbm, marked by ß-gal immunolabelling in 
blue, next to P[acman]-EGFP-stbm∆PDZ binding motif (∆PDZbm), in a stbm6 mutant background. Images 
immunolabelled for EGFP in green. Scale bar 10 µm. 
(B) Quantitation of mean intensity of membrane labelling of EGFP-Stbm (A). Intensity is shown as a ratio of 
signal in ∆PDZbm compared to full-length protein in each wing, error bars are SD. One-sample t-tests were 
used to determine if the ratio differed from 1.0, no significant differences were seen. 
(C, D) 28 hr APF pupal wings expressing P[acman]-EGFP-stbm (C) or P[acman]-EGFP-stbm ∆PDZ binding 
motif (∆PDZbm) (D), in a stbm6 mutant background. Clones of Snx27 are marked by loss of RFP (red) and 
EGFP fluorescence is in green. Levels of both EGFP-Stbm and EGFP-Stbm∆PDZbm decrease in Snx27 clones.  
(E) Quantitation of mean intensity of EGFP-Stbm at membranes for the genotypes in C and D. Intensity is 
shown as a ratio of EGFP signal in Snx27 mutant compared to wild-type in each wing. Error bars are SD. One-
sample t-tests were used to determine if the ratio differed from 1.0, ***p<0.001. 
See Data S1 for all statistical comparisons. 
  



 
 wild-type EGFP-fmi Significance 

Plateau 0.60 
0.50 - 1.22 

0.30 
0.28 - 0.37 

0.006 

Fast half-life 9.2 s 
2.4 - 21.8 s 

2.7 s 
0.0 - 11.2 s 

0.23 

Slow half-life 313 s 
204 - 1029 s 

144 s 
107 - 292 s 

0.07 

Percent Fast recovery 15.2 
11.9 - 18.5 

24.1 
18.9 - 32.2 

different 
(model for Percent Fast the 

same cannot be fitted} 
 
Table S1. Summary of FRAP data. Related to Figure 4 

Recovery was fitted to a two-phase exponential curve. Plateau values, fast and slow half lives and the 
percentage recovery due to the fast phase are shown, together with 95% confidence intervals. Curves were 
compared using an extra-sum-of squares F test. Note that the curves do not reach a plateau in the time course of 
the experiment, so the plateaux and half lives are extrapolated, leading to wide 95% confidence intervals. 
Related to Figure 4I. 
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