SUPPLEMENTARY FIGURE LEGENDS

Figure S1. AGO2 is Acetylated at K355, K493 and K720, Related to Figure 1

(A) K355, K493 and K720 are identified as the AGO2 acetylation sites by mass spectrometry analysis. 293T cells transfected with Flag-AGO2 were treated with the deacetylase inhibitors TSA (2 μM) and NAM (10 mM) for 6 h and 18 h before harvested, respectively. Flag-AGO2 was purified by IP with anti-Flag antibody, then subjected to 8% SDS-PAGE gel, followed by staining with Coomassie brilliant blue. The band of Flag-AGO2 were cut and digested for the mass spectrometry analysis.

(B-C) Characterization of AGO2 specific acetyl-K355, -K493 and -K720 antibodies. Specificity of AGO2 specific acetyl-antibodies were determined by dot blot assay. Nitrocellulose membrane was spotted with different amounts of acetyl-K355,-K493 and -K720 peptides or unmodified peptides, and detected with antibodies AGO2-K355-Ac, AGO2-K493-Ac and AGO2-K720-Ac, respectively.

(D) AGO2 was acetylated at K355, K493 and K720 in 293T cells. Flag-AGO2 was transfected into 293T cell, AGO2 acetylation analyzed by IP and WB by using AGO2 specific acetylation antibodies with or without the unmodified peptide.

Figure S2. Serum Stimulates the Expression of P300 and Ectopically Expressed P300 Associates with Endogenous AGO2, Related to Figure 2

(A) Serum stimulates AGO2 acetylation. HeLa or A549 cell was serum-starved for 24 h and followed by stimulation with 20% serum for 1, 2, 3 h; the expression of P300 was

measured by WB.

(B) Ectopically expressed P300 associates with endogenous AGO2. 293T cell was transfected with HA-P300, after 48 h cells was lysed with RIPA buffer for IP with anti-HA antibody or normal IgG, followed by WB.

Figure S3. AGO2 Interacts with HDAC7 Rather than Other Deacetylases, Related to Figure 3

Flag-tagged SIRT1, SIRT5, HDAC6 or HDAC7 was individually co-transfected with Myc-AGO2 into 293T cells. Cell lysates were immunoprecipitated with anti-Myc antibody, and followed by WB with anti-Flag antibody (* represents the non-specific band).

Figure S4. Acetylation of AGO2 Increases miR-19b Biogenesis, Related to Figure 4

- (A) shRNA-resistant Flag-tagged AGO2-WT and AGO2-3KR were stably re-expressed in A549-shAGO2 cells, respectively. The levels of re-expressed AGO2 were detected by WB and shown comparable.
- (B) 293T-shAGO2 and -shDICER stable cell lines. AGO2 and DICER were knocked down by several shRNAs in 293T cells. The protein levels were detected by WB with as indicated antibodies.
- (C) The miR-19b maturation is highly sensitive to AGO2 in a DICER dependent manner. DICER or AGO2-knocked down 293T cells were transfected with pre-miR-19b1 or pre-miR-19b2 for 48 h, then total RNAs were extracted and followed by northern blotting analysis.

(D) The miR-19b maturation from pre-miR-19b1 is more sensitive to AGO2 than that from pre-miR-19b2 in a DICER dependent manner. Indicated plasmids were transfected into 293T cells for 48 h, then the total RNA were extracted and followed by northern blotting analysis.

Figure S5. Serum stimulation induces the expression of miR-19b, but not pri-miR-19b1 and pre-miR-19b, Related to Figure 4

A549 cell was serum-starved for 24 h and followed by stimulation with 20% serum for 1, 2, 3 h; the expression of pri-miR-19b1, pre-miR-19b and miR-19b were detected by qRT-PCR (upper panels), and the expression of P300 and AGO2 were measured by WB (lower panels).

Figure S6. Acetylation of AGO2 does not influence its interaction with DICER,

Related to Figure 5

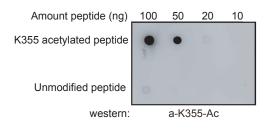
AGO2-WT, AGO2-K355R, AGO2-K493R, AGO2-K720R or AGO2-3KR was individually transfected into 293T cells, respectively. 48 h later, cells were lysed with RIPA buffer for IP with anti-Myc antibody, the interaction of endogenous DICER with AGO2 was performed by WB.

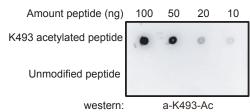
Figure S7. AGO2 Acetylation Promotes Caner Progression by miR-19b, Related to Figure 6

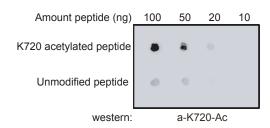
(A) Validation of AGO2 expression in A549 stable cell lines. Flag-AGO2-WT, or -3KR

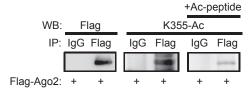
with or without pre-miR-19b1 were stably expressed in A549 cells, and the levels of AGO2 were detected by WB as shown comparable.

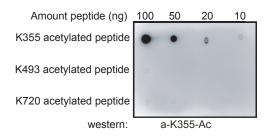
- (**B**) AGO2 acetylation increases xenograft tumor growth *via* the miR-19b pathway. 2.5x10⁶ of above A549 stable cell lines were injected subcutaneously into the back of nude mice. At 35 days tumors were dissected and tumors sizes were shown.
- (C) The expression levels of AGO2 in xenograft tumors with A549 stable cell lines. Lysates from xenograft tumors of A549 stable cell lines were determined by WB with anti-AGO2 and anti-Flag antibodies.

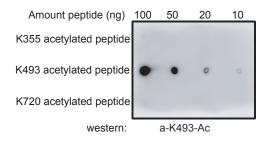

Figure S8. AGO2 Acetylation Is Up-regulated and Positively Correlated with miR-19b Expression in Human Lung Cancers, Related to Figure 7

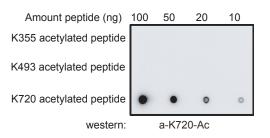

- (A) Relevance between the clinical characteristics and the expression levels of miR-19b, AGO2-K493-Ac and AGO2-K720-Ac in lung cancers. Data were analyzed using a one-way ANOVA (within Normal, Stage I , Stage II and StageIII/IV groups) and independent t-test.
- (B-D) The expression levels of miR-19b1, AGO2-K493-Ac and AGO2-K720-Ac in lung cancers were significantly higher than those in normal tissues. ISH staining scores for miR-19b (B) and IHC staining scores for AGO2-K493-Ac (C) and AGO2-K720-Ac (D) in normal tissues and lung cancers were shown. Comparisons between groups for statistical significance were conducted with a 2-tailed-unpaired Student's t-test. The error bars represent mean \pm s.d., *P*-values of <0.05 (*), <0.01 (***), <0.001 (***).

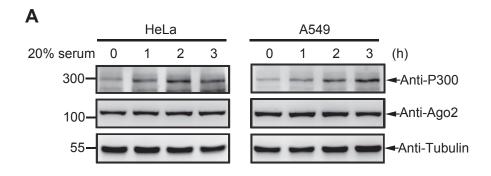


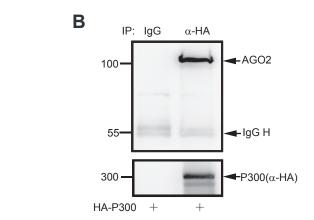

В

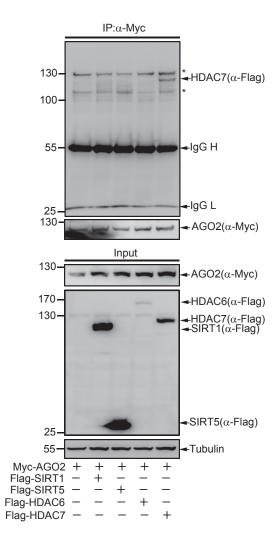


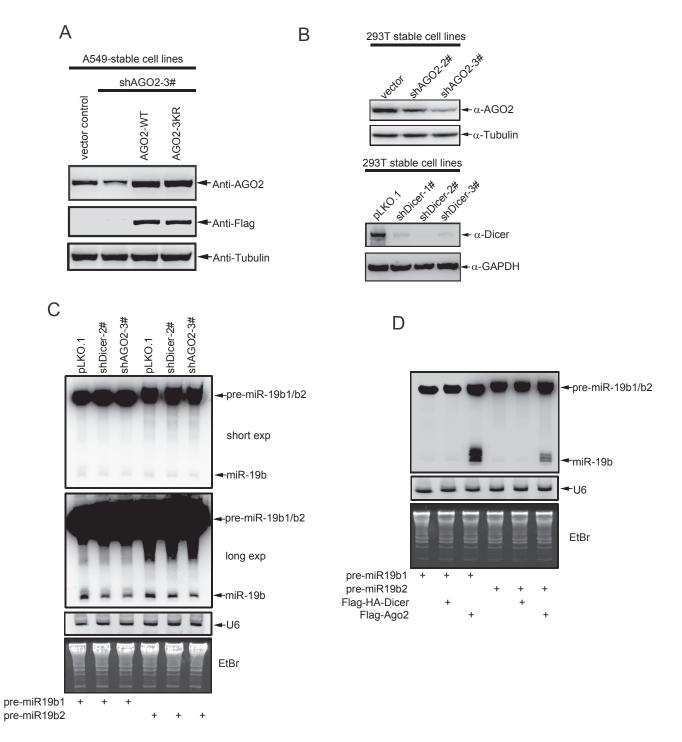


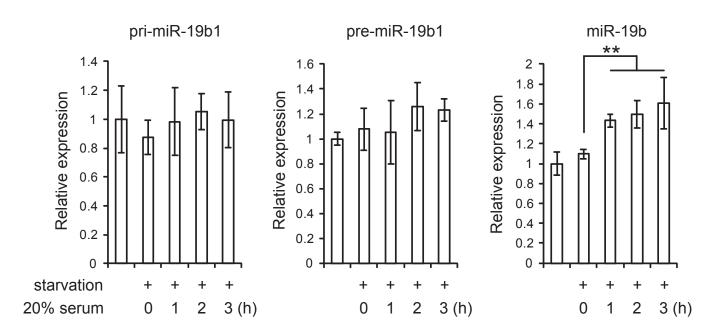

D

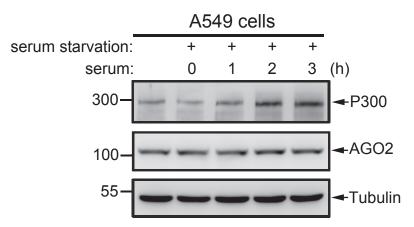


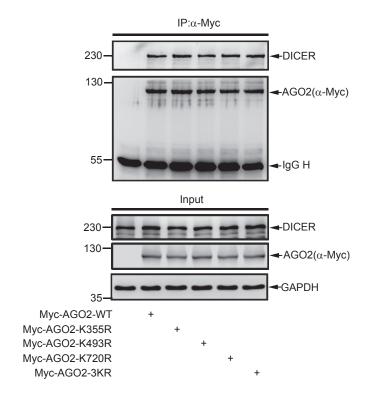

C

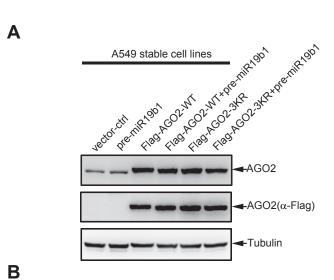




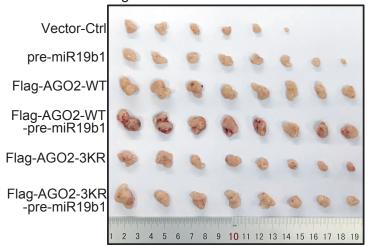


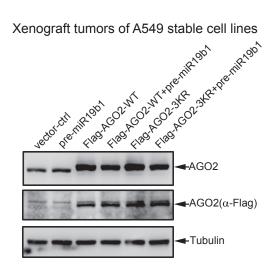




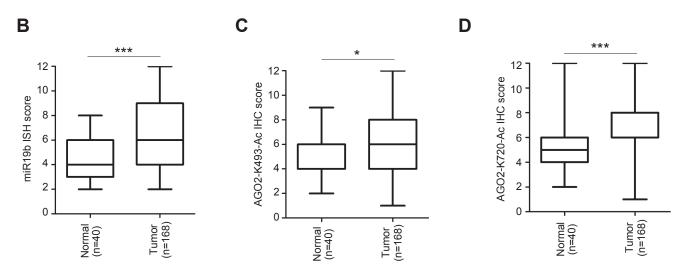


A549 cells





Xenograft tumors of A549 stable cell lines



C

Relevance between the clinical characteristics and miR-19b, AGO2K493-Ac and AGO2-K720-Ac expression level of lung cancer

	miR-19b		AGO2-K493-Ac		AGO2-K720-Ac	
	N	mean score P value	Ν	mean score P value	Ν	mean score P value
		(95% CI)		(95% CI)		(95% CI)
Category		< 0.0001		0.0142		0.001
Normal	40	4.3(3.8-4.8)	40	4.8(4.3-5.3)	40	5.3(4.6-5.9)
Cancer	168	6.4(5.9-6.9)	168	5.9(5.5-6.3)	168	6.6(6.3-7.0)
Stage		0.0011		0.1082		0.0097
1	85	6.2(5.5-6.9)	85	5.9(5.3-6.5)	85	6.6(6.0-7.2)
II	44	7.0(6.0-8.1)	44	5.9(5.1-6.8)	44	6.8(6.1-7.6)
III/IV	39	6.4(5.4-7.4)	39	5.8(5.0-6.6)	39	6.6(6.0-7.3)
Grade		0.058		0.1662		0.7043
1	38	6.2(5.1-7.2)	38	6.7(5.6-7.7)	38	6.5(5.7-7.4)
2	66	6.0(5.2-6.7)	66	5.6(5.0-6.3)	66	6.3(5.8-6.8)
3	33	7.6(6.3-8.8)	33	5.8(4.9-6.7)	33	6.7(5.7-7.7)

Supplementary Table 1. Related to Figure 1. Alignment of the amino acid sequences of Ago2 homologues in various species.

The conserved lysines of Ago2 were highlighted in red which were identified to be acetylated. K355, K493 and K720 of Ago2 are evolutionarily conserved from Caenorhabditis elegans to mammals.

Homo sapiens	351RCIKKLTDNQ360	489PCFCKYAQGA498	716FCTDKNERVG725
Pan troglodytes	351RCIKKLTDNQ360	489PCFCKYAQGA498	716FCTDKNERVG725
Mus musculus	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Rattus norvegicus	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Oryctolagus cuniculus	332RCIKKLTDNQ341	470PCFCKYAQGA479	697FCTD <mark>K</mark> NERVG706
Bos taurus	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Gallus gallus	356RCIKKLTDNQ365	494PCFCKYAQGA503	721FCTDKNERVG730
Sus scrofa	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Anolis carolinensis	362RCIKKLTDNQ371	500PCFCKYAQGA509	727FCTDKNERVG736
Macaca mulatta	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Felis catus	348RCIKKLTDNQ357	486PCFCKYAQGA495	713FCTDKNERVG722
Desmodus rotundus	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Equus caballus	347RCIKKLTDNQ356	485PCFCKYAQGA494	712FCTDKNERVG721
Ailuropoda melanoleuca	350RCIKKLTDNQ359	488PCFCKYAQGA497	715FCTDKNERVG724
Meleagris gallopavo	348RCIKKLTDNQ357	486PCFCKYAQGA495	713FCTDKNERVG722
Ovis aries	346RCIKKLTDNQ355	484PCFCKYAQGA493	712FCTDKNERVG721
Loxodonta africana	345RCIKKLTDNQ354	483PCFCKYAQGA492	710FCTDKNERVG719
Pelodiscus sinensis	352RCIKKLTDNQ361	490PCFCKYAQGA499	718FCTDKNERVG727
Ornithorhynchus anatinus	352RCIKKLTDNQ361	490PCFCKYAQGA499	717FCTDKNERVG726
Bactrocera dorsalis	423RCIKKLTDMQ432	575PCFCKYATGP584	803FCAEKKEQSG 812
Caenorhabditis elegans	515RCIKKL TDVQ524	653PCFCKYAVGV662	880FAVD <mark>K</mark> KDQVG889

Supplementary Table S2. Primer or oligonucleotide sequences were used in this study

The sequer	nces of siRNA	A, shRNA, qRT-PCR, probe and plasmid construction			
siRNA					
Negative control	ACGUGACACGUUCGGAGAATT				
si-P300	AGUAAUAUCUUCGUGCCACTT				
si-HDAC7	CCAGCAAACCUUCUACCAATT				
		shRNA			
	Forword	CCGGTCTATGAACTCAGGGCTTTAAACTCGAGTT			
AGO2		TAAAGCCCTGAGTTCATAGTTTTTTG			
shRNA2#	Reverse	AATTCAAAAAACTATGAACTCAGGGCTTTAAACT			
		CGAGTTTAAAGCCCTGAGTTCATAGA			
	Forword	CCGGTATCGAACATGAGACGTCATTGCTCGAGCA			
AGO2	rotword	ATGACGTCTCATGTTCGATTTTTTTG			
shRNA3#	Reverse	AATTCAAAAAAATCGAACATGAGACGTCATTGCT			
	Reverse	CGAGCAATGACGTCTCATGTTCGATA			
	F1	CCGGTGCCAAGGAAATCAGCTAAATTCTCGAGAA			
DICER	Forword	TTTAGCTGATTTCCTTGGCTTTTTG			
shRNA1#	D	AATTCAAAAAGCCAAGGAAATCAGCTAAATTCTC			
	Reverse	GAGAATTTAGCTGATTTCCTTGGCA			
	Г 1	CCGGTGGAAGAGGCTGACTATGAAGACTCGAGT			
DICER	Forword	CTTCATAGTCAGCCTCTTCCTTTTTG			
shRNA2#	D	AATTCAAAAAGGAAGAGGCTGACTATGAAGACT			
	Reverse	CGAGTCTTCATAGTCAGCCTCTTCCA			
	Forword	CCGGTAGCAGCTCTGGATCATAATACCTCGAGGTA			
DICER		TTATGATCCAGAGCTGCTTTTTTG			
shRNA3#	Reverse	AATTCAAAAAAGCAGCTCTGGATCATAATACCTC			
		GAGGTATTATGATCCAGAGCTGCTA			
	qRT-PCR primers				
	DT	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCAC			
	RT	TGGATACGACTCAGTT			
	q-PCR	CCCTCTCTCC A A ATCC ATCC			
miR-19b	Forword	GCCTGTGTGCAAATCCATGC			
	q-PCR	CTCCA CCCTCCCA CCT			
	Reverse	GTGCAGGGTCCGAGGT			
pro miD 10h	q-PCR	CTATGGTTAGTTTTGCAGGTTTGC			
pre-miR-19b	Forword	CIAIGGIIAGIIIIGCAGGIIIGC			

	q-PCR Reverse	CAGTCAGTTTTGCATGGATTTG	
	q-PCR Forword	ATCAAACTGTCCTGTTACTG	
pri-miR-19b1	q-PCR		
	Reverse	TTCTACAGACTTTTCACTAC	
	Forword	CGCTTCGGCAGCACATATAC	
U6			
	Reverse	AGGGCCATGCTAGGCTA	
GAPDH -	Forword	CTCAAGGGCATCCTGGGCTA	
	Reverse	ATGAGGTCCACCACCTGTT	
		Probe sequences	
miR-19b	TCAGTTTTGCATGGATTTGCACA		
U6	TGTGCTGCCGAAGCGAGCAC		
		AGO2 mutant sequences	
A CO2 W255D	Forword	CGATTAACGGACAATCAGACCTC	
AGO2-K355R	Reverse	TTTAATACATCTTTGTCCTGC	
A CO2 IV 402D	Forword	CGATACGCGCAGGGGGGGGACAG	
AGO2-K493R	Reverse	GCAGAAGCACGGCTGGCCCTG	
1 CO2 1/720D	Forword	GAAACGAGCGGGTTGGGAAAAG	
AGO2-K720R	Reverse	TGTCAGTGCAGAAGAGCC	
Sequences of	of pre-miR-	19b1 and pre-miR-19b2 constructed in pGreenPuro	
		GATCCGAGTTTTGCAGGTTTGCATCCAGCTGTGT	
	Forword	GATATTCTGCTGTGCAAAATCCATGCAAAACTGACT	
pre-miR-19b1		TTTTG	
pre-mik-1901		AATTCAAAAAGTCAGTTTTGCATGGATTTGCACA	
	Reverse	GCAGAATATCACACAGCTGGATGCAAACCTGCAA	
		AACTCG	
	Forword	GATCCGAGTTTTGCAGGTTTGCATTTCAGCGTATA	
		TATGTATATGTGGCTGTGCAAATCCATGCAAAACT	
pre-miR-19b2		GACTTTTTG	
pro mint 1902	Reverse	AATTCAAAAAGTCAGTTTTGCATGGATTTGCACA	
		GCCACATATACATATACGCTGAAATGCAAACCT	
		GCAAAACTCG	
pre-miR-19b1 mutant sequences			
pre-miR-19b1-	Forword	TGTGATATTCTGCTGTGCAAATC	
Δug	Reverse	GCTGGATGCAAACCTGCAAAAC	
pre-miR-19b1-	Forword	TGATATTCTGCTGTGCAAATC	
Δ ugug	Reverse	GCTGGATGCAAACCTGCAAAAC	

pre-miR-19b1-	Forword	ATATTCTGCTGTGCAAATCC
Δ ugugug	Reverse	GCTGGATGCAAACCTGCAAAAC
pre-miR-19b1-u	Forword	TGATTGATATTCTGCTGTGCAAATCC
gauug	Reverse	GCTGGATGCAAACCTGCAAAAC
pre-miR-19b1-	Forword	ATATTGATATTCTGCTGTGCAAATCC
auauug	Reverse	GCTGGATGCAAACCTGCAAAAC
pre-miR-19b1-	Forword	ATATATATTCTGCTGTGCAAATCC
аиаиаи	Reverse	GCTGGATGCAAACCTGCAAAAC