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With advances in whole-genome sequencing (WGS) technology, more advanced statistical methods for testing genetic association with

rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and

aggregate unit tests. The burden test and sequence kernel association test (SKAT) are two widely used variant-set tests, which were orig-

inally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures.

However, computationally efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies

with complex study samples. In this paper, we propose the variant-set mixed model association tests (SMMAT) for continuous and bi-

nary traits using the generalized linear mixed model framework. These tests can be applied to large-scaleWGS studies involving samples

with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute’s Trans-Omics for PrecisionMedicine

(TOPMed) program. SMMATs share the same null model for different variant sets, and a virtue of this null model, which includes cova-

riates only, is that it needs to be fit only once for all tests in each genome-wide analysis. Simulation studies show that all the proposed

SMMATs correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness.

We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n ¼ 23,763), using the

Analysis Commons, a cloud-based computing platform.
Introduction

In recent years, massive DNA sequence data have been

generated. Large-scale whole-genome sequencing projects,

such as the National Heart, Lung, and Blood Institute’s

(NHLBI) Trans-Omics for Precision Medicine (TOPMed)

program and the National Human Genome Research

Institute’s (NHGRI) Genome Sequencing Project (GSP),
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have produced whole-genome sequences from more than

120,000 samples. The designs of the studies from which

participants are drawn need not be uniform or simple;

for example, TOPMed includes population-based cohorts,

family studies, and case-control studies, some of which

are conducted in recently admixed populations, and

some of which involve large pedigrees of closely related

participants.
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In population-based cohorts and case-control studies,

population stratification and cryptic relatedness are major

sources of confounding that need to be accounted for in as-

sociation tests. For common single-variant analysis, linear

mixed models that use an estimated genetic relationship

matrix (GRM) to account for both population stratification

and cryptic relatedness have been widely applied in

genome-wide association studies (GWASs) to analyze struc-

tured and related samples.1–6 For binary traits, however,

we previously showed that linear mixed models may not

be appropriate in the presence of population stratification

due tomisspecifiedmean-variance relationships. Therefore,

we instead proposed a computationally efficient method

GMMAT7 toperformcommonsingle-variant tests inGWASs

by fitting generalized linear mixed models (GLMMs),8

which simultaneously account for population structure,

cryptic relatedness, and shared environmental effects, using

multiple variance components and/or random effects.

Hundreds of millions of genetic variants, mostly with a

low and extremely rare minor allele frequency (MAF), are

being analyzed in large-scale sequencing projects such

as TOPMed and GSP. Yet, single-variant tests that have

been widely used in GWASs are generally underpowered

for analyzing rare genetic variants from sequencing studies.

To circumvent this problem, statistical tests such as the

burden test,9–12 sequence kernel association test (SKAT),13

and their various combinations14–16 have been proposed.

These tests analyze multiple genetic variants in sets,

grouped by genes, genomic regions, or other bioinformatic

aggregation units. Most of these tests were originally devel-

oped to analyze samples fromunrelated individuals, as well

as extensions to analyze family data with known pedigree

structures in the parametric mixed model and semipara-

metric generalized estimating equation frameworks.17–23

Linear mixed models using a single random effect with

the GRM covariance matrix to account for population

structure have been developed and implemented in soft-

ware programs for sequencing data analysis, such as

EPACTS and Rvtests.24 Meta-analysis methods for family

data have been developed and implemented in seqMeta

and RAREMETAL,25,26 but only for continuous traits in

the linear mixed model framework. Moreover, these exist-

ing methods do not account for cryptic relatedness and

between-subject relatedness from multiple sources and
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The America
have not been applied to large-scale whole-genome

sequencing studies with complex study samples, due to

statistical and computational challenges.

One challenge is that among traditional variant set tests

such as burden tests and SKAT, no single approach is uni-

formly most powerful. Another challenge is that existing

hybrid tests that combine burden tests and SKAT, such as

SKAT-O,14 MiST,15 and aSPU,16 are powerful but are subject

to much greater computational loads than either the

burden test or SKAT alone in the GLMM framework. Of

note, SKAT-O is slower than SKAT because it searches on a

grid for the optimal linear combination of the burden test

and SKAT statistics. MiST requires adjusting for the genetic

burden as a covariate in the SKAT model and hence needs

to fit a burden model for each variant set. In large samples

of possibly related individuals, extension of MiST is not as

practical as in unrelated samples, since fitting a mixed ef-

fects model using the burden score for each variant set (or

each test unit) is computationally intensive across the

genome. Finally, aSPU uses a permutation or Monte Carlo

simulation procedure to compute the p values, which can

also be challenging in the context of large-scale whole-

genome sequencing studies with both population structure

and relatedness. Therefore, there is a pressing need to

develop powerful and computationally efficient statistical

methods for large-scale whole-genome sequencing studies.

To address these statistical and computational chal-

lenges, we develop the variant set mixedmodel association

tests (SMMATs), computationally efficient variant set tests

for both continuous and binary traits, which are applicable

to structured and related samples with potential multiple

sources of correlations, from large-scale whole-genome

sequencing studies. We include four tests in the SMMAT

framework: the burden test (SMMAT-B), SKAT (SMMAT-S),

SKAT-O (SMMAT-O), and an efficient hybrid test to

combine the burden test and SKAT (SMMAT-E), with power

improvements over mixed model-based burden test,

SKATand SKAT-O. All four SMMATs share the same reduced

model under the null hypothesis, i.e., theGLMMwith only

covariates, which needs to be fit only once for all genetic

variant sets in an analysis. We show that all of these

tests can be constructed using shared single-variant scores

and their covariance matrices, thus further improving

the computational efficiency in practice compared to
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performing these tests separately. Moreover, it has been

shown that single-variant scores and their covariance

matrices can also be used in the meta-analysis of variant

set tests,25,27 and thus SMMAT has been implemented to

be directly applicable to combining multi-cohort studies

ranging from unstructured independent samples to struc-

tured and related samples. Finally, we develop a unified

analysis pipeline in our software package GMMAT that

implements SMMAT variant set tests in both single study

(pooled analysis) and meta-analysis contexts to facilitate

research on rare genetic variants from large-scale

sequencing studies. We demonstrate the application of

our method to the analysis of fibrinogen levels in the

TOPMed study.
Material and Methods

Generalized Linear Mixed Models (GLMMs)
We formulate the SMMATs (SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E) from the same GLMM

gðmiÞ ¼ XiaþGibþ bi; (Equation 1)

where gð,Þ is amonotonic ‘‘link’’ function that connects themean

of phenotype yi, denoted by mi ¼ Eðyi
��Xi;Gi;biÞ, for subject i of n

samples, to the covariate row vector Xi, the genotype row vector

Gi for q genetic variants in a set, and the random effects bi that ac-

counts for population structure and relatedness. The phenotypes

yi follow a distribution in the exponential family. For continuous

traits, we usually assume that yi follow a normal distribution and

use an identity link function; for binary traits, we assume yi follow

a Bernoulli distribution and use a logit link function. In Equa-

tion 1, a is a p 3 1 vector of fixed covariate effects including an

intercept, and the genotype effects b are assumed to be a q3 1 vec-

tor whose distribution has meanW1qb0 and covariance qW2,

where W ¼ diagfwjg is a pre-specified q 3 q matrix assigning

weights to each variant, q is a variance component parameter,

and 1q is a column vector of length q with all elements 1. We as-

sume that b � Nð0;PK
k¼1nkFkÞ is an n3 1 vector of random effects

with each entry bi, K variance component parameters vk, and

known n3 n relatednessmatricesFk ð1%k%KÞ.We allow formul-

tiple random effects to account for complex sampling designs

such as hierarchical designs, shared environmental effects, and

repeated-measures from longitudinal studies.
SMMAT-B, SMMAT-S, and SMMAT-O
In Equation 1, testing the genotype effects of q variantsH0 : b ¼ 0 is

equivalent to testing the null hypothesis thatH0 : b0 ¼ 0 and q ¼ 0.

The reduced GLMM under this null hypothesis specifies that

g
�
m0i

� ¼ Xiaþ bi; (Equation 2)

where m0i ¼ Eðyi
��Xi; biÞ. If we test H0 : b0 ¼ 0 under the assump-

tion that q ¼ 0, a burden score test SMMAT-B can be constructed as

TB ¼ ðy � bm0ÞTGW1q1
T
q WGTðy � bm0Þbf2

;

where y ¼ ð y1 y2 / yn ÞT is an n3 1 vector of phenotypes yi,bm0 is a vector of fitted mean values under the model in Equation 2,
262 The American Journal of Human Genetics 104, 260–274, Februar
G ¼ � GT
1 GT

2 / GT
n

�T
is an n 3 q genotype matrix of

the variant set in the test, and bf is an estimate of the dispersion

parameter (or the residual variance) f. Under H0 : b0 ¼ 0, the

statistic TB asymptotically follows xBc
2
1, where the scalar xB ¼

1T
qWGT bPGW1q, c

2
1 is a chi-square distribution with 1 df, andbP ¼ bS�1 � bS�1

XðXT bS�1
XÞ�1XT bS�1

is the n3 n projectionmatrix

of the null GLMM (Equation 2), X ¼ � XT
1 XT

2 / XT
n

�T
is

an n 3 p covariate matrix, bS ¼ bV þPK
k¼1bnkFk with bV ¼ bfIn

for continuous traits in linear mixed models, andbV ¼ diagf1=ðbm0ið1� bm0iÞÞg for binary traits in logisticmixedmodels

(where the dispersion parameter fis known to be 1).

On the other hand, if we test H0 : q ¼ 0 under the assumption

b0 ¼ 0, a variance component score-type test SMMAT-S can be

constructed as

TS ¼ ðy � bm0ÞTGWWGTðy � bm0Þbf2
:

Under H0 : q ¼ 0, TS asymptotically follows
Pq

j¼1xSjc
2
1;j, where

c2
1;j are independent chi-square distributions with 1 df, and xSj

are the eigenvalues of XS ¼ WGT bPGW.

If one assumes b0has mean 0 and variance g, b then follows

a distribution 0 and covariance tWfð1� rÞIq þ r1q1
T
q gW,

wheret ¼ gþ q and r ¼ g=ðgþ qÞ, which takes values between

0 and 1. The joint null hypothesis H0 : b0 ¼ 0 and q ¼ 0 is equiva-

lent to H0 : t ¼ 0:Given r, a variance component score-type test

can be constructed as

Tr ¼ rTB þ ð1� rÞTS:

If r ¼ 1, Tr becomes the SMMAT-B burden statistic TB, which as-

sumes b are the same for all q variants after weighting. If r ¼ 0;Tr

becomes the SMMAT-S SKAT statistic TS. If an optimal r is obtained

by minimizing the p value of Tr, then SMMAT-O can be con-

structed, with its p value calculated using a one-dimensional

numerical integration, following SKAT-O.14 A key advantage of

SMMAT-O is that it maximizes the power by using the optimal

linear combination of the mixed model burden test SMMAT-B

and the mixed model SKAT SMMAT-S. As it requires a grid search

over r; it is computationally considerably more expensive than

SMMAT-B and SMMAT-S.We propose in the next section a compu-

tationally much more efficient method to combine SMMAT-B and

SMMAT-S.

SMMAT-E
An alternative joint test to SMMAT-O for H0 : b0 ¼ 0 and q ¼ 0 can

be constructed using two asymptotically independent tests: a test

for H0 : b0 ¼ 0 versus H1 : b0s0 under the constraint q ¼ 0 and a

test forH0 : q ¼ 0 versusH1 : q > 0 with b0 as a nuisance parameter

that is estimated underH0 : q ¼ 0 . In unrelated samples, this testing

strategy is a special case of MiST adjusting for the genotype burden

score as a single fixed-effects covariate,15 which requires the burden

model to be fit for each SNP set. We note that the first test is

SMMAT-B TB in the SMMAT framework, and the second test Tq

can be constructed from the null burden GLMM

g
�
mBi

� ¼ XiaþGiW1qb0 þ bi; (Equation 3)

where mBi
¼ Eðyi

��Xi;GiW1q; biÞ is the mean of yi in the burden

GLMM. We can construct a SKAT-type statistic adjusting for the

genetic burden
y 7, 2019



Tq ¼ ðy � ~mBÞTGWWGTðy � ~mBÞ
~f
2

;

where~mB is a vector of fitted values ~mBi
using the burden GLMM in

Equation 3 for a given variant set. However, fitting this burden

GLMM separately for each variant set is computationally expen-

sive in large-scale whole-genome association studies.

Therefore, we propose a different computationally efficient

strategy by assuming that the mean of genetic effects b0 is not

large, a reasonable assumption for most genomic regions and

most complex human diseases. Then we can construct Tq effi-

ciently without refitting the burden GLMMs in Equation 3 for

each variant set across the genome. We show in Appendix A

that Tq can be approximated by

Tqzbf�2ðy � bm0ÞTGW

�
Iq � 1q

�
1T
q WGT bPGW1q

��1

1T
q WGT bPGW

��
Iq �WGT bPGW1q�

1T
qWGT bPGW1q

��1

1T
q

�
WGTðy � bm0Þ:

Therefore, under H0 : q ¼ 0, Tq asymptotically approximately

follows
Pq

j¼1xqjc
2
1;j, where c2

1;j are independent chi-square distribu-

tions with 1 df, and xqj are the eigenvalues of Xq ¼ WGT bPGW �
WGT bPGW1qð1T

qWGT bPGW1qÞ
�1

1T
qWGT bPGW. By the central

limit theorem, both WGT ðy � ~mBÞ=~f and 1T
qWGT ðy � bm0Þ=bf are

asymptotically normal, and their covariance matrix is

Cov

 
WGTðy � ~mBÞ

~f
;
1T
qWGTðy � bm0Þbf

!

z

�
Iq �WGT bPGW1q

�
1T
qWGT bPGW1q

��1

1T
q

�
WGT bPGW1q ¼ 0:

Therefore, Tq and TB are approximately asymptotically indepen-

dent. Let pq and pB be the p value of the two tests, respectively, then

SMMAT-E p value pE is computed using Fisher’s method with a chi-

square distribution with 4 df as pE ¼ Pðc2
4 > � 2 logðpqpBÞÞ.
Meta-analysis
SMMAT-B, SMMAT-S, SMMAT-O, and SMMAT-E can all be con-

ducted in the meta-analysis context. Assuming the single-variant

scores S ¼ GT ðy � bm0Þ=bf and their covariance matrix J ¼ GT bPG

are computed for each variant set in each study, we can reconstruct

TB ¼ STW1q1
T
qWS with xB ¼ 1T

q WJW1q; TS ¼ STWWS with

XS ¼ WJW; Tr ¼ rTB þ ð1� rÞTS and Tq ¼ STWfIq � 1q

ð1T
qWJW1qÞ�1

1T
qWJWgfIq �WJW1qð1T

q WJW1qÞ�11T
q g

WS with Xq ¼ WJW � WJW1qð1T
qW JW1qÞ�11T

qWJW.

For each variant set, let m ¼ 1;2;/;M be the index of studies

and Sm andJm be the single-variant scores and covariance matrix

from studym. In testing the ‘‘weak’’ null hypothesis28 of summary

genetic effectsH0 : b ¼ 0,25,27 we can compute meta summary sta-

tistics S ¼PM
m¼1Sm andJ ¼PM

m¼1Jm and use them in SMMAT-B,

SMMAT-S, SMMAT-O, and SMMAT-E. If a genetic variant is mono-

morphic in a study, its single-variant score statistic and the corre-

sponding row and column in the covariance matrix will be set

to 0 for that study. When combining studies with very different

sample characteristics, testing the ‘‘strong’’ null hypothesis28

that genetic effects in all studies are 0 is sometimes desired. In
The America
the general case, we may choose to group studies that are similar

and test whether the summary genetic effects in all groups are 0,

for example, in the meta-analysis of multi-ethnic samples. Let

c ¼ 1;2;/;C be a partition of M studies ðC%MÞ, where C is

the number of ethnicities, Scm andJcm be the single-variant scores

and covariance matrix from studym in partition c (m ¼ 1;2;/;Mc

in partition c, and
PC

c¼1Mc ¼ M), such that genetic effects for

the same variant are summarized within each partition c but

heterogeneous across partitions,27 we can also compute

summarystatisticsS ¼
� XM1

m¼1
ST
1m

PM2

m¼1S
T
2m

/
PMC

m¼1S
T
Cm

�T
andJ ¼ diagfPMc

m¼1Jcmg. Note that S is now a vector of lengthCq

and J is a block-diagonal matrix with C blocks of q 3 q matrices,

one for each partition of studies (with total dimension Cq 3 Cq),

so we should replace W, 1q, and Iq by IC5W (where 5 denotes

the Kronecker product), 1Cq, and ICq, respectively, in the above ex-

pressions for TB, Tr, TS, and Tq for meta-analysis.

Simulation Studies
Type I Error in Single-Cohort Studies

We performed coalescent simulations to generate sequence data

with 100 genetic variants in each set, and 10,000 independent

sets for 8,000 individuals from a 20 3 20 grid of spatially contin-

uous populations with migration rate between adjacent cells

M ¼ 10 (Figure 1A). Within each cell, we paired 20 individuals

into 10 families and simulated 2 children for each family using

gene dropping,29 and in total we had 4,000 families and 16,000 in-

dividuals. For continuous traits, in each simulation replicate, we

simulated the phenotype yij for individual j in family i under the

null hypothesis of no genetic association from

yij ¼ a1Zi þ bij þ 3ij; (Equation 4)

where the ‘‘population effect’’ a1 ¼ 1 and the population indicator

Zi ¼ 1 if family i was from a 103 10 grid in the top left of the map

(population 1) and Zi ¼ 0 otherwise (population 2). The familial

random effects were simulated as

bi ¼

0B@ bi1
bi2
bi3
bi4

1CA � N

0B@
0B@ 0

0
0
0

1CA;

0B@ 0:5 0
0 0:5

0:25 0:25
0:25 0:25

0:25 0:25
0:25 0:25

0:5 0:25
0:25 0:5

1CA
1CA;

(Equation 5)

and the random error εij � Nð0; 1Þ for each individual j in family i.

Thenwe randomly sampled3,500 individuals fromthe10310grid

in the top left and 6,500 individuals from the rest of the map. The

family identifier was removed for all individuals in the analysis, so

that therewerebothpopulationstructureandcryptic relatedness in

the sample. We compared SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E in analyzing 10,000 independent variant sets based

on a linear mixed model using our GMMAT package, including

random effects with their covariance matrix proportional to the

GRM, and adjusted for the first ten principal components (PCs) of

ancestry. We repeated this 4,000 times to get p values combined

from 40 million independent genetic variant sets for each test.

For binary traits, in each simulation replicate, we simulated the

phenotype yij for individual j in family i under the null hypothesis

of no genetic association from

log

0@ P
�
yij ¼ 1

�
1� P

�
yij ¼ 1

�
1A ¼ a0 þ bij; (Equation 6)
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Figure 1. Map of Spatially Continuous Populations from Which Genotypes Were Simulated Based on the Coalescent Model
(A) Map for a single-cohort simulation study: the top left 10 3 10 grid formed population 1, and the rest formed population 2.
(B) Map for a meta-analysis simulation study: scenario A studies were unrelated individuals sampled from population 1 only; scenario B
studies were related individuals sampled from specific regions in population 1 and population 2; scenario C studies were unrelated in-
dividuals sampled from specific regions in population 1 and population 2; and scenario D studies were related individuals sampled from
specific regions in population 2 only.
where a0 was chosen such that the disease prevalencewas 0.01 in all

populations, and the familial random effects bij were simulated in

the same way as for continuous traits. Then we randomly sampled

2,500 case subjects and 1,000 control subjects from the 10 3 10

grid in the top left (population 1), and 2,500 case subjects and

4,000 control subjects from the rest of the map (population 2) to

form a hypothetical study with balanced case and control subjects

in combined populations. Therefore, there was confounding

by population structure resulting from unequal sampling, even

though the disease prevalence was the same. We removed the

family identifier, compared SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E in analyzing 10,000 independent variant sets based on a

logistic mixed model using our GMMAT package, similarly as

described above, and repeated this 4,000 times to get p values com-

bined from40million independent genetic variant sets for each test.

Type I Error in Meta-analysis

We also conducted simulation studies in themeta-analysis context

to evaluate the type I error rates. We considered four scenarios: un-

related individuals, without confounding by population structure

(scenario A studies); related individuals, with confounding by pop-

ulation structure (scenario B studies); unrelated individuals, with

confounding by population structure (scenario C studies); and

related individuals, without confounding by population structure

(scenario D studies).

For scenario A studies, we simulated 16 unrelated individuals in

each cell from the 10 3 10 grid in the top left of the map

(Figure 1B). For continuous traits, we simulated the phenotype yij
from Equation 4, with a1 ¼ 0 and bij ¼ 0 and randomly sampled

1,000 individuals. For binary traits, we simulated yij from Equa-

tion 6, with bij ¼ 0, and randomly sampled 500 case subjects and

500 control subjects.

For scenario B studies, we simulated eight unrelated individuals,

paired them into four families, and simulated two children for

each family in each cell from the 10 3 10 grid in the center of

the map (Figure 1B). For continuous traits, we simulated the

phenotype yij from Equation 4, with a1 ¼ 1 and the population in-

dicator Zi ¼ 1 if family i was from population 1, and Zi ¼ 0 if from

population 2. Familial random effects bij were simulated using

Equation 5, and we randomly sampled 350 individuals from pop-

ulation 1 and 650 individuals from population 2. For binary traits,
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we simulated yij from Equation 6, with bij from Equation 5, and

randomly sampled 250 case subjects and 100 control subjects

from population 1, and 250 case subjects and 400 control subjects

from population 2.

For scenario C studies, we simulated 16 unrelated individuals in

each cell from the 20 3 5 grid in the top of the map (Figure 1B).

For continuous traits, we simulated the phenotype yij from Equa-

tion 4, with a1 ¼ 1, the population indicator Zi ¼ 1 if family i was

from population 1 and Zi ¼ 0 if from population 2, and bij ¼ 0,

and we randomly sampled 350 individuals from population 1

and 650 individuals from population 2. For binary traits, we simu-

lated yij from Equation 6, with bij ¼ 0, and randomly sampled 250

case subjects and 100 control subjects from population 1 and 250

case subjects and 400 control subjects from population 2.

For scenario D studies, we simulated 8 unrelated individuals,

paired them into 4 families and simulated 2 children for each family

in eachcell fromthe2035grid in thebottomof themap (Figure1B).

For continuous traits, we simulated the phenotype yij from Equa-

tion 4,with a1 ¼ 0, familial randomeffects bij simulatedusing Equa-

tion5, andwe randomly sampled1,000 individuals. Forbinary traits,

we simulated yij from Equation 6, with bij from Equation 5, and

randomly sampled 500 case subjects and 500 control subjects.

In each simulation replicate, we simulated 3 studies from

each scenario, totaling 12 studies with a combined sample size of

12,000 (6,000 case subjects and 6,000 control subjects for binary

traits). We compared SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E using two meta-analysis strategies: all studies in the

same group, and scenario A, B, C, and D studies in four separate

groups. In the latter case, three studies from the same scenario

were grouped in the same partition with shared genetic effects,

while studies from different scenarios were allowed to have hetero-

geneous genetic effects. Variants are included in the meta-analysis

as long as they are polymorphic in at least one of the 12 studies.

We repeated 4,000 simulation replicates to get p values from

40 million independent genetic variant sets.

Power

Weused the same genotype data as in the single-cohort type I error

simulations and evaluated the empirical power of SMMAT-B,

SMMAT-S, SMMAT-O, SMMAT-E, and the GLMM extension of

MiST (GLMM-MiST) that combines the p value of SMMAT-B
y 7, 2019



Table 1. Empirical Type I Error Rates of SMMAT-B, SMMAT-S, SMMAT-O, and SMMAT-E in Single-Cohort Simulation Studies at Significance
Levels of 0.05, 0.0001, and 2.5 3 10�6

Continuous Traits Binary Traits

Level 0.05 0.0001 2.5 3 10�6 0.05 0.0001 2.5 3 10�6

SMMAT-B 0.047 8.7 3 10�5 2.0 3 10�6 0.049 9.6 3 10�5 2.0 3 10�6

SMMAT-S 0.048 8.7 3 10�5 2.0 3 10�6 0.049 9.5 3 10�5 2.3 3 10�6

SMMAT-O 0.050 1.1 3 10�4 3.0 3 10�6 0.052 1.2 3 10�4 3.0 3 10�6

SMMAT-E 0.050 1.0 3 10�4 3.0 3 10�6 0.050 9.9 3 10�5 2.0 3 10�6

The total sample size was 10,000, and results from 4,000 simulation replicates were combined to get 40 million genetic variant sets.
(Equation 2) and the p value of SMMAT-S (Equation 3) using

Fisher’s method. All tests were performed using weights equal to

a beta distribution density function with parameters 1 and 25

on the MAF of each variant.13 We considered 9 scenarios, with

the proportion of causal variants in a test unit changing from

10% to 20% to 50%, and the proportion of variants with negative

effects out of causal variants changing from 100% to 80% to 50%.

For continuous traits, we simulated the phenotype yij for individ-

ual j in family i from

yij ¼ a1Zi þ
X
l

Gijlbl þ bij þ εij;

where a1 ¼ 1, the population indicator Zi ¼ 1 if family i was from

population 1 and Zi ¼ 0 if from population 2, gijl was the centered

genotype for causal variant l of individual j in family i, the causal ef-

fect size was jbl j ¼ cjlog10MAFl j for variant l withMAFl, where the

constant c was set to 0.2, 0.1, and 0.05 when the proportion of

causal variants was 10%, 20%, and 50%, the familial random effects

bij were simulated using Equation 5, and the random error

3ij � Nð0;1Þ. We randomly sampled 35% individuals from popula-

tion 1 and 65% individuals from population 2.

For binary traits, we simulated the phenotype yij for individual

j in family i from

log

0@ P
�
yij ¼ 1

�
1� P

�
yij ¼ 1

�
1A ¼ a0 þ

X
l

Gijlbl þ bij;

where a0 was chosen such that the disease prevalence was 0.01 in

all populations, Gijl was the centered genotype for causal variant

l of individual j in family i, the causal effect size was

jbl j ¼ cjlog10MAFl j for variant l with MAFl, where the constant c

was set to 0.3, 0.2, and 0.1 when the proportion of causal variants

was 10%, 20%, and 50%, the familial random effects bij were simu-

lated using Equation 5. We randomly sampled 35% individuals

(with 25% case subjects and 10% control subjects out of the total

sample size) from population 1, and 65% individuals (with 25%

case subjects and 40% control subjects out of the total sample

size) from population 2 to form a hypothetical study with

balanced case and control subjects in combined populations.

For both continuous and binary traits, we varied the total sample

size from 2,000 to 5,000 to 10,000, repeated 1,000 simulation repli-

cates for each scenario under the alternative hypothesis,

and compared the empirical power at the significance level of

2.53 10�6.
TOPMed Example Involving Fibrinogen Levels
Samples with both plasma fibrinogenmeasures and whole-genome

sequence data (Freeze 5b) from the following 11 TOPMed studies
The America
were included in the analysis: the Old Order Amish Study (Amish),

Cleveland Family Study (CFS), Genetic Epidemiology of COPD

Study (COPDGene), Framingham Heart Study (FHS), Jackson Heart

Study (JHS), San Antonio Family Study (SAFS), the Atherosclerosis

Risk in Communities (ARIC) Study, Genetic Studies of Atheroscle-

rosis Risk (GeneSTAR), Genetic EpidemiologyNetwork of Arteriopa-

thy (GENOA), the Multi-Ethnic Study of Atherosclerosis (MESA),

and Women’s Health Initiative (WHI). The TOPMed studies were

approved by institutional review boards at participating institu-

tions, and informed consent was obtained from all study partici-

pants. Amish, CFS, FHS, JHS, and SAFS are family-based studies

with differing degrees of relatedness. The total sample size was

23,763.Within each study and each ethnicity, measured fibrinogen

levels were adjusted for age, sex, and study-specific covariates, and

the residuals were rank normalized and rescaled by multiplying by

the original standard deviation, so that the transformed phenotype

data have the same variances as on the original scale. The trans-

formed phenotype data were pooled together in the analysis, using

a heteroscedastic linear mixed model30 allowing for different resid-

ual variances in each study/ethnicity, adjusting for study, ethnicity,

sequence center, and top ten ancestry PCs31 as fixed-effects covari-

ates, and including a GRM calculated by mixed model analysis for

pedigrees and populations (MMAP) to model the random effects

for relatedness. Rare and low-frequency genetic variants onchromo-

some 4 with MAF less than 5%, including all singletons and

extremely rare variants,were included inour rare variant association

analysis of fibrinogen levels using the sliding window method32

with 4 kb non-overlapping windows, using SMMAT-B, SMMAT-S,

SMMAT-O, and SMMAT-E with weights equal to a beta distribution

density function with parameters 1 and 25 on the MAF of each

variant.13 As sensitivity analyses, we also included 1 kb, 10 kb, and

40 kb non-overlapping slidingwindows, as well as an analysis using

4 kb windows with no ancestry PC adjustment. The analyses were

performed using the GMMATApp (v.0.9.3), which includes the im-

plementation of the SMMATmethod, with 32 parallel threads on a

single computing node with 240 GB total memory in the Analysis

Commons.33 To benchmark the computational speed in running

SMMAT-B, SMMAT-S, SMMAT-O, and SMMAT-E, we also ran re-ana-

lyses to perform each test separately, using summary statistics from

the sliding window analysis and a single thread on a computing

node with 15 GB total memory in the Analysis Commons.

Results

Simulation Studies

Table 1 shows the empirical type I error rates of SMMAT-B,

SMMAT-S, SMMAT-O, and SMMAT-E at significance levels

of 0.05, 0.0001, and 2.5 3 10�6 in the variant set analyses
n Journal of Human Genetics 104, 260–274, February 7, 2019 265
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models.
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of continuous and binary traits in single-cohort simula-

tion studies. All four tests have well-controlled type I error

rates at these significance levels, suggesting that GLMMs

can be effective in adjusting for population structure

and cryptic relatedness in complex study samples. This

is also consistent with the quantile-quantile (QQ) plots

in Figure 2, which show neither inflation nor deflation

in the tail.

Table 2 and Figure 3 show simulation results of

SMMAT-B, SMMAT-S, SMMAT-O, and SMMAT-E assuming

all studies in the same group (hom) or in four separate

groups (het) in meta-analyses for combining four types of

studies: with and without confounding by population

structure, with and without cryptic relatedness. We note

that SMMAT-B statistic TB has the same form in these

two meta-analysis strategies,27 so we included seven tests

in the simulation studies. In het SMMAT-S, SMMAT-O,

and SMMAT-E, studies from the same scenario were

grouped together to assume shared genetic effects. Under

the null hypothesis of no genetic associations, hom

SMMAT-O shows very mild inflation in our simulation set-

tings, but all other six tests in the SMMAT framework

control type I error rates well at significance levels of

0.05, 0.0001, and 2.5 3 10�6 and have well-calibrated

tail probabilities, for both continuous and binary traits.
Table 2. Empirical Type I Error Rates of SMMAT-B, SMMAT-S, SMMAT-O, and SMMAT-E Assumi
Scenario A, B, C, and D Studies in Four Separate Groups (het), in Meta-analysis Simulation Studi
2.5 3 10�6

Continuous Traits Binary

Level 0.05 0.0001 2.5 3 10�6 0.05

SMMAT-B 0.051 1.0 3 10�4 2.6 3 10�6 0.051

Hom SMMAT-S 0.051 1.0 3 10�4 2.6 3 10�6 0.051

Het SMMAT-S 0.051 1.0 3 10�4 2.8 3 10�6 0.052

Hom SMMAT-O 0.053 1.3 3 10�4 4.0 3 10�6 0.053

Het SMMAT-O 0.052 1.1 3 10�4 2.6 3 10�6 0.052

Hom SMMAT-E 0.051 1.0 3 10�4 2.5 3 10�6 0.051

Het SMMAT-E 0.051 1.0 3 10�4 2.8 3 10�6 0.052

The total sample size was 12,000 from 12 studies, and results from 4,000 simulation replicates were combin
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Figures 4 and 5 present the empir-

ical power for causal variant sets at

the significance level of 2.5 3 10�6

for continuous and binary traits,
respectively. The power increases with the sample size. As

the proportion of causal variants with effects in the same

direction drops from 100% to 80% to 50% in each row,

the power drops for all tests, but most substantially for

the burden test SMMAT-B. When the sample size is large

(i.e., 10,000 samples), SMMAT-E and GLMM-MiST have

the highest power, for both continuous and binary traits

in all nine simulation scenarios. SMMAT-E and GLMM-

MiST have almost the same power in all these settings,

while GLMM-MiST requires fitting a separate GLMM for

each variant set. When all genetic variants in a test unit

are causal with large effects in the same direction (a simu-

lation scenario in favor of SMMAT-B, see Supplemental

Material and Methods for details), SMMAT-B has the

highest power, followed by SMMAT-O and SMMAT-E or

GLMM-MiST (Figures S1A and S1B). On the log scale,

SMMAT-E and GLMM-MiST p values are very close (Figures

S1C and S1D).

In the presence of genetic relatedness from multiple

sources (see Supplemental Material and Methods for de-

tails), linear and logistic mixed models with single GRM

random effects and multiple random effects all control

type I errors for continuous and binary traits (Figure S2).

The multiple random effects model is more powerful

than the single GRM random effects models for
ng All Studies in the Same Group (hom) and
es at Significance Levels of 0.05, 0.0001, and

Traits

0.0001 2.5 3 10�6

1.1 3 10�4 2.5 3 10�6

1.1 3 10�4 2.1 3 10�6

1.0 3 10�4 2.4 3 10�6

1.4 3 10�4 3.4 3 10�6

1.1 3 10�4 2.2 3 10�6

1.1 3 10�4 2.6 3 10�6

1.1 3 10�4 3.0 3 10�6

ed to get 40 million genetic variant sets.
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SMMAT-B, SMMAT-S, SMMAT-O, and
SMMAT-E in the Meta-analysis of 12
Studies with a Total Sample Size of
12,000, under the Null Hypothesis of No
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models, scenario A, B, C, and D studies in
four separate groups.
(D) Binary traits in logistic mixed models,
scenario A, B, C, and D studies in four sepa-
rate groups.
continuous traits in our simulation settings, although the

single GRM random effects models with and without

ancestry PC adjustment almost have the same power

(Figure S3). For binary traits, compared to the single

GRM random effects model adjusting for ten ancestry

PCs as fixed effects, the multiple random effects model is

slightly more powerful and the single GRM random effects

model with no ancestry PC adjustment is generally slightly

less powerful, in our simulation settings (Figure S4).

TOPMed Example Involving Fibrinogen Levels

We compared the results from SMMAT-B, SMMAT-S,

SMMAT-O, and SMMAT-E in an analysis of fibrinogen

levels, using chromosome 4 (including the genomic region

that encodes the fibrinogen protein, FGB) whole-genome

sequence data from 11 TOPMed studies. Previous studies

have reported two rare variants within FGB on chromosome

4, rs6054 (hg38 position 154,568,456) and rs201909029

(hg38 position 154,567,636) associated with lower fibrin-

ogen levels, with similar effect sizes in all ancestry

groups.34 In the sliding window analysis, we grouped low-

frequency and rare genetic variants with MAF less than

5% into 46,859 non-overlapping 4 kb windows containing

at least one variant. The number of variants in eachwindow

passing the MAF filter ranged from 1 to 1,290, with a me-

dian of 351 (25% quartile 326 and 75% quartile 380). The

QQ plot (Figure 6A) shows that all four tests have well-cali-

brated tail probabilities. Table 3 summarizes heteroscedastic
The American Journal of Human Gen
linear mixed model-based SMMAT-B,

SMMAT-S, SMMAT-O, and SMMAT-E

p values in FGB and flanking regions.

SMMAT-S, SMMAT-O, and SMMAT-E

give the most significant results

in the 4 kb window 154,554–

154,558 kb, with p values 1.6 3

10�17, 8.9 3 10�17, and 6.2 3 10�19,

respectively, while SMMAT-B p value

is much larger (6.9 3 10�5). In the

4 kb window that covers both known

association rare variants rs6054

and rs201909029 (window 154,566–
154,570 kb), SMMAT-E gives the smallest p value (3.1 3

10�17), followed by SMMAT-S (p value 9.7 3 10�17),

SMMAT-O (p value 3.3 3 10�16), and SMMAT-B (p value

1.6 3 10�8).

In this TOPMed data example, linear mixed models with

and without adjusting for ten ancestry PCs as fixed-effects

covariates gave very close p values (Figure S5). When we

changed the window size from 4 kb to 1 kb (Figure S6),

10 kb (Figure S7), and 40 kb (Figure S8), the QQ plots

showed that the analyses were well calibrated and the

same association was identified. Regardless of the window

size, SMMAT-E almost always gave the smallest p values,

except for the 1 kb window 154,567–154,568 kb, which

covers rs201909029. For this 1 kb window, none of

the tests gave significant p values after adjusting for mul-

tiple testing, indicating potential lack of power, since

rs201909029 has only 33 minor allele counts in our

TOPMed samples (Table S1).

Computation Time

Table 4 shows the CPU time for running the sliding

window analysis for 23,763 individuals with TOPMed

whole-genome sequence data and fibrinogen levels, using

summary statistics from 46,859 non-overlapping 4 kb

windows on chromosome 4. The GMMAT App (v.0.9.3)

in the Analysis Commons cloud computing platform

has implemented SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E, with the option of running one or more tests
etics 104, 260–274, February 7, 2019 267
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Figure 4. Empirical Power of Linear Mixed Model-Based SMMAT-B, SMMAT-S, SMMAT-O, SMMAT-E, and GLMM-MiST in Contin-
uous Trait Analysis of 2,000, 5,000, and 10,000 Samples
(A–C) 10% causal variants with 100% (A), 80% (B), or 50% (C) negative effects.
(D–F) 20% causal variants with 100% (D), 80% (E), or 50% (F) negative effects.
(G–I) 50% causal variants with 100% (G), 80% (H), or 50% (I) negative effects.
Effect sizes were simulated using the same parameter in each row, but different across rows.
in an analysis. SMMAT-B results are automatically

included when running SMMAT-O or SMMAT-E, and

SMMAT-S p values will also be output when running

SMMAT-O. Of the four tests in Table 4, SMMAT-B takes

shortest time as the p value calculation does not

involve any eigen-decomposition of covariance matrices.

SMMAT-S takes only about 10 min longer than SMMAT-B

for the eigen-decomposition of 46,859 covariance

matrices. SMMAT-E takes about 12 min longer than

SMMAT-S and gives both SMMAT-B and SMMAT-E

p values. SMMAT-O takes 175 min longer than SMMAT-S,

as more eigen-decompositions are performed in

SMMAT-O when it searches for the optimal combination

of SMMAT-B and SMMAT-S on a grid of r values. We did

not include GLMM-MiST in the analysis, because it took
268 The American Journal of Human Genetics 104, 260–274, Februar
159 min CPU time to fit a GLMM for this TOPMed sam-

ple. By extrapolation, it would take more than 14 years

CPU time for analyzing 23,763 related individuals with

46,859 windows using GLMM-MiST.

Discussion

We have developed and implemented SMMAT, a family of

computationally efficient variant set mixed model associa-

tion tests for continuous and binary traits in large-scale

whole-genome sequencing studies. This framework in-

cludes extensions of three widely used variant set tests

for unrelated individuals to complex study samples

with population structure and cryptic relatedness: the

burden test (SMMAT-B), SKAT (SMMAT-S), and SKAT-O
y 7, 2019
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Figure 5. Empirical Power of Logistic Mixed Model-Based SMMAT-B, SMMAT-S, SMMAT-O, SMMAT-E, and GLMM-MiST in Binary
Trait Analysis of 2,000, 5,000, and 10,000 Samples
(A–C) 10% causal variants with 100% (A), 80% (B), or 50% (C) negative effects.
(D–F) 20% causal variants with 100% (D), 80% (E), or 50% (F) negative effects.
(G–I) 50% causal variants with 100% (G), 80% (H), or 50% (I) negative effects.
Effect sizes were simulated using the same parameter in each row, but different across rows.
(SMMAT-O), as well as a new efficient hybrid test that com-

bines the mixed model burden and SKAT tests (SMMAT-E).

Specifically, SMMAT-E is constructed by combining the

burden test and an adjusted mixed model SKAT statistic

that is approximately asymptotically independent from

the mixed model burden test statistic, in a similar spirit

to MiST in non-mixed model setting,15 but that differs

fromMiST in that it does not require fitting separate mixed

effect burden models for each variant set with the set ge-

netic burden as a fixed-effects covariate. Instead, we use

matrix projections to approximate the adjusted SKAT sta-

tistic from a global null model without any fixed effects

for the variant set-specific genetic burden. Of note, this

global null model needs to be fit only once in a whole-

genome analysis, which greatly reduces the computational
The America
cost. The approximation is highly accurate, even in the

presence of large genetic effects. We show in simulation

studies and the TOPMed fibrinogen example that

SMMAT-E is more powerful than the other three tests

in large samples, at the computational cost almost on

the same scale of SMMAT-B and SMMAT-S. Therefore,

SMMAT-E is recommended in the analysis of large-scale

whole-genome sequencing studies.

In the SMMAT framework, different weighting strategies

can be used. One can use a function of the MAF,11,13 or

external measures based on functional annotation such

as CADD,35 Eigen,36 FATHMM-XF,37 or tissue-specific an-

notations, such as GENOSKYLINE,38 as the weight for

each variant in a set. In the analysis of fibrinogen levels

in TOPMed, we used MAF-based weights. Recently, unified
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variant set tests allowing for multiple functional annota-

tions have been developed,39 and the SMMAT framework

can possibly be extended to accommodate multiple

weights. Nevertheless, the optimal weighting strategy in

rare variant analysis remains an open question and an

active field of research.

As SMMAT-E combines the burden test p value pB with

an asymptotically independent adjusted SKAT p value pq
using Fisher’s method in our SMMAT implementation in

the GMMAT App, we note that other forms of combina-

tions may also be applied.40 For example, previous studies

have shown that Tippett’s procedure based on the mini-

mum of pq and pB might be more powerful than Fisher’s

method in MiST when only one of the p values is

small.15 Alternatively, instead of combining the p values,

weighted linear combinations of chi-square statistics

have been proposed41–43 and they can also be applied to

combine the burden test statistic TB and the asymptotically

independent SKAT statistic Tq in the SMMAT framework.

SMMAT also has some limitations. SMMAT p values are

computed based on asymptotic distributions, which may

be not be accurate in small samples, especially for binary

traits and heavily skewed continuous traits. For continuous

traits, small-sample inference procedures have been pro-

posed for SKAT,44,45 and the same methodology can be

applied to SMMAT. For ultra-rare genetic variants with

very low minor allele counts, the single-variant scores

used to construct SMMAT-B, SMMAT-S, SMMAT-O, and

SMMAT-E may not be close to a normal distribution,

even if the total sample size is large. If there are only

ultra-rare variants (e.g., singletons, doubletons) in a test re-

gion and the number of variants is small, SMMAT-B might

be the best analysis strategy as its asymptotic property de-

pends on the cumulative minor allele counts. Moreover,

the asymptotic issue of single-variant scores also exists

for binary traits with highly unbalanced case-control ra-

tios, and a saddlepoint approximation approach has been

proposed to match the cumulant generating function

of the single-variant scores,46 and it has recently been

extended to GLMMs.47

Fitting GLMMs with a GRM has Oðn3Þ complexity in

general, where n is the sample size. We have overcome

this computational challenge by fitting only one GLMM
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in a whole-genome analysis and using

matrix multiplications with Oðn2Þ
complexity for each variant set in
SMMAT. In large-scale whole-genome sequencing studies,

solutions to other computational challenges are being pro-

posed. For example, when the number of variants q

in SKAT is very large, eigendecomposition of the covari-

ance matrix, which has Oðminðn; qÞ3Þ complexity, could

be computationally expensive. Recently, the fastSKAT

approach has been proposed to efficiently approximate

the null distribution of SKAT when q is very large,48 and

the same strategy can be applied to speed up SMMAT

p value calculation for very large q. On the other hand,

as the sample size in ongoing large-scale sequencing pro-

jects such as TOPMed eventually expands to hundreds of

thousands, using a full n 3 n GRM would not be computa-

tionally practical in pooled analyses, as it may take several

weeks to fit even only one GLMM with Oðn3Þ complexity

and Oðn2Þ memory footprint. Meta-analyses may be

a more appealing analysis strategy in that situation

by combining summary statistics from study-specific or

ancestry-specific analyses. Essentially equivalently, in

pooled analyses, using a sparse and/or block-diagonal

GRM with each block corresponding to an individual

study inmeta-analyses, will help reduce the computational

cost in fitting GLMMs, providing one uses specialized rou-

tines for manipulation of sparse matrices.49 Although

whole-genome sequencing studies have not yet been con-

ducted in large biobanks with sample sizes on the scale of

millions of individuals, it is expected that calculating the

GRM itself would become a major computational bottle-

neck. Recently, GRM-free mixed effects models such as

BOLT-LMM6,50 and SAIGE47 have been developed for sin-

gle variant tests, and we note that extension of these

methods to the SMMAT framework will further reduce

the computational cost in biobank-scale whole-genome

sequencing studies in the future.

In summary, SMMAT provides a flexible and prac-

tical statistical framework for large-scale whole-genome

sequencing studies with complex study samples, with

balanced power and computational performance. With

continuing advances in technology, lowering cost and

development of new analytical methods, large-scale

whole-genome sequencing studies will facilitate human

genetic research and enhance our understandings of com-

plex diseases and traits.



Table 3. TOPMed Fibrinogen-Level SMMAT p Values in Known Association Gene FGB and Flanking Regions on Chromosome 4, using a
Heteroscedastic Linear Mixed Model on Rare Variants with MAF < 5% (n ¼ 23,763)

Start (kb) End (kb) No. of Variants SMMAT-B SMMAT-S SMMAT-O SMMAT-E

154,554 154,558 348 6.9 3 10�5 1.6 3 10�17 8.9 3 10�17 6.2 3 10�19

154,558 154,562 370 0.078 3.7 3 10�11 2.4 3 10�10 3.7 3 10�14

154,562 154,566 326 0.76 1.5 3 10�9 3.5 3 10�9 4.2 3 10�10

154,566 154,570 309 1.6 3 10�8 9.7 3 10�17 3.3 3 10�16 3.1 3 10�17

154,570 154,574 332 0.030 1.9 3 10�7 5.2 3 10�7 8.9 3 10�8

154,574 154,578 349 2.1 3 10�7 7.3 3 10�7 2.8 3 10�7 4.1 3 10�13

154,578 154,582 342 1.7 3 10�4 2.7 3 10�5 2.8 3 10�5 2.1 3 10�9

Physical positions of each window are on build hg38.

Table 4. CPU Time in the TOPMed Fibrinogen Level SMMAT using
Summary Statistics from a Sliding Window Analysis using Non-
overlapping 4 kb Windows on Chromosome 4 (n ¼ 23,763)

Test Time (min)

SMMAT-B 81

SMMAT-S 91

SMMAT-O 266

SMMAT-E 103

Tests were performed using the GMMAT App (v.0.9.3) with one single thread
on a computing node with 15 GB total memory in the Analysis Commons.
Appendix A: Approximations in SMMAT-E

Here we derive the approximations used in SMMAT-E to

construct the SKAT-type statistic adjusting for the genetic

burden

Tq ¼ ðy � ~mBÞTGWWGTðy � ~mBÞ
~f
2

:

Let ~f, ~a, ~b0, ~bi, ~V, and ~S be estimates forf,a, b0, bi,V, and

S, respectively, from the burden GLMM (Equation 3). We

define ~Y ¼ y as the phenotype vector for continuous

traits, and the ‘‘working vector’’ with components ~Yi ¼
Xi~aþGiW1q

~b0 þ ~bi þ f~mBi
ð1� ~mBi

Þg�1ðyi � ~mBi
Þ at conver-

gence of the logistic burden mixed model for binary traits

(Equation 3), where ~a, ~b0, ~bi are fixed-effects and random-

effects estimates from the burden GLMM.We have
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Note that ~f ¼ 1 for binary traits. Moreover, since the true
value of b0 is small, assuming including the genetic burden
The America
GiW1q in the second term in Equation 3 does not dramat-

ically change the variance component estimates for nk and

f (and for binary traits, also the ‘‘working vector’’ ~Y at

convergence of the model from Equation 2), we have

the approximation ~S
�1 � ~S

�1
XðXT ~S

�1
XÞ�1XT ~S

�1
zbP

and ðy� bm0Þ=bfzbP ~Y , then

WGTðy � ~mBÞ
~f

zWGT

�bP ~Y � bPGW1q

3
�
1T
qWGT bPGW1q

��1

1T
qWGT bP ~Y
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z

�
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�
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q
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3
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Therefore,

Tq ¼ ðy � ~mBÞTGWWGTðy � ~mBÞ
~f
2

zbf�2ðy � bm0ÞTGW
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Supplemental Data 

Supplemental Figures 

Figure S1. Empirical power of mixed model based SMMAT-B (B), SMMAT-S (S), SMMAT-O 

(O), SMMAT-E (E) and GLMM-MiST (M) in the presence of large genetic effects. The total 

sample size was 2,000, and all genetic variants were causal, with effects in the same direction. (A) 

Power at the significance level of 2.5 × 10-6 for continuous traits in linear mixed models. (B) Power 

at the significance level of 2.5 × 10-6 for binary traits in logistic mixed models. (C) P value 

comparison of SMMAT-E and GLMM-MiST for continuous traits in linear mixed models. (D) P 

value comparison of SMMAT-E and GLMM-MiST for binary traits in logistic mixed models.

 



 

Figure S2. Quantile-quantile plots of SMMAT-B, SMMAT-S, SMMAT-O and SMMAT-E in the 

analysis of 10,000 samples in the presence of both population-level and familial random effects, 

under the null hypothesis of no genetic association. (A) Continuous traits in linear mixed models 

with GRM random effects and no ancestry PC adjustment. (B) Binary traits in logistic mixed 

models with GRM random effects and no ancestry PC adjustment. (C) Continuous traits in linear 

mixed models with GRM random effects and 10 ancestry PCs. (D) Binary traits in logistic mixed 

models with GRM random effects and 10 ancestry PCs. (E) Continuous traits in linear mixed 

models with GRM and population random effects, but no ancestry PC adjustment. (F) Binary traits 

in logistic mixed models with GRM and population random effects, but no ancestry PC adjustment. 



 

 



 

Figure S3. Empirical power of linear mixed model based SMMAT-B (B), SMMAT-S (S), 

SMMAT-O (O) and SMMAT-E (E) in continuous trait analysis of 5,000 samples, using three 

models: GRM random effects with no ancestry PC adjustment (1 RE no PC), GRM random effects 

with 10 ancestry PCs as fixed effects (1 RE 10 PC), GRM and population random effects with no 

ancestry PC adjustment (2 RE no PC). (A) 10% causal variants with 100% negative effects. (B) 

10% causal variants with 80% negative effects. (C) 10% causal variants with 50% negative effects. 

(D) 20% causal variants with 100% negative effects. (E) 20% causal variants with 80% negative 

effects. (F) 20% causal variants with 50% negative effects. (G) 50% causal variants with 100% 

negative effects. (H) 50% causal variants with 80% negative effects. (I) 50% causal variants with 

50% negative effects. Effect sizes were simulated using the same parameter in each row, but 

different across rows. 



 

 

 

 

 

 

 



 

Figure S4. Empirical power of logistic mixed model based SMMAT-B (B), SMMAT-S (S), 

SMMAT-O (O) and SMMAT-E (E) in binary trait analysis of 5,000 samples, using three models: 

GRM random effects with no ancestry PC adjustment (1 RE no PC), GRM random effects with 10 

ancestry PCs as fixed effects (1 RE 10 PC), GRM and population random effects with no ancestry 

PC adjustment (2 RE no PC). (A) 10% causal variants with 100% negative effects. (B) 10% causal 

variants with 80% negative effects. (C) 10% causal variants with 50% negative effects. (D) 20% 

causal variants with 100% negative effects. (E) 20% causal variants with 80% negative effects. (F) 

20% causal variants with 50% negative effects. (G) 50% causal variants with 100% negative 

effects. (H) 50% causal variants with 80% negative effects. (I) 50% causal variants with 50% 

negative effects. Effect sizes were simulated using the same parameter in each row, but different 

across rows. 



 

 

 

 

 

 

 



 

Figure S5. P value comparison of TOPMed fibrinogen level SMMAT analysis results using 

heteroscedastic linear mixed models with and without adjusting for 10 ancestry PCs as fixed 

effects, using rare variants with MAF < 5% in non-overlapping 4 kb sliding windows on 

chromosome 4 (n = 23,763). (A) SMMAT-B. (B) SMMAT-S. (C) SMMAT-O. (D) SMMAT-E. 

 

 



 

Figure S6. TOPMed fibrinogen level SMMAT analysis results using a heteroscedastic linear mixed 

model on rare variants with MAF < 5% in non-overlapping 1 kb sliding windows on chromosome 

4 (n = 23,763). (A) Quantile-quantile plot. (B) P values on the log scale versus physical positions 

of the windows on chromosome 4 (build hg38). 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S7. TOPMed fibrinogen level SMMAT analysis results using a heteroscedastic linear mixed 

model on rare variants with MAF < 5% in non-overlapping 10 kb sliding windows on chromosome 

4 (n = 23,763). (A) Quantile-quantile plot. (B) P values on the log scale versus physical positions 

of the windows on chromosome 4 (build hg38). 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S8. TOPMed fibrinogen level SMMAT analysis results using a heteroscedastic linear mixed 

model on rare variants with MAF < 5% in non-overlapping 40 kb sliding windows on chromosome 

4 (n = 23,763). (A) Quantile-quantile plot. (B) P values on the log scale versus physical positions 

of the windows on chromosome 4 (build hg38). 

 



 

Supplemental Tables 

Table S1. TOPMed fibrinogen level SMMAT p values covering two known association variants 

rs6054 (hg38 position 154,568,456) and rs201909029 (hg 38 position 154,567,636) in gene FGB 

on chromosome 4, using a heteroscedastic linear mixed model on rare variants with MAF < 5% (n 

= 23,763). Physical positions of each window are on build hg38. 

Window (kb) Length 

No. of 

variants SMMAT-B SMMAT-S SMMAT-O SMMAT-E 

154,567-154,568a 1 kb 78 0.097 0.0047 0.0076 0.0086 

154,568-154,569b 1 kb 86 8.1 × 10-5 1.7 × 10-18 1.0 × 10-17 2.7 × 10-19 

154,566-154,570 4 kb 309 1.6 × 10-8 9.7 × 10-17 3.3 × 10-16 3.1 × 10-17 

154,560-154,570 10 kb 846 0.0011 1.7 × 10-14 1.4 × 10-13 4.3 × 10-16 

154,560-154,600 40 kb 3,399 3.4 × 10-7 9.2 × 10-10 1.0 × 10-9 3.2 × 10-18 

a This window covers rs201909029, which has 33 minor allele counts in our TOPMed samples.  

b This window covers rs6054, which has 179 minor allele counts in our TOPMed samples. 

 

 

 



 

Supplemental Methods: Additional Simulation Studies 

Impact of Large Genetic Effects on SMMAT-E Power 

The efficient hybrid test SMMAT-E is developed based on the assumption that the mean of genetic 

effects 𝛽0 is not large. To investigate the impact of large genetic effects on SMMAT-E power, we 

performed additional simulation studies in which all variants in a test unit are causal, with the 

effects in the same direction. This simulation setting is in favor of SMMAT-B. We used the same 

genotype data as that in the single-cohort type I error simulations and evaluated the empirical 

power of SMMAT-B, SMMAT-S, SMMAT-O, SMMAT-E, and GLMM-MiST that combines the 

p value of SMMAT-B (Equation 2 in Methods) and the p value of SMMAT-S (Equation 3 in 

Methods) using Fisher’s method. All tests were performed using weights equal to a beta 

distribution density function with parameters 1 and 25 on the MAF of each variant. 

 

For continuous traits, we simulated the phenotype 𝑦𝑖𝑗 for individual 𝑗 in family 𝑖 from 

𝑦𝑖𝑗 = 𝛼1𝑍𝑖 + 𝛽0𝑇𝑖𝑗 + 𝑏𝑖𝑗 + 𝜖𝑖𝑗, 

where 𝛼1 = 1, the population indicator 𝑍𝑖 = 1 if family 𝑖 was from Population 1, and 𝑍𝑖 = 0 if 

from Population 2, the genetic effect 𝛽0 = 0.15. The burden score 𝑇𝑖𝑗 of individual 𝑗 in family 𝑖 

was the weighted sum of causal variant genotypes (with weights equal to a beta distribution density 

function with parameters 1 and 25 on the MAF of each variant), normalized to have mean 0 and 

variance 1. The familial random effects 𝑏𝑖𝑗 were simulated using Equation 5 in Methods, and the 

random error 𝜖𝑖𝑗 ~ 𝑁(0, 1). In this parameter setting, the burden score 𝑇𝑖𝑗 explains 1.3% of the 

total phenotypic variance. We randomly sampled 35% individuals from Population 1, and 65% 

individuals from Population 2. 

 



 

For binary traits, we simulated the phenotype 𝑦𝑖𝑗 for individual 𝑗 in family 𝑖 from 

log (
𝑃(𝑦𝑖𝑗 = 1)

1 − 𝑃(𝑦𝑖𝑗 = 1)
) = 𝛼0 + 𝛽0𝑇𝑖𝑗 + 𝑏𝑖𝑗 , 

where 𝛼0 was chosen such that the disease prevalence was 0.01 in all populations, the genetic 

effect 𝛽0 = 0.3. The burden score 𝑇𝑖𝑗 of individual 𝑗 in family 𝑖 was calculated in the same way as 

for continuous traits, and the familial random effects 𝑏𝑖𝑗 were simulated using Equation 5 in 

Methods. We randomly sampled 35% individuals (with 25% cases and 10% controls out of the 

total sample size) from Population 1, and 65% individuals (with 25% cases and 40% controls out 

of the total sample size) from Population 2 to form a hypothetical study with balanced cases and 

controls in combined populations. 

 

We used the sample size of 2,000 for both continuous and binary traits, since the simulated genetic 

effect was large. We repeated 1,000 simulation replicates, and compared the empirical power at 

the significance level of 2.5 × 10-6, as well as the p values from SMMAT-E and GLMM-MiST 

(Figure S1). 

 

Impact of Multiple Random Effects 

One advantage of the SMMAT framework is that it can flexibly use multiple random effects to 

model between-subject correlation from different sources in the model. We considered two sources 

of genetic relatedness in our simulation, one from population structure and one from family 

membership. The population membership matrix has 400 population blocks corresponding to the 

20 × 20 grid in Figure 1A, with elements equal to 1 if two individuals are from the same population 

grid, 0 otherwise. We included a population-level random intercept with mean 0 and variance 1, 

which is the same for individuals from the same population grid, in the true models for both 



 

continuous and binary traits. We also included the familial random effects from Equation 5 in 

Methods. 

 

We evaluated the performance of three analytical strategies in the presence of sample correlation 

due to both population-level and familial random effects: 1) including  a single random effects 

term with the covariance matrix proportional to the GRM, without adjusting for ancestry PCs; 2) 

including a single random effects term with the covariance matrix proportional to the GRM, and 

adjusting for the first 10 ancestry PCs as fixed effects; and 3) including two random effects terms, 

one with the covariance matrix proportional to the GRM, and the other with the covariance matrix 

proportional to the block-diagonal population membership matrix, without adjusting for ancestry 

PCs. We evaluated the type I error rate and power as described in Methods. 
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