Environ Health Perspect

DOI: 10.1289/EHP3766

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Estimates of the Global Burden of Ambient PM_{2.5}, Ozone, and NO₂ on Asthma Incidence and Emergency Room Visits

Susan C. Anenberg, Daven K. Henze, Veronica Tinney, Patrick L. Kinney, William Raich, Neal Fann, Chris S. Malley, Henry Roman, Lok Lamsal, Bryan Duncan, Randall V. Martin, Aaron van Donkelaar, Michael Brauer, Ruth Doherty, Jan Eiof Jonson, Yanko Davila, Kengo Sudo, and Johan C.I. Kuylenstierna

Table of Contents

Table S1. Description of meta-analyses identified during literature review.

Figure S1. Regional average fraction of asthmatics visiting emergency room in last year, according to combinations of World Health Organization regions and World Bank income categorizations. Estimates were calculated from country-specific survey data shown in Table 1. Low = low income; LM = low-middle income; UM = upper middle income; High = high income.

Figure S2. Demographic inputs to the health impact function. (a) Gridded population (all ages) in 2015; (b) Country-specific asthma prevalence rate (per 100,000 people) in 2015; (c) Frequency and cumulative distribution of locations (of 54 countries and Hong Kong) with fraction of asthmatics visiting emergency room in last year; (d) as for (c) but mapped, with countries lacking survey data assigned regional average rages.

Figure S3. Ozone and NO₂ concentrations from different sources. (a) Standard deviation of annual average of 8-hour daily maximum ozone concentrations (ppb) in 2010 among the five HTAP chemical transport models. (b) Ratio of annual average 24-hr average NO₂ concentrations to annual average of 1-2pm NO₂ concentrations in 2010 simulated with the GMI-Replay model at $2^{\circ}x2.5^{\circ}$ resolution. (c) Difference between annual average NO₂ concentration (ppb) in 2015 derived from two different satellite column NO₂ products (OMI/Aura – DOMINO).

Figure S4. Sensitivity of estimated pollution-attributable asthma ERVs to different RR estimates, for all ages and children. Confidence intervals (95%) reflect error in the RR estimate only.

Figure S5. Number of asthma emergency room visits and new asthma cases in each region in 2015 among all ages (left) and children ages 0-17 years (right).

Figure S6. Percent of global and regional asthma ERVs for all ages in 2015 that are attributable to anthropogenic ozone (top) and $PM_{2.5}$ (bottom), using RR central estimates from three epidemiological meta-analyses.

Figure S7. Country-specific asthma ERVs per 100,000 people in 2015 attributable to $PM_{2.5}$ - and ozone. Panels (a-c) show results using total concentrations and RR estimates from Orellano et al. (2017), Zhang et al. (2016), and Zheng et al. (2015), respectively. Panels (d-f) show results using anthropogenic concentrations and the same RR estimates. Circle size indicates country population size. Dotted line indicates 1:1 line.

Figure S8. Percent of global and regional asthma incidence among children in 2015 that are attributable to anthropogenic $PM_{2.5}$ (top) and NO₂ (bottom), using RR central estimates from three epidemiological meta-analyses. Regions are defined by World Health Organization regions.

Figure S9. Asthma incidence among children aged 0-17 years attributable to $PM_{2.5}$, using central RR estimates from Anderson et al. (2013) (a) Total concentrations, number of cases; (b) total concentrations, fraction of national asthma incidence; (c) anthropogenic concentrations, number of cases; (d) anthropogenic concentrations, fraction of national asthma incidence.

Supplemental Tables

Study	Pollutants	Health endpoint	Population	Study locations
Orellano et al. (2017)	Ozone, PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , CO	Asthma exacerbation	All ages	US, UK, Taiwan, China, Denmark, France, Canada, Australia, Italy, Spain, Turkey, Japan
Zheng et al. (2015)	Ozone, PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , CO	Asthma exacerbation	All ages, children, adults	Ireland, Spain, France, UK, Canada, US, India, Mexico, Croatia, Japan, Australia, Switzerland, Greece, China, Italy, Cuba, Brazil, Korea, Denmark, Netherlands
Zhang et al. (2016)	Ozone, PM _{2.5} , PM ₁₀ , NO ₂ , SO ₂ , CO	Asthma exacerbation	All ages, children, adults	China, Taiwan, Japan, Korea
Fan et al. (2016)	PM _{2.5}	Asthma exacerbation	Children, adults	US, Canada, Finland, Taiwan
Lim et al. (2016)	PM _{2.5}	Asthma exacerbation	Children	US, Canada, China, Denmark, Finland, Australia, Turkey
Favarato et al. (2014)	NO ₂ (traffic related)	Prevalence of asthma symptoms	Children	Spain, US, Netherlands, Sweden, South Korea, Germany, China, France, Czech Republic
Weinmayr et al. (2010)	NO ₂ , PM ₁₀	Prevalence of asthma symptoms	Children	Mainly US, Europe, and "other" not defined
Anderson et al. (2013)	PM _{2.5} , NO ₂	Asthma incidence	All ages, children	Sweden, Canada, Germany, US, UK, Norway, Netherlands
Bowatte et al. (2014)	PM _{2.5} , PM ₁₀ , black carbon, NO ₂ , NO, NOx (all traffic related)	Asthma incidence	Children	Norway, Sweden, Germany, Canada, Netherlands, US, Denmark, Spain
Jacquemin et al. (2015)	PM _{2.5} , PM ₁₀ , NO ₂ , traffic load, traffic intensity	Asthma incidence	All ages, adults	UK, Sweden, Netherlands, Germany
Khreis et al. (2017)	PM _{2.5} , PM ₁₀ , NO ₂ , NO ₃ , black carbon (all traffic related)	Asthma incidence	Children	Netherlands, Canada, US, Germany, Sweden, England, Norway, Italy, Japan, Taiwan, China, Korea
Gasana et al. (2012)	PM _{2.5} , PM ₁₀ , NO ₂ , NO _x , CO, SO ₂ (all traffic related)	Asthma incidence	Children	France, Canada, Italy, China, US, Germany, Norway
Takenoue et al. (2012)	NO ₂	Asthma incidence	Children	Brazil, Canada, US, Norway, France, China, Japan

Table S1. Description of meta-analyses identified during literature review.

Supplemental Figures

Figure S1. Regional average fraction of asthmatics visiting emergency room in last year, according to combinations of World Health Organization regions and World Bank income categorizations. Estimates were calculated from country-specific survey data shown in Table 1. Low = low income; LM = low-middle income; UM = upper middle income; High = high income.

0.0785 0.5200

Figure S2. Demographic inputs to the health impact function. (a) Gridded population (all ages) in 2015; (b) Country-specific asthma prevalence rate (per 100,000 people) in 2015; (c) Frequency and cumulative distribution of locations (of 54 countries and Hong Kong) with fraction of asthmatics visiting emergency room in last year; (d) as for (c) but mapped, with countries lacking survey data assigned regional average rages.

Figure S3. Ozone and NO₂ concentrations from different sources. (a) Standard deviation of annual average of 8-hour daily maximum ozone concentrations (ppb) in 2010 among the five HTAP chemical transport models. (b) Ratio of annual average 24-hr average NO₂ concentrations to annual average of 1-2pm NO₂ concentrations in 2010 simulated with the GMI-Replay model at $2^{\circ}x2.5^{\circ}$ resolution. (c) Difference between annual average NO₂ concentration (ppb) in 2015 derived from two different satellite column NO₂ products (OMI/Aura – DOMINO).

Figure S4. Sensitivity of estimated pollution-attributable asthma ERVs to different RR estimates, for all ages and children. Confidence intervals (95%) reflect error in the RR estimate only.

Incidence

Figure S5. Number of asthma emergency room visits and new asthma cases in each region in 2015 among all ages (left) and children ages 0-17 years (right).

Figure S6. Percent of global and regional asthma ERVs for all ages in 2015 that are attributable to anthropogenic ozone (top) and $PM_{2.5}$ (bottom), using RR central estimates from three epidemiological meta-analyses.

Figure S7. Country-specific asthma ERVs per 100,000 people in 2015 attributable to $PM_{2.5}$ - and ozone. Panels (a-c) show results using total concentrations and RR estimates from Orellano et al. (2017), Zhang et al. (2016), and Zheng et al. (2015), respectively. Panels (d-f) show results using anthropogenic concentrations and the same RR estimates. Circle size indicates country population size. Dotted line indicates 1:1 line.

Figure S8. Percent of global and regional asthma incidence among children in 2015 that are attributable to anthropogenic $PM_{2.5}$ (top) and NO_2 (bottom), using RR central estimates from three epidemiological meta-analyses. Regions are defined by World Health Organization regions.

Figure S9. Asthma incidence among children aged 0-17 years attributable to $PM_{2.5}$, using central RR estimates from Anderson et al. (2013) (a) Total concentrations, number of cases; (b) total concentrations, fraction of national asthma incidence; (c) anthropogenic concentrations, number of cases; (d) anthropogenic concentrations, fraction of national asthma incidence.