Supplementary Table S1. Recombinant RTA peptic peptides											
Peptide number (Pep#) and RTA amino acid residues start/end											
Pep#	start	end	Pep#	start	end	Pep#	start	end	Pep #	start	end
1	0	11	36	92	103	71	162	168	106	217	232
2	12	20	37	92	107	72	165	168	107	217	240
3	12	24	38	93	99	73	165	171	108	218	225
4	21	24	39	93	107	74	168	171	109	218	232
5	25	32	40	102	107	75	169	173	110	220	232
6	25	37	41	103	107	76	172	181	111	221	232
7	28	37	42	104	107	77	175	181	112	226	232
8	33	59	43	104	109	78	178	181	113	226	240
9	37	59	44	108	117	79	182	186	114	227	240
10	38	45	45	108	118	80	182	187	115	232	240
11	38	55	46	108	122	81	182	188	116	232	243
12	38	57	47	118	122	82	182	190	117	232	248
13	38	59	48	119	126	83	182	204	118	233	243
14	56	59	49	123	126	84	187	204	119	233	244
15	58	61	50	123	129	85	188	204	120	233	246
16	58	68	51	123	133	86	189	204	121	233	248
17	60	68	52	123	135	87	189	206	122	240	243
18	60	69	53	127	133	88	191	204	123	241	244
19	62	68	54	127	135	89	191	207	124	241	246
20	69	72	55	130	135	90	195	204	125	241	248
21	69	73	56	130	151	91	205	210	126	243	248
22	69	74	57	133	144	92	205	214	127	244	248
23	70	74	58	134	146	93	205	216	128	245	248
24	72	79	59	134	151	94	205	217	129	247	253
25	72	91	60	136	146	95	207	214	130	247	254
26	73	79	61	136	147	96	207	216	131	247	255
27	73	91	62	136	151	97	207	217	132	249	253
28	75	79	63	146	150	98	208	214	133	249	254
29	75	91	64	147	150	99	208	216	134	249	255
30	80	91	65	147	151	100	208	217	135	255	267
31	80	92	66	148	151	101	211	216	136	256	267
32	84	91	67	152	161	102	211	217	137	257	267
33	92	99	68	152	164	103	212	216	138	258	267
34	92	101	69	153	164	104	217	220			
35	92	102	70	162	167	105	217	225			

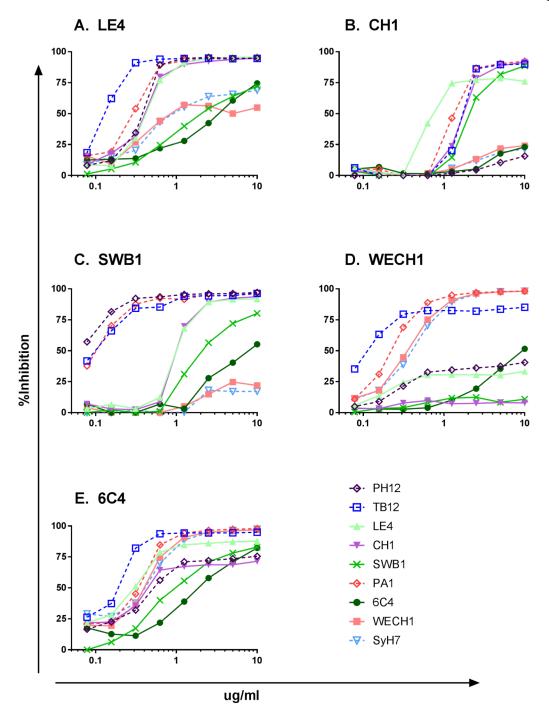
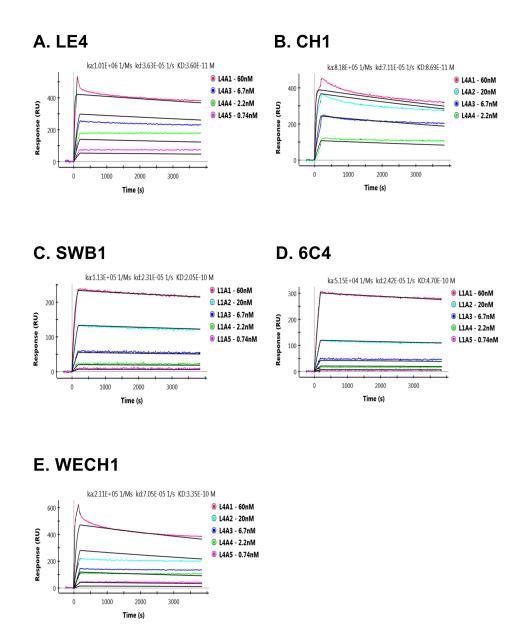



Figure S1. Epitope mapping by competition ELISA. Competition capture ELISAs in which microtiter plates were coated with the mAbs indicated in panels A-E and then challenged with soluble biotinylated in the presence of serial two-fold dilutions of competitor mAbs (μ g/ml). The degree to which the competitor mAb prevented of capture of biotinylated-ricin is indicated as % inhibition (y-axis).

Figure S2. Kinetics of Ricin binding by RTA mAbs. (Panels A-E) Sensorgrams from SPR analysis in which Ricin-coated chips (4μg/ml) were probed with indicated mAbs. The real-time binding was recorded as response units (RU) versus time. Binding was determined over a range of mAbs concentrations (nM); 60 (red), 20 (light blue), 6.7 (blue), 2.2 (green), and 0.74 (purple). The curves were fit using the Langmuir binding model with the ProteOn Manager software 3.1.0. (BioRad, Inc.)