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Supplementary Results 
 
Next to linear models we employed convolutional neural networks (CNN) to model the 
relationship between DNA methylation and splicing. Using this CNN approach we aimed to 
get more insights into the complex relationship between DNA methylation and the increased 
or decreased splicing rates. 
    
For each exon, a sequence window of ±400 bp around the centre of the alternative exon 
was used to train a CNN that predicts inclusion (PSI ≥ 1/3) and exclusion (PSI < 1/3) of the 
alternative exon. We chose this sequence region since the linear models revealed the 
relevance of the alternative exon when predicting splicing rates. In addition, the alternative 
exon has been used in previous analyses [1, 2]]. As most exons are shorter than 200 bp [3], 
the chosen sequence region mostly covers the whole exon as well as the most relevant 
regions from the adjunctive introns. Besides using a four-letter code for the four DNA bases, 
we also integrated methylation data in a five-letter code that includes methylated (‘M’) and 
un-methylated (‘U’) cytosines (Methods). The sequences of both four-letter and five-letter 
code were one-hot encoded and multiplied with the conservation score of the region, as 
derived from BRIE.  
      
We obtained scores for each position of the sequence by a sliding window approach of 58 
filters of length 10 bp. A bias of 1 was added. The rectified linear unit (relu) was used as 
activation function. Subsequent layers include a maximum pooling step with pooling length 
of 8 bp and a hidden layer with 50 nodes. 
      
The cassette exons were split into training, validation and test set (60%, 20%, 20%). The 
model was trained until weight convergence (patience: 3 iterations, maximum: 10 iterations). 
      
The five-letter code model performed slightly better than the four-letter code model 
(AUC=0.912 and 0.908, respectively) (Figure S6). Similar to the linear models that predict 
inclusion and exclusion of the alternative exon, the methylation information does not improve 
predictability of splicing much. The CNN performances are comparable to state-of-the-art 
models that were applied to bulk data [1, 2]. To our knowledge this is the first CNN trained 
on single-cell splicing data, and that allows inclusion of DNA methylation information to 
improve prediction of splicing levels.  
 
Here we show that a deep neural network can be used to predict single-cell splicing with 
good performance. The inclusion of methylation information by designing a five-letter 
alphabet that includes methylated and unmethylated cytosines led to a minimal improved 
prediction of splicing levels. To make this model, accessible to the scientific community we 
uploaded it to the kipoi.org model zoo[4], so it can be employed to make regulatory gene 
predictions using genomic and epigenomic variation.  
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Supplementary figures 
 

 
 
Fig S1. Number of detected exon skipping events (minimum coverage five reads) versus the 
number of reads per single cell, for iPS (blue) and endoderm (orange) cells, respectively.  
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Fig S2. Additional results for the single-exon association analysis between DNA methylation 
and splicing. a. Distributions of positive and negative associations between DNA methylation 
and splicing per sequence context for iPS and endoderm cassette exons, respectively. b. 
Upset plot showing the overlap between associations found in multiple sequence contexts 
including effect directions (in iPS cells). Unique associations for a specific set are not shown. 
c. Upset plot showing the overlap between associations found in multiple sequence contexts 
including effect directions (in endoderm cells). Unique associations for a specific set are not 
shown. 
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Fig. S3. Scatter plots between observed and predicted single-cell splicing rates and Pearson 
r2 of splicing predictions for iPS, endoderm and mouse cells (columns). The three alternative 
regression models are based on different predictive features (rows): a. Only genomic 
features. b. Genomic features and mean methylation information across cells. c. Genomic 
features and cell-matched methylation information.  
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Fig.S4. Pearson r2 of the linear models predicting pseudo-bulk splicing by aggregating read 
counts across cells. a. Performance for iPS (left) and endoderm cells (right). The model that 
includes DNA methylation information (r2=0.744, r2=0.729 at iPSC and endoderm) yields 
comparable prediction accuracy to the model without DNA methylation information 
(r2=0.745, r2=0.733, respectively). b. Performance for mouse cells. The model that includes 
DNA methylation information (r2=0.56) performs worse in terms of prediction accuracy than 
model without DNA methylation information (r2=0.489). 
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Fig.S5. Regression-based prediction of single-cell splicing variation in mouse cells. a. 
Prediction accuracy (r2 based on 10-fold CV) of alternative regression models for predicting 
single-cell splicing rates. The genomic model is based on sequence k-mers, conservation 
scores and lengths of contexts (size of the cassette exon, length of flanking introns) as 
features (genomic features, dark blue). Other models account for average methylation rates 
across cells (genomic & mean methylation, blue), or cell-specific methylation rates (genomic 
& cell methylation, light blue). Error bars denote plus or minus one standard deviation across 
four repeat experiments. b. Correlation between features predictive of splicing and PSI. The 
features are ranked by relevance for predicting splicing as determined by single-feature 
regression models trained on single cells. Positive correlation shows increased alternative 
exon inclusion with an increased feature score.  
   



 
9 

 
 
Fig. S6. AU-ROC curves and AUCs of a CNN when predicting splicing from genomic 
sequences in iPS cells. a. Performance of the CNN based on only genomic information 
(four-letter code model). b. Performance of the CNN based on genomic and methylation 
information (five-letter code model).   
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Fig. S7. Prediction performance of alternative regression models for each splicing category 
in a. endoderm and b. mouse cells. The model either considers genomic features 
('genomic’), genomic and all DNA methylation features ('genomic & methylation') or only 
DNA methylation features ('methylation'). The genomic model includes k-mers, conservation 
scores and region lengths, the genomic and methylation model additionally includes DNA 
methylation features. The methylation model includes average DNA methylation features per 
sequence context. Splicing categories are coded in color as in Fig. 3a. Error bars denote 
plus or minus one standard deviation across four repeat experiments. 
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Fig. S8. AU-ROC curves and AUCs when predicting splicing categories with one-vs.-rest 
logistic ridge regression models and different sets of predictive features within iPS cells. The 
performances of each individual splicing category and the macro performance across all 
categories are shown. a. Genomic and DNA methylation features. b. Mean methylation 
features.  
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Fig. S9. The distribution of DNA methylation rates per sequence context or categories. a. 
The methylation rates in iPS for the overdispersed cassette exons across context, b. The 
methylation rates of the C1 region in endoderm across the splicing categories, c. The 
methylation rates in endoderm for the overdispersed cassette exons across context, d. The 
methylation rates of the C1 region in mouse cells across the splicing categories and e. The 
methylation rates in mouse cells for the overdispersed cassette exons across context. 
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Fig.S10. AU-ROC curves and AUCs when cross-predicting splicing categories across tissue 
types. Performance of predicting categories of exclusive iPS exons with a one-vs.-rest 
logistic ridge regression trained on all endoderm exons is shown. The performances of each 
individual splicing category and the macro performance across all categories are shown. 
Different sets of predictive features are used, namely a. genomic features, and b. genomic 
and methylation features.  
 
 



 
14 

 
 
Fig. S11. iPS cell versus endoderm cell DNA methylation rate differences of the splicing 
category-switching cassette exons. A significant decrease in DNA methylation rate is 
observed between the excluded iPS and excluded endoderm categories. [included (in), 
excluded (ex), multimodal (mult), overdispersed (over), underdispersed (under)] 
 
 
 


