Supplementary Information

Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis

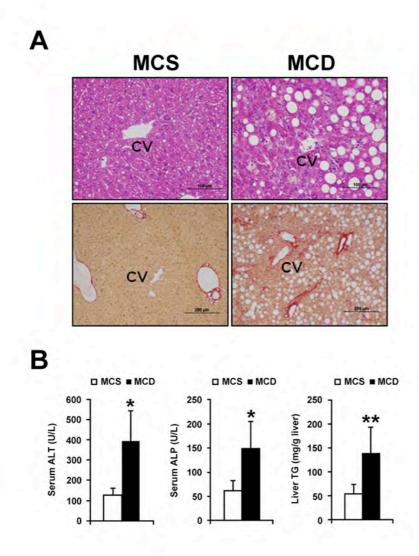
Naoki Tanaka, Tsutomu Matsubara, Kristopher W. Krausz, Andrew D. Patterson, and Frank J. Gonzalez

Gene	GeneBank Accession Number		Primer Sequence (5'-3')
8S	NR_003278	F	ATTGGAGCTGGAATTACCGC
		R	CGGCTACCACATCCAAGGAA
bcb11	NM_021022	F	CCAGAACATGACAAACGGAA
bcc1	NM_008576	R F	AAGGACAGCCACACCAACTC GATGGCTCCGATCCACTCT
		R	AGGTAGAAACAAGGCACCCA
bcc2	NM 013806	F	TCCAGGACCAAGAGATTTGC
		R	TCTGTGAGTGCAAGAGACAGGT
Abcc4	NM_009804	F	AGCTTCAACGGTACTGGGATA
		R	TCGTCGGGGTCATACTTCTC
lbcc5	NM_013790	F	GCCCTGGGTACAGAAGTGAC
lox12	NM 007440	R F	TCTTGGCATTCCAACGATCT GATCACTGAAGTGGGGGCTGT
10/12		R	CACACATGGTGAGGAAATGG
Alox12b	NM 009659	F	CTTCCCAGCTTACCAGTGGA
		R	GGATAGGGAGTGTGTCGTCTG
lox15	NM_009660	F	CGGTCTACTTGTCTCCCTGC
41 171		R	ATCCGCTTCAAACAGAGTGC
lox15b	NM_009661	F	CGCCAGAAGGAGCTTGAGT
ybb	NM 007807	R F	TCACAGTCTCGTGGTCAAGG CTTTCTCAGGGGTTCCAGTG
yuu		R	TGCAGTGCTATCATCCAAGC
yp7a1	NM_007824	F	GGGAATGCCATTTACTTGGA
	—	R	GTCCGGATATTCAAGGATGC
yp8b1	NM_010012	F	TCCTCAGGGTGGTACAGGAG
a a 1		R	GATAGGGGAAGAGAGCCACC
yp27a1	NM_024264	F R	CTATGTGCTGCACTTGCCC
gr1	NM_007913	F	GGGCACTAGCCAGATTCACA GAGCGAACAACCCTATGAGC
511		R	TGGGATAACTCGTCTCCACC
2npp2	NM_015744	F	TCGAGGGCGAGAGAAGTTTA
	—	R	AAAAGAATGTCCCGGCTCTC
16	NM_031168	F	TGATGCACTTGCAGAAAACA
~ ~ t	NIN 000400	R	ACCAGAGGAAATTTTCAATAGGC
cat	NM_008490	F R	GGTTTTATCTCTCTCGGGGGC TATGTTGGACAGGATGGGGA
Lpcat1	NM_145376	F	CACGAGCTGCGACTGAGC
pour	100_10070	R	ATGAAAGCAGCGAACAGGAG
pcat2	NM_173014	F	ACCTGTTTCCGATGTCCTGA
-	—	R	CCAGGCCGATCACATACTCT
Lpcat3	NM_145130	F	AGCCTTAACAAGTTGGCGAC
pcat4	NM 207206	R F	GAGTTACACCTCTCCGGCCT
pcal4	INIVI_207200	г R	GGCCAGAGGAGAAAGAGGAC
ypla1	NM_008866	F	CCTTCACGGATTGGGAGATA
JT		R	GGGGCATGTGGACAGATGTA
)stb	NM_178933	F	AGAGAAAGCTGCAGCCAATG
1 10 1		R	CCAGGACCAGGATGGAATAA
lc10a1	NM_011387	F	AGGGGGACATGAACCTCAG
lco1a1	NM_013797	R F	TCCGTCGTAGATTCCTTTGC ACTCCCATAATGCCCTTGG
100141		г R	TAATCGGGCCAACAATCTTC
lco1b2	NM_020495	F	ACCAAACTCAGCATCCAAGC
		R	TAGCTGAATGAGAGGGGCTGC
`gfb1	NM_011577	F	GGAGAGCCCTGGATACCAAC
	NM 013693	R F	CAACCCAGGTCCTTCCTAAA CCACCACGCTCTTCTGTCTAC
'nfa			

Supplementary table 1. Primer pairs used for qPCR

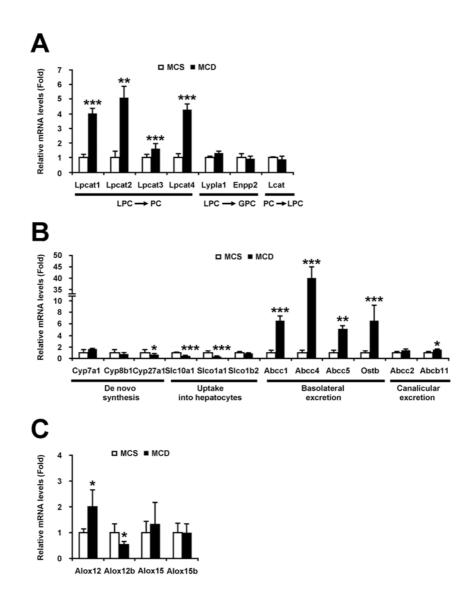
F, forward sequence; R, reverse sequence.

Increase	ed ions				
Rank	RT	Found	Identity	Mass error	Elemental
	(min)	(m/z)	-	(ppm)	Composition
1	4.71	319.2271	12-Hydroxyeicosatetraenoic acid	0.63	C20H32O3
2	2.55	514.2843	Tauro-β-muricholate	0.97	C26H45NO7S
3	2.92	514.2829	Taurocholate	1.75	C26H45NO7S
4	5.97	279.2318	Linoleic acid	2.15	C18H32O2
5	6.44	281.2474	Oleic acid	2.49	C18H34O2
6	0.31	92.9297	Not determined		
7	0.26	112.9862	Not determined		
8	5.81	327.2319	Docosahexaenoic acid	1.53	C22H32O2
9	6.44	381.1738	Not determined		
10	2.09	187.0977	Azelaic acid	3.74	C9H16O4
	sed ions				
Rank	RT	Found	Identity	Mass error	Elemental
	(min)	(m/z)		(ppm)	Composition
1	5.40	568.3615	Stearoyl-LPC (18:0-LPC)	0.18	C27H56NO9P
2	4.78	540.3303	Palmitoyl-LPC (16:0-LPC)	0.37	C25H52NO9P
3	4.94	566.3463	Oleoyl-LPC (18:1-LPC)	0.88	C27H54NO9P
4	4.53	612.3291	Docosahexanoyl-LPC (22:6-LPC)	1.63	C31H52NO9P
5	4.57	564.3303	Linoleoyl-LPC (18:2-LPC)	0.35	C27H52NO9P
6	0.30	215.0321	Not determined		
7	4.57	588.3306	Arachidonoyl-LPC (20:4-LPC)	0.85	C29H52NO9P
8	4.54	500.2777	Not determined		
9	7.38	745.5478	Not determined		
10	4.40	538.3137	Palmitoleoyl-LPC (16:1-LPC)	1.49	C25H50NO9P


Supplementary table 2. Top ten of serum ions that were significantly altered in mice treated with MCD diet for 2 weeks compared with in mice treated with MCS diet

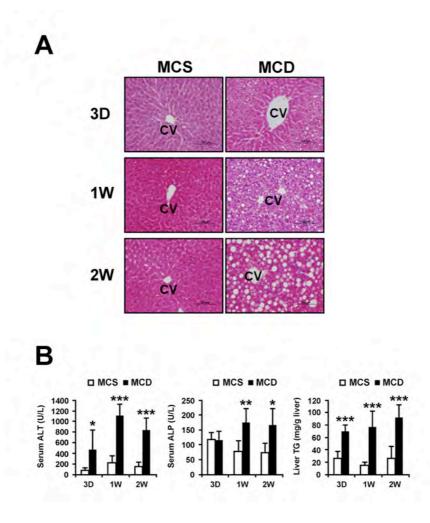
The ion ranking, based on OPLS analysis, shows the highest confidence and greatest contribution to separation between MCD and MCS diet treatment. RT, retention time; LPC, lysophosphatidylcholine.

Supplementary figure 1. Histological and biochemical findings in mice with 8-week MCD diet treatment

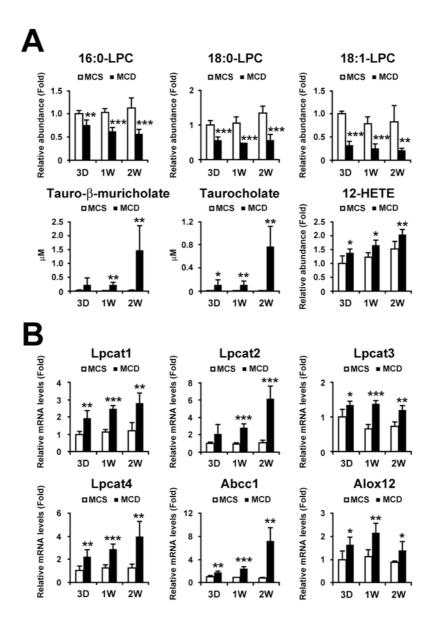

(A) Liver histology. Liver sections were stained by the hematoxylin and eosin (upper rows) and Sirius red methods (lower rows), respectively. Bars represent 100 μ m (upper row) and 200 μ m (lower row), respectively. CV, central vein.

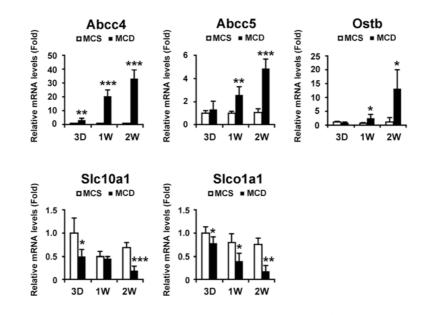
(B) Serum levels of ALT and ALP and hepatic TG contents. Statistical analysis was performed using the two-tailed Student's *t*-test (n = 4 in each group). *, P < 0.05; **, P < 0.01.

Supplementary figure 2. Hepatic mRNA levels of genes associated with metabolism of LPC (A), bile acids (B) and 12-HETE (C) in mice with 2-week MCD diet treatment

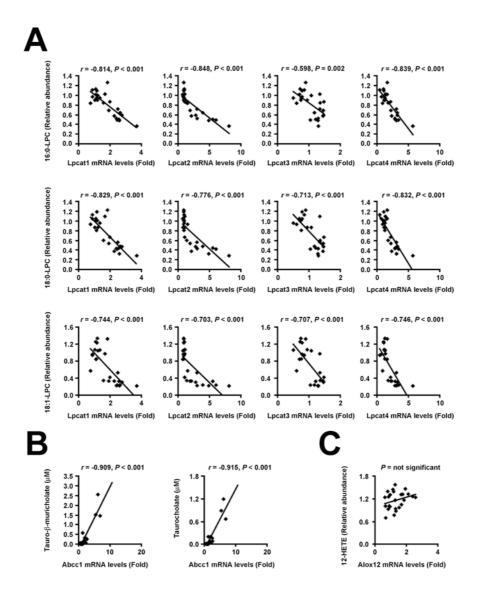

The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice. Statistical analysis was performed using the two-tailed Student's *t*-test (n = 4 in each group). *, P < 0.05; **, P < 0.01; ***, P < 0.001; PC, phosphatidylcholine; GPC, glycerophosphocholine.

Supplementary figure 3. Histological and biochemical findings in mice with 3-day, 1-week, and 2-week MCD diet treatment


(A) Liver histology. Liver sections were stained by the hematoxylin and eosin method. Bars represent 100 μ m. CV, central vein.


(B) Serum levels of ALT and ALP and hepatic TG contents. Statistical analysis was performed using the two-tailed Student's *t*-test in the same treatment period (n = 5 in each group). *, P<0.05; **, P<0.01; ***, P<0.001.

Supplementary figure 4. Time course of serum metabolite concentrations (A) and mRNA levels of the related genes (B)


In panel (A), the levels of LPC and 12-HETE were normalized to those of mice with 3-day MCS diet treatment and were expressed as relative abundance. In panel (B), the mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of mice with 3-day MCS diet treatment. Statistical analysis was performed using the two-tailed Student's *t*-test in the same treatment period (n = 5 in each group). *, P < 0.05; **, P < 0.01; ***, P < 0.001.

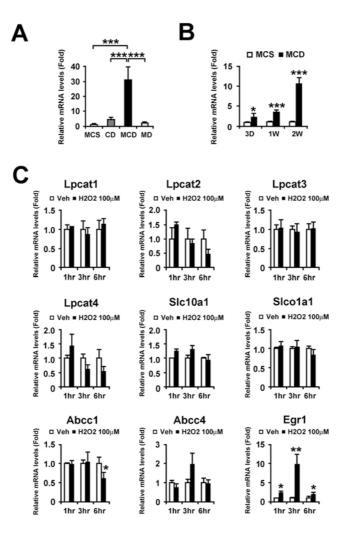
Supplementary figure 5. Correlation between serum LPC, bile acids, and 12-HETE and the mRNA levels of the related genes.

Data obtained from mice with MCD or MCS diet treatment for 3 days, 1 week, and 2 weeks were adopted (n = 30). Correlation coefficients were calculated by means of the Pearson's method.

Supplementary figure 6. Hepatic expression of pro-inflammatory cytokines in NASH

(A) The effect of methionine and choline supplementation to MCD diet treatment on the mRNA levels of pro-inflammatory cytokines. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of MCS-treated mice. Statistical analysis was performed using the one-way ANOVA with Tukey's test (n = 5 in each group). *, P < 0.05; **, P < 0.01; ***, P < 0.001; MD, methionine-deficient treatment; CD, choline-deficient treatment.

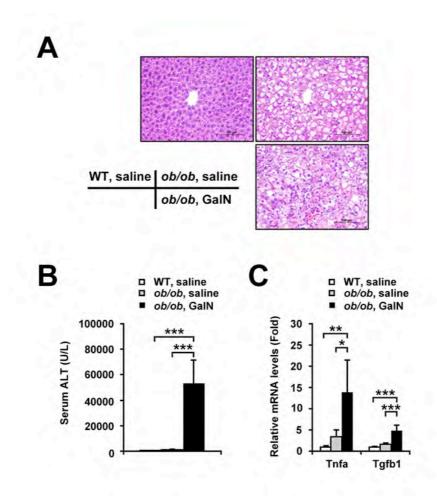
(B) Time course of the mRNA levels of pro-inflammatory cytokines. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of mice with 3-day MCS diet treatment. Statistical analysis was performed using the two-tailed Student's *t*-test in the same treatment period (n = 5 in each group). *, P < 0.05; **, P < 0.01; ***, P < 0.001.



Supplementary figure 7. Hepatic expression of NADPH oxidase 2 (Cybb) in NASH and the changes in the expression of Lpcats and bile acid transporters by H2O2 in primary hepatocytes

(A) The effect of methionine and choline supplementation to MCD diet treatment on the Cybb mRNA levels. Statistical analysis was performed using the one-way ANOVA with Tukey's test (n = 5 in each group). ***, P<0.001; MD, methionine-deficient treatment; CD, choline-deficient treatment.

(B) Time course of the mRNA levels of Cybb. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of mice with 3-day MCS diet treatment. Statistical analysis was performed using the two-tailed Student's *t*-test in the same treatment period (n = 5 in each group). *, P < 0.05; ***, P < 0.001.


(C) Primary hepatocytes were treated with H2O2 (100 μ M) for 1, 3, and 6 hours, respectively, and harvested to extract total RNA. The mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of vehicle-treated hepatocytes in the same time point. Early growth response 1 (Egr1) mRNA levels were used as a positive control. Statistical analysis was performed using the two-tailed Student's *t*-test in the same period (n = 3 in each group). *, *P*<0.05 ; **, *P*<0.01.

Supplementary figure 8. Phenotypical changes in *ob/ob* mice with D-galactosamine (GalN) injection

(A) Liver histology. Liver sections were stained by the hematoxylin and eosin method. Bars represent 100 μ m. WT, C57BL/6J wild-type mice.

(**B** and **C**) Serum ALT levels and hepatic mRNA levels of pro-inflammatory cytokines. Statistical analysis was performed using the one-way ANOVA with Tukey's test (n = 5 in each group). *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Supplementary figure 9. Changes in serum metabolite concentrations (A) and mRNA levels of the related genes (B) in *ob/ob* mice with GalN injection

In panel (A), serum levels of LPC were normalized to those of C57BL/6J wild-type (WT) mice with vehicle injection and were expressed as relative abundance. TMC β and TC indicate tauro- β -muricholate and taurocholate, respectively. In panel (B), the mRNA levels were normalized to those of 18S ribosomal mRNA and subsequently normalized to those of WT mice with vehicle injection. Statistical analysis was performed using the one-way ANOVA with Tukey's test (n = 5 in each group). *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001.

