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Laser induced heat 

 

When shining light with the 980-nm wavelength on a GNR located near the neural cell 

membrane, the light energy is absorbed by the GNR. Since neural tissue is transparent in the 

near-infrared region compared to GNRs, we assumed light interacts only with GNRs to generates 

thermal heat. The amount of heat generated from the single GNR can be solved by using Eq. 1, 

(1) 

 

𝑄𝐺𝑁𝑅 =
𝐶𝑎𝑏𝑠𝐼𝑙𝑎𝑠𝑒𝑟

𝑉
 

(1) 

 

where, 𝐶𝑎𝑏𝑠 is the absorption cross-section area of the single GNR, 𝐼𝑙𝑎𝑠𝑒𝑟 is the laser intensity 

[W·m
−2

], and V is the volume of GNR. The absorption cross-section area ( 𝐶𝑎𝑏𝑠 ) was 

approximately determined using the Gans theory (2, 3) as Eq. 2-4 while assuming the geometry 

of GNR as a spheroid with the diameter and the length of 15.3 nm and 80.4 nm, respectively. 
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(3) 

 

𝐶𝑒𝑥𝑡 = 𝐶𝑎𝑏𝑠 + 𝐶𝑠𝑐𝑎 (4) 

 

where, 𝜀𝑚 is the dielectric constant of the surrounding medium, 𝜆 is the wavelength of the light, 

𝜀1 and 𝜀2 are the real and the imaginary part of the gold dielectric function, respectively, Pj is 

depolarization factor for three axes, 𝐶𝑒𝑥𝑡 is the extinction cross section area, 𝐶𝑠𝑐𝑎 scattering cross 

section area, and 𝑃𝑗 is the depolarization factor for three axes A, B and C (A>B=C). 
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The heat generated from the GNR diffuses and thus increase the temperature in the 

plasma membrane. Prior to simulating the temperature profile at the plasma membrane, we 

assumed followings: (1) GNRs are uniformly distributed as a single layer of GNRs with an 

empirical parameter of the “coverage” c and the distance from the membrane of 100 nm (4). (2) 

Macroscopically, heat generated from GNRs is uniformly distributed along the GNR layer. (3) 

Heat generated from GNRs is considered as a constant heat source, 𝑄𝐺𝑁𝑅. (4) The heat flows out 

of the GNR sheet along the x-axis, perpendicular to the sheet. Based on these assumptions, the 

temperature profile can be calculated by using the 1-dimensional heat diffusion equation (Eq. 5) 

(5), 
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(5) 

 

where, 𝛼  is the thermal diffusivity of cerebrospinal fluid (CSF, 1.48×10
7

 [m
2
·s
1

]), k is the 

thermal conductivity of CSF (0.57 [W·m
1

·K
1

]), the external heat source of 𝑄𝐺𝑁𝑅 , x is the 

distance between center of the GNRs sheet [m], t is the time [s], T is the temperature [K], and c 

is the GNRs coverage. Here, the “coverage” c is deduced from the laser parameters and its 

corresponding thermal profile results reported in previous publication by Eom et al. (6), to be 

0.031. 



Absorption cross-sectional area of randomly oriented GNRs 

 

We determined how the orientation of GNRs impacts on the 𝐶𝑎𝑏𝑠 . Unlike the spherical gold 

nanoparticles, the GNR has a directional selectivity upon the incoming light to generate localized 

surface plasmon resonance (LSPR). Especially when the direction of electric-field (E-field) of 

incoming light is matched to the long-axis of GNR, the maximum absorption cross-sectional area 

(𝐶𝑎𝑏𝑠
̅̅ ̅̅ ̅̅ ) is created and thereby inducing an efficient photothermal conversion. However, 𝐶𝑎𝑏𝑠 

decreases from the 𝐶𝑎𝑏𝑠
̅̅ ̅̅ ̅̅  if the GNR is tilted with respect to the direction of E-field (Fig. S1). 

𝐶𝑎𝑏𝑠
̅̅ ̅̅ ̅̅  will be scaled by cos2 𝜃 when the GNR is rotated by 𝜃, whereas 𝐶𝑎𝑏𝑠 has negligible effect 

on the GNR rotation in the 𝜑 direction since E-field influences the same manner regardless of 

the 𝜑 direction especially where the wavelength of light is much bigger than the GNR. If the 

probability of a GNR having specific direction of 𝜃 and  𝜑 is 𝑝(𝜃, 𝜑) then 𝐶𝑎𝑏𝑠 can be calculated 

as Eq. 6. 

 

𝐶𝑎𝑏𝑠 = ∫ ∫ 𝐶𝑎𝑏𝑠
̅̅ ̅̅ ̅̅  𝑐𝑜𝑠2(𝜃)𝑝(𝜃, 𝜑)𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃
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(6) 

 

where 𝑟 is the unit length. For our case we could considered GNRs are randomly oriented and 

thereby the 𝑝(𝜃, 𝜑) can be deduced as ‘
1

4𝜋𝑟2’ by the relation of 1 = ∫ ∫ 𝑝(𝜃, 𝜑)𝑟2 sin 𝜃 𝑑𝜑𝑑𝜃
2𝜋

0

𝜋

0
. 

As a result, 𝐶𝑎𝑏𝑠 is ‘
𝐶𝑎𝑏𝑠̅̅ ̅̅ ̅̅ ̅

3
’. 

 

 

FIGURE S1. Orientations of electric-field of incident light and the long-axis of GNR. 

As in Eq. 7, the average heat generated by the GNRs is proportional to the coverage ‘c’, 

depending on how many GNRs locate per unit area of the membrane, and the ‘absorption cross-

sectional area (𝐶𝑎𝑏𝑠)’, depending on the orientation of GNRs. Since both factor have the same 

effect (scaling) on 𝐶𝑎𝑏𝑠, we chose GNR coverage to find the effect of coverage and the distance 

on AP generation. 



𝑐𝑄𝐺𝑁𝑅 = 𝑐
𝐶𝑎𝑏𝑠𝐼𝑙𝑎𝑠𝑒𝑟

𝑣𝑝
 

(7) 

  



Modeling of TRPV1 channel 

 

The current through the TRPV1 channel is estimated using the function that combines linear 

conductance and Boltzmann activation term 

( 𝐼𝑇𝑅𝑃𝑉1 = 𝐺𝑇𝑅𝑃𝑉1(𝑉 − 𝐸𝑇𝑅𝑃𝑉1)/ [1 + exp (
−(𝑉1/2−𝑉)

𝑅𝑇/𝑧𝐹
)] ). The 𝐸𝑇𝑅𝑃𝑉1  of non-selective cation 

TRPV1 channel was calculated using the Goldman equation. From the previous publication 

reported by Voet el al., the value of 𝐺𝑇𝑅𝑃𝑉1 and the equation of 𝑉1/2 were deduced and the z were 

obtained (7). 

 The reversal potential of TRPV1 (𝐸𝑇𝑅𝑃𝑉1) channel is calculated as –10.5 mV and the 

derivation is shown in the below ‘Reversal potential of TRPV1 channel’ section. The 

conductance of TRPV1 channel is calculated using the equation 𝐺𝑇𝑅𝑃𝑉1 = 𝐼/[(𝑉 − 𝐸𝑇𝑅𝑃𝑉1)  ×
𝜋𝑟2]. From the previous report by Voets et al. (7), the maximum current experimentally obtained 

upon –60 mV voltage ramp at 35ºC are employed. If we assume the shape of a cell as a sphere 

with 15 µm radius, then the 𝐺𝑇𝑅𝑃𝑉1 is computed as 1.3 S·m
–2

. The potential for half maximum 

activation (𝑉1/2, [V]) is determined as 𝑉1/2 = 9 × 10−3(𝑇 − 309.1) where T is temperature [K] 

(7). Finally, the effective gating charge (z) is obtained as 0.71 (7). 

  



Reversal potential of TRPV1 channel 

 

A reversal potential of TRPV1 channel allowing multiple of cations (e.g. Ca
2+

, Na
+
, and K

+
) is 

not simply governed by the Nernst equation. According to the Nernst-Plank equation, ion fluxes 

across the membrane can be decomposed into two factors: diffusional force resulting from the 

difference in the ionic concentration and membrane electric field on ions. The electric field is 

further assumed to be constant along the ‘z’ direction which is perpendicular to the membrane 

and its value equal is to the ratio of transmembrane potential (𝐸𝑚) and the thickness of the 

membrane (𝐿). The flux of a single ion (𝑗𝐴, [mol·sec
–1

·m
–2

]) is represented as  

 

𝑗𝐴 = −𝐷𝐴 (
𝑑[𝐴]

𝑑𝑧
−

𝑧𝐴𝐹

𝑅𝑇

𝐸𝑚

𝐿
[𝐴]) 

(8) 

 

where, 𝐷𝐴 is the diffusion constant of ion A [m
2
·sec

–1
], 𝑧𝐴 is the valance of ion A, F is the faraday 

constant, R is the gas constant, T is the is the absolute temperature. Separating the values leads 
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Integrate across the membrane (z = 0, z = L) yields 
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Solving for 𝑗𝐴 results 

 

𝑗𝐴 =
𝑧𝐴𝐹𝐸𝑚

𝑅𝑇

𝐷𝐴

𝐿
(

[𝐴]𝑜𝑢𝑡 − [𝐴]𝑖𝑛𝑒
𝑧𝐴𝐹𝐸𝑚

𝑅𝑇
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) = 𝑧𝐴𝜇𝑃𝐴 (
[𝐴]𝑜𝑢𝑡 − [𝐴]𝑖𝑛𝑒𝑧𝐴𝜇

1 − 𝑒𝑧𝐴𝜇
) 

 

where, 𝜇 equals to 
𝐹𝐸𝑚

𝑅𝑇
 and ion permeability (𝑃𝐴) is 

𝐷𝐴

𝐿
. The electric current density [A·m

–2
] is 

expressed as 



 

𝐼𝐴 = 𝐹𝑞𝐴𝑗𝐴 

 

where, 𝑞𝐴 is the sign of the ion A. Since the sum of electric current density for all ions (Ca
2+

, Na
+
, 

and K
+
) is zero. 

 

0 =  𝐹𝑞𝑁𝑎+𝑧𝑁𝑎+𝜇𝑃𝑁𝑎+ (
[𝑁𝑎+]𝑜𝑢𝑡 − [𝑁𝑎+]𝑖𝑛𝑒𝑧

𝑁𝑎+𝜇

1 − 𝑒𝑧𝑁𝑎+𝜇 )

+ 𝐹𝑞𝐾+𝑧𝐾+𝜇𝑃𝐾+ (
[𝐾+]𝑜𝑢𝑡 − [𝐾+]𝑖𝑛𝑒𝑧

𝐾+𝜇

1 − 𝑒𝑧𝐾+𝜇 )

+ 𝐹𝑞𝐶𝑎2+𝑧𝐶𝑎2+𝜇𝑃𝐶𝑎2+ (
[𝐶𝑎2+]𝑜𝑢𝑡 − [𝐶𝑎2+]𝑖𝑛𝑒𝑧

𝐶𝑎2+𝜇

1 − 𝑒𝑧𝐶𝑎2+𝜇 ) 

 

Applying the values of valance for each ion leads to 

 

0 = 𝑒2𝜇(−2𝑃𝐶𝑎2+[𝐶𝑎2+]𝑖𝑛 − 𝑃𝑁𝑎+[𝑁𝑎+]𝑖𝑛 + 𝑃𝐾+[𝐾+]𝑖𝑛)
+ 𝑒𝜇(𝑃𝑁𝑎+[𝑁𝑎+]𝑜𝑢𝑡 + 𝑃𝐾+[𝐾+]𝑜𝑢𝑡 − 𝑃𝑁𝑎+[𝑁𝑎+]𝑖𝑛 − 𝑃𝐾+[𝐾+]𝑖𝑛)
+ (2𝑃𝐶𝑎2+[𝐶𝑎2+]𝑜𝑢𝑡 + 𝑃𝑁𝑎+[𝑁𝑎+]𝑜𝑢𝑡 + 𝑃𝐾+[𝐾+]𝑜𝑢𝑡) 

 

Applying the quadratic equation, potential across the membrane is computed using  

 

𝐸𝑚 =
𝑅𝑇

𝐹
𝑙𝑛

−𝛽 ± √𝛽2 − 4αγ

2α
 

 

where, 𝛼 = −2𝑃𝐶𝑎2+[𝐶𝑎2+]𝑖𝑛 − 𝑃𝑁𝑎+[𝑁𝑎+]𝑖𝑛 + 𝑃𝐾+[𝐾+]𝑖𝑛 , 𝛽 = 𝑃𝑁𝑎+[𝑁𝑎+]𝑜𝑢𝑡 +
𝑃𝐾+[𝐾+]𝑜𝑢𝑡 − 𝑃𝑁𝑎+[𝑁𝑎+]𝑖𝑛 − 𝑃𝐾+[𝐾+]𝑖𝑛 , and 𝛾 = 2𝑃𝐶𝑎2+[𝐶𝑎2+]𝑜𝑢𝑡 + 𝑃𝑁𝑎+[𝑁𝑎+]𝑜𝑢𝑡 +
𝑃𝐾+[𝐾+]𝑜𝑢𝑡. 

 

From the previous report (8), Ca
2+

 shows the largest channel permeability while Na
+
 and K

+
 

show almost same but small permeability ( 𝑃𝐶𝑎2+/𝑃𝑁𝑎+ = 9.6) . Applying the permeability 

relation of each ion and the values in the Table S4, the potential across the membrane or the 

equilibrium potential for TRPV1 channel is determined as 0.01005 V (𝐸𝑚 = 𝐸𝑇𝑅𝑃𝑉1). 

  



Derivation of modified Gouy-Chapman-Stern theory 

TABLE S1 Definition of variables and their corresponding values  
to calculate the capacitive current (9, 10). 

Variable Definition Value Units 

𝑽𝒎 Membrane potential/ potential 

difference between outer- and 

inner bulk medium 

 variable [V] 

 𝜱(−𝜹𝒃𝒊 − 𝜹𝒊
𝒔) Potential at the interface 

between the inner Stern layer 

and the inner diffuse layer 

 variable [V] 

 𝜱(−𝜹𝒃𝒊) Surface potential at the inner 

lipid bilayer 

 variable [V] 

 𝜱(𝟎)  Surface potential at the outer 

lipid bilayer 

 variable [V] 

 𝜱(𝜹𝒐
𝒔) Potential at the interface 

between the outer Stern layer 

and the outer diffuse layer 

 variable [V] 

𝝈𝒊 Intrinsic charge density of inner 

side of lipid bilayer 

 −0.006 [C·m
–2

] 

𝝈𝒐 Intrinsic charge density of outer 

side of lipid bilayer 

 −0.006 [C·m
–2

] 

𝝈𝒊
𝒔 Intrinsic charge density at the 

interface between the inner Stern 

layer and the inner diffuse layer 

 variable [V] 

𝝈𝒐
𝒔  Intrinsic charge density at the 

interface between the outer Stern 

layer and the outer diffuse layer 

 variable [V] 

𝜺𝒃𝒊 Permittivity of lipid bilayer  2.5 ×  εfreespace [A
2
·s

4
·kg

1
·m



3
] 

𝜹𝒃𝒊 Thickness of lipid bilayer  3 × 10
-9

 [m] 

𝜺 Permittivity of electrolyte 

medium 

87.740 – 0.40008 × t 

+ 9.398(10
-4

) × t
2
 –  

1.410(10
-6

) × t
3 

[A
2
·s

4
·kg

1
·m



3
] 

𝒄𝒊
𝒋(−∞) Concentration of j-th ionic 

species in inner bulk medium 

 refer Table S3 [M] 

𝒄𝒐
𝒋(∞) Concentration of j-th ionic 

species in outer bulk medium 

 refer Table S3 [M] 

𝒛𝒊
𝒋 Valence of j-th ionic species in 

inner electrolyte 

 refer Table S3 - 

𝒛𝒐
𝒋 Valence of j-th ionic species in 

outer electrolyte 

 refer Table S3 - 

𝜺𝒊
𝒔 Permittivity of inner Stern layer  𝜀/10 [A

2
·s

4
·kg

1
·m





3
] 

𝜺𝒐
𝒔 Permittivity of outer Stern layer  𝜀/10 [A

2
·s

4
·kg

1
·m



3
] 

𝒓𝒊
𝒋 Hydrated ionic radius of j-th 

ionic species in inner electrolyte 

 refer Table S3 [m] 

𝒓𝒐
𝒋 Hydrated ionic radius of j-th 

ionic species in outer electrolyte 

 refer Table S3 [m] 

𝜹𝒊
𝒍𝒊𝒑𝒊𝒅

 Hydrated size of inner polar 

lipid head groups 

 0.45 × 10
-9

 [m] 

𝜹𝒐
𝒍𝒊𝒑𝒊𝒅

 Hydrated size of outer polar 

lipid head groups 

 0.45 × 10
-9

 [m] 

𝜹𝒊
𝒔
 Thickness of inner Stern layer  variable [m] 

𝜹𝒐
𝒔
 Thickness of outer Stern layer  variable [m] 

  



Temperature-dependent capacitance 

 

Unlike the fixed capacitance of lipid bilayer observed at the classical Hodgkin–Huxley model 

(11), capacitance change is accompanied by the temperature variation due to the structure change 

(axial narrowing and lateral expansion) of the lipid bilayer (12). However, it is reasonable to 

speculate that the lipid bilayer would not be axially smaller nor laterally larger than the certain 

limits conferring the maximum limit of capacitance of lipid bilayer. Therefore, it is natural to 

assume the temperature dependence of the capacitance as 𝐶(𝑇) = 𝐶𝑚𝑎𝑥(1 − 𝛽𝑒−𝛼𝑇) , where 

𝐶𝑚𝑎𝑥  is the maximum capacitance [F·m
–2

], T is the temperature [K], 𝛼  is the temperature 

elevation constant [K], and the 𝛽 is the scaling coefficient. Since the capacitance at 6.3°C is 

known as 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙(= 1) [F·m
–2

] (11), we obtain Eq. 9. 

𝐶𝑏𝑖(𝑇) =
𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1 − 𝛽
(1 − 𝛽𝑒−

(𝑇−279.3)
𝛼 ) 

(9) 

 

We, then, deduced the α and β from the current response in voltage-clamped lipid bilayer 

(I – V relation) when stimulating using laser which was experimentally obtained by Shapiro et al 

(9). The stimulus intensity they used was 7.3 mJ with a pulse duration of 10 ms and it generates 

the roughly linear increase in temperature up to 22.2°C, followed by temperature decaying 

exponentially after laser illumination with a time constant of 100 ms. When the temperature 

elevation constant ( 𝛼 ) and scaling coefficient ( 𝛽)  are 2150.5 K and 0.75, respectively, 

numerically calculated I–V response closely matched to that of the experimentally measured 

indicating that modeled capacitance of lipid bilayer is in good agreement with the actual 

capacitance (Fig. S2).  

 

FIGURE S2. Graphs depicting (a) experimentally obtained and (b) numerically calculated I–V 

current response in voltage-clamped lipid bilayer. The holding potentials were varied from –200 

mV (blue) to 200 mV (red). 

  



Sodium, potassium, and leak current 

 

Hodgkin-Huxley (HH) model describes the ion channels as variable conductances with respect to 

time and voltage. The potassium conductance is described using its maximum conductance and 

open probability (n). By contrast, sodium conductance is described by its maximum conductance, 

open probability of activation gate (m) and inactivation gate (h). The open probabilities of each n, 

m, h are calculated by using rate change of each close and open state (Eqs. 10) (11). All the rate 

constants (𝛼𝑚/𝑛/ℎ, 𝛽𝑚/𝑛/ℎ) were empirically derived at 279.3 K as Eqs. 11 having Q10 of 3. 

Finally, current for sodium channel, potassium channel, and leakage pathway are derived using 

the rate constants, the maximal conductance of each current path ( 𝐺𝐾+ , 𝐺𝑁𝑎+ , 𝑎𝑛𝑑 𝐺𝐿𝑒𝑎𝑘 ), 

reversal potentials, and the membrane potential (𝑉𝑚 ) (Eq. 13) (11). All the parameters are 

detailed in the Table S2. 

𝑑𝑛

𝑑𝑡
= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

(10) 

 

whose, 𝛼𝑛∕𝑚∕ℎ and 𝛽𝑛∕𝑚∕ℎ, 

𝛼𝑛 =
−100(100𝑉𝑚 + 6)

𝑒𝑥𝑝(−100𝑉𝑚 − 6) − 1
× 3

𝑇−279.3
10  

𝛽𝑛 = 125𝑒𝑥𝑝(−12.5(𝑉𝑚 + 0.07)) × 3
𝑇−279.3

10  

𝛼𝑚 =
−100(1000𝑉𝑚 + 45)

𝑒𝑥𝑝(−100𝑉𝑚 − 4.5) − 1
× 3

𝑇−279.3
10  

𝛽𝑚 = 4000𝑒𝑥𝑝 (
−1000(𝑉𝑚 + 0.07)

18
) × 3

𝑇−279.3
10  

𝛼ℎ = 70𝑒𝑥𝑝(50𝑉𝑚 + 3.5) × 3
𝑇−279.3

10  

𝛽ℎ =
1000

𝑒𝑥𝑝(−100𝑉𝑚 − 4) + 1
× 3

𝑇−279.3
10  

(11) 

 



 The reversal potentials for sodium and potassium channel (𝐸𝑁𝑎+ , 𝐸𝐾+ ) can be simply 

computed using the Nernst equation (Eq. 12). 

𝐸𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
𝑅𝑇

𝑧𝐹
𝑙𝑛 (

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
) 

(12) 

 

where, R is gas constant, T is absolute temperature, z is valance of ion, F is Faraday constant, 

𝐶𝑜𝑢𝑡 is the concentration of ions outside of the membrane and 𝐶𝑖𝑛 is the concentration of ions 

inside of the membrane (Table S4). Overall, their corresponding currents can be described as Eqs 

(13). 

𝐼𝐾+ = 𝐺𝐾+𝑛4(𝑉𝑚 − 𝐸𝐾+) 

𝐼𝑁𝑎+ = 𝐺𝑁𝑎+𝑚3ℎ(𝑉𝑚 − 𝐸𝑁𝑎+) 

𝐼𝑙𝑒𝑎𝑘 = 𝐺𝐿𝑒𝑎𝑘(𝑉𝑚 − 𝐸𝑙𝑒𝑎𝑘) 

(13) 

 

TABLE S2. Variables used in the modified HH model (11, 13). 

Variable Definition Value Units 

T Temperature variable 

(Initial temperature is 

309.5 K) 

[K] 

𝑽𝒎 Membrane potential / potential 

difference between outer- and 

inner bulk medium 

variable [V] 

𝒏, 𝒎, 𝒉 Open probability of potassium 

(n) and sodium (m, h) channels. 

variable - 

𝜶𝒏/𝒎/𝒉 Opening rate of specific gate variable [s
1

] 

𝜷𝒏/𝒎/𝒉 Closing rate of specific gate variable [s
1

] 

𝑮𝑲+̅̅ ̅̅ ̅ Maximum conductance of the 

potassium channel 

360 [S·m
2

] 

𝑮𝑵𝒂+̅̅ ̅̅ ̅̅ ̅ Maximum conductance of the 

sodium channel 

1200 [S·m
2

] 

𝑮𝑳𝒆𝒂𝒌
̅̅ ̅̅ ̅̅ ̅ Maximum conductance of the 

leak current 

3 [S·m
2

] 

𝑬𝑲+ Reversal (or equilibrium) 

potential of the potassium 

channel 

−0.0799 [V] 



𝑬𝑵𝒂+ Reversal (or equilibrium) 

potential of the sodium channel 

0.0614 [V] 

𝑬𝑳𝒆𝒂𝒌 Reversal (or equilibrium) 

potential for the passive leakage 

−0.0544 [V] 

 

TABLE S3. Values used to calculate equilibrium potential and the capacitive current (14). 

Ion Intracellular 

concentration [M] 

Extracellular 

concentration [M] 

Radius of  

hydrated ion [m] 

𝐍𝐚+ 1.5 × 10
−2

 1.5 × 10
−1

 4 × 10
−10

 

𝑲+ 1.0 × 10
−1

 5.0 × 10
−3

 3 × 10
−10

 

𝑪𝒍− 1.3 × 10
−2

 1.5 × 10
−1

 3 × 10
−10

 

𝑪𝒂𝟐+ 2.0 × 10
−7

 1.0 × 10
−3

 6 × 10
−10

 

 

 



Effect of the wavelength of stimulation light 
 

 

FIGURE S3. Stimulation thresholds in the models #1, #2, and #3 when different laser 

wavelengths are used. Stimulation duration, GNRs coverage, distance, and TRPV1 channel 

conductance are 0.5 ms, 0.031, 100 nm. and 2.1 S·m
2

, respectively. 
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